
Citation: Zhang, Z.; Jiang, X.; Yang, Z.;

Ma, S.; Chen, J.; Sun, W. Scalable

Multi-Robot Task Allocation Using

Graph Deep Reinforcement Learning

with Graph Normalization. Electronics

2024, 13, 1561. https://doi.org/

10.3390/electronics13081561

Academic Editor: Domenico Rosaci

Received: 3 March 2024

Revised: 11 April 2024

Accepted: 17 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Scalable Multi-Robot Task Allocation Using Graph Deep
Reinforcement Learning with Graph Normalization
Zhenqiang Zhang 1 , Xiangyuan Jiang 1 , Zhenfa Yang 2 , Sile Ma 1,2,*, Jiyang Chen 1,3 and Wenxu Sun 1,*

1 Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
202020867@mail.sdu.edu.cn (Z.Z.); xyjiang@sdu.edu.cn (X.J.); chenjiyang@sdu.edu.cn (J.C.)

2 School of Control Science and Engineering, Shandong University, Jinan 250061, China;
yangzhenfa@sdu.edu.cn

3 Shandong Zhengzhong Information Technology Co., Ltd., Jinan 250098, China
* Correspondence: masile@sdu.edu.cn (S.M.); sunwenxu@sdu.edu.cn (W.S.)

Abstract: Task allocation plays an important role in multi-robot systems regarding team efficiency.
Conventional heuristic or meta-heuristic methods face difficulties in generating satisfactory solutions
in a reasonable computational time, particularly for large-scale multi-robot task allocation problems.
This paper proposes a novel graph deep-reinforcement-learning-based approach, which solves the
problem through learning. The framework leverages the graph sample and aggregate concept as
the encoder to extract the node features in the context of the graph, followed by a cross-attention
decoder to output the probability that each task is allocated to each robot. A graph normalization
technique is also proposed prior to the input, enabling an easy adaption to real-world applications,
and a deterministic solution can be guaranteed. The most important advantage of this architecture is
the scalability and quick feed-forward character; regardless of whether cases have a varying number
of robots or tasks, single depots, multiple depots, or even mixed single and multiple depots, solutions
can be output with little computational effort. The high efficiency and robustness of the proposed
method are confirmed by extensive experiments in this paper, and various multi-robot task allocation
scenarios demonstrate its advantage.

Keywords: multi-robot task allocation; graph deep reinforcement learning; graph sample and
aggregate; cross-attention; graph normalization; single depot; multiple depot

1. Introduction

Automatic mobile robotics in large-scale mission contexts is encouraging the use of
multi-robot systems (MRSs) due to their superior efficiency, scalability, and robustness
compared to single-robot systems [1]. One of the most important and challenging problems
of MRSs is multi-robot task allocation (MRTA), which involves assigning a set of robots to
a set of tasks while being subject to some constraints, with the objective of optimizing the
overall system performance like the make-span, total energy consumption, etc. [2]. MRTA
can be categorized into three areas [3]: (1) single-task robot (ST) versus multi-task robot
(MT) allocation, from the aspect of the robot’s capacity to execute a number of tasks at a
time; (2) single-robot task (SR) versus multi-robot task (MR) allocation, from the aspect of
the how many robots are required to finish a task; (3) instantaneous assignment (IA) versus
time-extended assignment (TA) allocation, from the aspect of the assignment timing, where
IA only instantaneously allocates tasks to robots without planning for future allocations,
while TA produces the overall information about the assignment, including the sub-tasks
set and the execution sequence of the tasks that each robot has been allocated to. Of the
categories, ST-SR-IA is the only one that can be solved in polynomial time; all the others
are strongly NP-hard and cannot be solved by exact solution methods in a reasonable
computational time [4].
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This paper concerns the ST-SR-TA problem, which involves both allocation and
scheduling. This scenario is more realistic for mobile robotics, because mobile robots
are usually compactly designed to serve a single task at a time, and in most cases, the task
only needs one robot to complete it or the task can be decomposed into elements so that a
single robot can pick it up. Typical applications of the ST-SR-TA problem include mobile
robot swarm surveillance [5,6], factory robot automation [7,8], wireless sensor networks
(WSNs) [9], transportation networks [10], etc. Tremendous efforts have been made to solve
this problem in the literature, mostly attributing this problem to a vehicle routing problem
(VRP) [11,12] or a multiple-traveling-salesman problem (mTSP) [7], then using heuristic or
meta-heuristic methods to solve it. However, there exist some challenges that need to be
addressed: (1) Heuristics are fast but yield a low solution quality, while meta-heuristics
provide a better quality but require significant computational time. (2) Both these methods
fail to generate satisfactory solutions in a reasonable computational time for large-scale
problems. (3) Most of the works concern only single-depot cases, and few consider an-
other important variant of MRTA—multiple-depot cases—which we think are a prominent
configuration, especially when the real-world application is on a larger scale.

It seems hard to balance the solution quality and computation load for conventional
methods. Fortunately, the recent success of deep reinforcement learning (DRL) in com-
bination optimization problems casts a new light on MRTA [10]. DRL, as a variant of
deep learning, has a powerful high-dimensional representation capability and can learn a
strategy from interactions with the environment automatically without any prepared labels;
namely, it is unsupervised. Unlike the meta-heuristic counterparts that search the solution
space iteratively, the DRL model can output decision-making results in a feed-forward
manner, hence taking a short amount of time. Studies show DRL outperforms heuristic-
and meta-heuristic-based methods in various combination optimization tasks like traveling
salesman problems (TSPs) [13] and job-shop problems (JSPs) [14]. Hu et al. [15] proposed a
distributed policy network (DisPN) over a graph and used DRL to solve the famous mTSP.
Though quite efficient, the model has to be retrained if the number of agents changes in the
application, and the network limits the model to handling single-depot cases only. To over-
come this, Cao et al. [16] proposed a decentralized attention neural network (DAN) by
modeling the mTSP as a Markov decision process (MDP), resulting in a natural scalability
to varying numbers of agents and cities. However, unfortunately, the model is restricted to
a single depot too.

Hence, in this paper, we contribute by applying DRL-based methods to MRTA prob-
lems from the following three aspects: the network structure is (1) scalable enough to adapt
to either variance in the number of robots and tasks or in the paradigm of the depots, i.e., a
single depot, multiple depots or even mixed single and multiple depots; (2) light weight,
which significantly alleviates the computation load; and (3) robust no matter how the input
data are scaled, shifted or rotated. We believe our proposed methods can better solve MRTA
in a more general sense.

This paper is organized as illustrated by the research flow chart in Figure 1. Note
in Section 2 that market-based and optimization-based approaches are conventional ap-
proaches and the DRL-based approach can be seen as the state of the art. Our main
contributions lie in Section 4 and are tested through extensive comparative experiments
in Section 5. The advantages and disadvantages of the method are addressed in Section 6.
Finally, Section 7 concludes the paper and proposes some possible future work.
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Figure 1. An overview of the paper’s structure.

2. Related Works

We first summarize the conventional resolutions to the MRTA problem and then
address DRL-based methods in this section.

2.1. Traditional MRTA Solutions

The existing methods of MRTA can be classified into three main categories [17]:
(a) market-based, (b) optimization-based, and (c) behavior-based approaches. Market-
based approaches are heuristic and inspired by human market trading, where goods
are sold to the highest bidder. Similarly, the robots in MRTA bid for tasks according to
some deliberately designed rules so that the collective profit can be maximized. A novel
market-based approach with look-ahead agents (MALA) is suggested in [18], where each
agent first plans a preferred, reward-maximizing tour, and then negotiates and trades
with the other agents to get as close as possible to their desired tasks. The authors of [19]
presented a similar implementation called Move-and-Improve that comprises four main
phases: (1) target allocation, (2) tour construction, (3) negotiation of conflicting targets,
and (4) solution improvement, from which the task allocation result is formed incremen-
tally. The auction-bidding framework guarantees a conflict-free solution and the solution
quality is shown to be competitive with the genetic algorithm. The consensus-based bundle
algorithm (CBBA) [20,21] is deemed one of the most popular auction-based methods; it
has shown to be efficient in terms of both computation and communication. It iterates
between the bundle construction phase and conflict resolution phase until all the tasks
are allocated. However, the authors of [22] address the problems that the CBBA pursues
individual profit rather than the collective objective and that bids for a task are highly
sensitive to the auction sequence; therefore, they proposed the performance impact (PI)
task allocation algorithm, where a significance concept is devised to optimize the global
objective directly. Though advantageous regarding a fast computational time and a dis-
tributed topology, market-based methods suffer from high failure rates and local minima
when compared with optimization-based methods [23].

Optimization-based methods mainly refer to meta-heuristic methods, which make up
the majority of the existing works related to MRTA. Task scheduling of multiple unmanned
aerial vehicles (UAVs) for urban surveillance is divided into two phases in [5]: a task
allocation phase and a single UAV scheduling phase. These phases are iteratively performed
until predefined stopping criteria are met. The task allocation stage is realized by the
Tabu-list-based simulated annealing (SATL) algorithm, and single UAV scheduling is
realized by variable neighborhood descent (VND). Such a divide and conquer diagram
can also be found in [7], where a multi-robot car-door spot welding production line is
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formulated as a multi-station MRTA problem, and the solution framework is divided
into three layers. Based on the genetic algorithm (GA), the three layers of single-robot
path planning, multi-robot task assignment, and multi-station task assignment are solved
iteratively. The authors of [8] combine the GA and A* algorithms to tackle the problems
of task allocation and collision-free path planning of multiple mobile robots carrying out
industrial plant inspection tasks, where the GA is used as a task planner to schedule the
tasks as well as assign the optimal number of tasks to each robot based on the distance
matrix calculated by the A* path planner. Though easy to implement, the GA faces the
challenge of balancing between exploration and exploitation. To enhance the diversity of
the population and avoid premature convergence of the popular GA, the authors of [24]
introduced a beetle antenna search (BAS) mechanism to incorporate with the GA, and the
results on the cooperative multi-UAV multiple-stage attack mission scenarios showed a
satisfactory performance. Paper [25] formulates the forest firefighting task assignment as
an optimization problem and implements a discrete particle swarm optimization (PSO)
algorithm to solve it. Ant colony optimization (ACO) is also one of the most popular
approaches in MRTA. The authors of [26] combine ACO and the CBBA for the multi-UAV
search and rescue problem, where ACO is employed in the inclusion phase to build a bundle
of survivors and then possible conflicts in the latter consensus phase are resolved using the
CBBA. More meta-heuristic methods can also be found in pure mTSP studies, for example,
the artificial beet colony (ABC) and invasive weed optimization (IWO) proposed in [27],
the PSO proposed in [28], the shuffled frog-leaping algorithm (SFLA) proposed in [29],
the hybrid genetic algorithm (HGA) proposed in [30], and the state transition simulated
annealing algorithm (STASA) proposed in [31]. It should be noted that, in some special
cases, it is suggested that meta-heuristic methods incorporate some additional operators
like 2-opt as a local optimizer to further improve the solution quality [27].

2.2. DRL-Based Methods

In recent years, DRL-based methods have been developed for combinational optimiza-
tion problems. There are two fundamental motivations: (a) researchers want to replace
some heavy calculations in traditional approaches with quick approximation learning and
(b) sometimes the algorithm output may be unsatisfactory, so it is desirable to explore the
decision space more sufficiently and learn a nonvolatile policy. The most groundbreaking
work, to the best of our knowledge, is the pointer network (PN) proposed and studied
in [32,33], which consists of an encoder–decoder structure that outputs target classes of the
input directly, and, more importantly, the length of the input can be variable. Inspired by
the PN, the authors of [13] proposed an attention model to replace the recurrent unit in
the PN and trained the model using REINFORCE with a baseline based on a deterministic
greedy rollout. Significant improvements were achieved in various traditional combina-
tional problems such as the TSP, the VRP, and the orienteering problem (OP) in their work.
The classical TSP using DRL is also studied in [34] by learning an improvement heuristic to
guide the selection of the next solution, and in [35] by representing the map as an image
and using deep convolutional neural networks (DCNNs) to learn an efficient policy for
selecting the next city.

There exist few works related to MRTA or the mTSP. Hu et al. [15] constructed an
architecture consisting of a shared graph neural network and distributed policy network
(DisPN) to learn a generalized policy capable of outputting near-optimal solutions for the
mTSP. The approach is divided into two stages: (a) DRL to learn an allocation of agents
to vertices, and (b) OR-TOOLS to resolve the sub-tour planning problem. Though quite
efficient, there are two limitations of their model: (a) the architecture fixes the number of
agents, which means retraining is needed if the number of agents is to be changed, and (b) it
is incapable of assessing multiple-depot cases, despite the fact that a single depot is only a
variant of the multiple-depot problem. Another model is the decentralized attention-based
neural network (DAN) proposed by Cao et al. [16], where the mTSP is formulated as a
sequential decision-making problem: the agent observes the state at each step considering
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the potential decisions of other agents, and then casts attention weights to the remaining
cities. The advantage of this architecture is that it allows for an arbitrary number of agents
compared with [15], whilst the disadvantage is also the single-depot limitation. The authors
of [36] also address the single-depot mTSP and propose an attention-based multi-agent
reinforcement learning (AMARL) approach that can adapt to varying numbers of agents
and cities. It should be noted that a coordinator is mandatory in the architecture to avoid
the interaction of agents’ simultaneous decision making.

Overall, while the existing DRL-based works made significant contributions to the
field of MRTA or the mTSP, there is still a need for further research to address the limita-
tions of existing models, particularly in terms of handling multiple-depot scenarios and
accommodating varying numbers of agents.

3. Problem Formulation

The ST-SR-TA MRTA problem will be described by integer linear program (ILP)
formulation in this section. Given a set of tasks T = {t1, . . . , tn} located in the config-
uration space (e.g., Cartesian space) and a set of robots R = {r1, . . . , rM} in their de-
pots D = {d1, . . . , dM}, we aim to allocate suitable tasks to the robots, i.e., X : T → R,
in such a way that optimizes the overall system performance subject to a set of con-
straints. Since the robot is a single task in this paper, each robot has to schedule the tour
of the sub-tasks that are allocated to it. The allocation for robot rk can be represented as
Xk = T|{xkij = 1}, ∀k ∈ {i, . . . , M}, ∀(i, j) ∈ {1, . . . , N}, where xkij is the binary decision
variable and xkij = 1 if robot rk transits from i to j or i ̸= j otherwise xkij = 0. N is the
total number of tasks and robots, N = n + M. For convenience, we view the depots as
virtual tasks and combine them as extended tasks Te = T ∪ D = {t1, . . . , tn, d1, . . . , dM}
so |Te| = N. Suppose the scheduled visiting sequence of robot rk is Zk, and since each
robot has to depart from its depot and return to the same depot, we have Zk,1 = Zk,−1.
From the point of view of graph theory, the problem can be formally defined on a graph
G = (V, E), where V is the set of nodes and E is the set of edges. There are costs on E and
the costs can be defined using a cost matrix C = [cij]

N×N , whose element cij represents the
cost transiting from node i to j, usually including the travel cost from i to j and the stay
time on node j. As we are concerned about an undirected graph herein, C is symmetrical,
i.e., cij = cji, ∀i ̸= j. The objective is to minimize the maximum cost (denoted as minmax in
most of the literature):

X∗ = argmin
{xkij}

max({
N

∑
i=1

N

∑
j=1

xkijcij, ∀k ∈ {1, . . . , M}}) (1)

or to minimize the average cost of all the robots (denoted as minavg):

X∗ = argmin
{xkij}

M

∑
k=1

N

∑
i=1

N

∑
j=1

xkijcij/M (2)

subject to:
M

∑
k=1

n

∑
j=1

xkij = 1, ∀i ∈ {1, . . . , n} (3)

M

∑
k=1

n

∑
i=1

xkij = 1, ∀j ∈ {j, . . . , n} (4)

n

∑
j=1

xk(n+k)j ≤ 1, ∀k ∈ {1, . . . , M} (5)

n

∑
i=1

xki(n+k)) ≤ 1, ∀k ∈ {1, . . . , M} (6)
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M

∑
k=1

N

∑
i=n+1

N

∑
j=n+1

xkij = 0 (7)

∑
i∈S

∑
j∈S

xkij ≤ |S| − 1, ∀S ∈ {Zk}\{Zk,1}, S ̸= Φ, ∀k ∈ {1, . . . , M} (8)

where Equations (3) and (4) require that a task (depots not included) must be visited
exactly once; constraints (5) and (6) indicate a robot can leave and return to its depot one
time or just stay without leaving and returning at all; constraint (7) prohibits unexpected
visits of one robot to any other robots’ depot; and constraint (8) is known as the sub-tour
elimination constraint (SEC) [37] to prevent any unexpected sub-loop inside a robot’s tour.
Some additional constraints may be added according to the specific application, like the
endurance mileage limitation of the robot:

N

∑
i=1

N

∑
j=1

xkij ≤ Lk, ∀k ∈ {1, . . . , M} (9)

Practically, the optimization of objective (1) will lead to the shortest possible comple-
tion time of the overall tasks, i.e., the make-span, assuming the same moving speed of
all the robots, while objective (2) will optimize the mean energy consumption. In prac-
tice, objective (1) is more frequently used than objective (2), but we think the standalone
objective (1) concerns the max cost only while neglecting the fact that the remaining robots’
tours may not be optimized. Hence, we suggest a combination of the two objectives:

X∗ = argmin
{xkij}

[ω1max({
N

∑
i=1

N

∑
j=1

xkijcij, ∀k ∈ {1, . . . , M}}) + ω2

M

∑
k=1

M

∑
i=1

N

∑
j=1

xkijcij/M] (10)

ω1 + ω2 = 1 (11)

where ω1 > 0 and ω2 > 0 are decision preference factors. By setting ω1 ≫ ω2, we can
obtain a solution that optimizes the make-span time while the energy consumption is still
slightly considered.

It should be noted that some simplifications are applied to reduce the input fea-
ture complexity of the DRL-based methods in this paper: (a) the cost is defined as the
travel cost only, without stay time, and (b) no additional constraints other than (3)–(8)
are applied. However, we believe these simplifications can be compensated for by some
post-processing technology.

4. Methodology

We resort to DRL-based methods to overcome the drawbacks of conventional heuristic
or meta-heuristic approaches. Inspired by [15], our diagram is composed of (a) a policy
network that observes the state of all the tasks and robots in the graph and outputs the
action of each task to be assigned to each robot, and (b) a route planner to generate the
optimal route for each robot. The policy network is also encoder–decoder-structured, but
with graph normalization first, which can better extract the node features of the graph
and better adapt to configuration variance. The model is trained by leveraging an MRTA
simulator without the need to provide predefined labels, i.e., unsupervised, and we use a
bootstrapping strategy to promote the policy towards a higher, stable score.

4.1. Policy Network Architecture

Usually, the policy network architecture of DRL comprises an encoder to extract the
deep-level features of the input and a decoder to output the action probabilities. With regard
to MRTA in this paper, the intuitive input vector would be the raw coordinates of the nodes,
like in most related works [15,16,36], but we think this type of input vector contains too
much redundant data. In Figure 2, for example, the two graphs are indeed equivalent from
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the point of view of the graph configuration, because the right map is the shifted, scaled,
and rotated version of the left map, but this will not influence the task allocation result, as
MRTA concerns the relative location of each robot. On the one hand, redundant data will
make the training process take a long time; on the other hand, the same results cannot be
guaranteed under the equivalent configuration.

0 20 40 60 80 100
x

0

20

40

60

80

100
y

t0

t1

t2

t3

dp0

dp1

tasks
depots

(a)

0 20 40 60 80 100
x

0

20

40

60

80

100

y

t0

t1

t2

t3
dp0

dp1

tasks
depots

(b)

Figure 2. An example of the equivalent configuration of MRTA: (a) the original configuration; (b) the
shifted, scaled, and rotated configuration of (a).

Hence, in this paper, we proposed a graph normalization (GNorm) technique to
process the input features prior to the encoder, resulting in an architecture shown in Figure 3.
Firstly, the input feature is normalized using GNorm, eliminating the effects of shift, scale,
and rotation of the configuration. Then, the normalized features are fed into the encoder to
capture the node features in the context of the graph. Thirdly, the decoder calculates the
action probability that each task is likely to be assigned to each robot, from which the robot
can decide which tasks to take. At last, the sub-tour planner schedules the visiting sequence
of the sub-tasks for each robot and hence the final output solution. In the following, we
will describe the individual units in detail.

Figure 3. The proposed architecture of MRTA.

4.2. Graph Normalization

The functionality of graph normalization is to transform the raw input vector into a
unified input feature to grasp the essence of an input graph.
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Let P = {p1, . . . , pN} be the extended tasks’ (depots included) coordinates. The ele-
ments of the cost matrix C can be formulated as:

cij = ∥pj − pi∥, ∀i, j ∈ {1, . . . , N} (12)

Then, we can find the edge with the maximum cost as the reference for normalization.
The two end nodes of the reference edge are:

(i∗, j∗) = argmax
i,j

C (13)

Since the cost matrix is symmetric, i∗, j∗ are impartial indexes. To identify them, we use the
aggregation density of the node to decide the exact reference node, i.e.:

(i∗, j∗) =

{
(i∗, j∗), i f mean

i
cij > mean

j
cij,

(j∗, i∗), else.
(14)

see Figure 4 for an illustration, where the dashed line is the found reference edge, and the
reference nodes are decided as i∗ = 8, j∗ = 10 according to (14).

1

2

3

4

5

67

8

9

1011
12

13

14

15

16

17

18

19

20

21

22

23

24

x

y

Figure 4. An illustration of deciding the reference edge (dashed line) and the two reference nodes.
The red dots and the small green squares are the task nodes and robot nodes, respectively, with their
node numbers shown herein.

Based on the reference edge and nodes, all the nodes’ coordinates can be normalized:

vs. = pj∗ − pi∗ (15)

T =

[
vx −vy
vy vx

]
(16)

∼
pi = (pi − pi∗)T/∥pj∗ − pi∗∥, ∀i ∈ {1, . . . , N} (17)

where v is the vector of the reference edge and T is the transformation matrix.
∼
pi is the

normalized coordinate of each node; it remains the same whenever a graph is scaled,
shifted, or rotated; hence, the essence of the graph is maintained.

However, using
∼
pi as the input feature is not enough, because when it comes to

single-depot MRTA cases, all the depots’ features would be the same due to the same raw
coordinate, hindering the encoder from discriminating the individual robots. Keep in mind
that we want the policy network to work well both for single- and multiple-depot cases.
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A remedy is to add a token to the input feature in order to discriminate different robots. We
use the normalized ID of the robots as the depots’ token, while the tasks’ tokens are 0, i.e.:

tokeni =

{
0, 1 ≤ i ≤ n,

(i− n)/M, n < i ≤ N.
(18)

Hence, the normalized input feature proposed in this paper is:

ui = [tokeni ;
∼
pi], ∀i ∈ {1, . . . , N} (19)

where [·; ·] is the concatenation operation.

4.3. Encoder

The functionality of the encoder is to embed the nodes’ features into a unique vector
in the high-dimensional configuration space, taking the graph context information into
account. We leverage the Graph SAmple and aggreGatE (GraphSAGE) [38] concept to
extract the nodes’ features in the graph; the detailed process is shown in Figure 5 and is
describes as follows.

Figure 5. The encoder’s working process.

Firstly, the input feature of the node is projected to a higher-dimensional feature in the
configuration space:

h(0)i = f (ui) (20)

where f (·) is a multiple-layer perception (MLP) layer with shared and trainable parameters.
Then, the feature vector is fed into graph convolution of N layers to extract the feature

of the node in the context of the entire graph. The most important function of the graph
convolution layer is to aggregate the neighbors’ information that can better represent the
node in the graph. For each node i, the message aggregated from its neighbors is:

h
(t)
i = Φj∈Ni

(h(t−1)
j ) (21)
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where Ni denotes the neighbors of node i and h(t)j is the node representation of node j at the
tth graph convolution layer. Φ(·) is an aggregation function, which must be permutation-
independent; we use the mean function herein. The node representation must merge its
own message at this step:

h(t)i = Ψ([h
(t)
i ; h(t−1)

i ]) (22)

where Ψ(·) is an MLP used to map the message to the predefined configuration space.
It is preferable that the aggregation process (20)–(22) is repeated three to five times,
i.e., N = 3 ∼ 5, because this would encourage the message to pass farther so that all
the nodes can have a better overview of the graph context.

At last, we enhance the node representation by concatenating all the N layers of the
graph convolution output and passing over an MLP layer:

hi = Ξ([h(1)i ; . . . ; h(N)
i ]) (23)

4.4. Decoder

We designed the decoder to output the action probability that each task will be
assigned to each robot; this can be realized by a cross-attention mechanism, as illustrated
in Figure 6 and the following:

Figure 6. The decoder’s working process.

Firstly, the nodes embedding from (24) must be discriminated as tasks and depots. Let
us denote the task embedding as hT

i and the depot embedding as hR
j . The task node will

carry the query vector and the robot node will carry the key vector, computed as follows:

qi = Wq hT
i , k j = Wr hR

j (24)

where Wq and Wr are the query and key matrix, respectively, with trainable parameters
shared by all the nodes. Then, the task node will cast attention to the robot node, and the
attention factor can be calculated by the so f tmax function:

p(i, j) =
eqi ·kj/

√
dk

∑M
j=1 eqi ·kj/

√
dk

(25)



Electronics 2024, 13, 1561 11 of 20

where dk is the dimension of the key vector. The output p(i, j) is actually the probability
that task i is likely to be allocated to robot j; it can be sampled by the task node to select a
robot, from which the robot will infer the task nodes that are assigned to it.

The last part of the architecture is the visiting order for each robot; this is indeed a
TSP problem and many efficient solvers exist to resolve it. Different from the OR-TOOLS
employed in [15], we consult Lin–Kernighan–Helsgaun (LKH) solver [39] because it is
proven efficient in generating satisfactory solutions while keeping the computational effort
at a low level. According to our experience, the LKH solver generates better solutions than
OR-TOOLS within 1 s on a TSP scale of less than 100 cities and 5 s on a TSP scale of less
than 400 cities.

4.5. Training

The policy network composed of an encoder and a decoder has to be trained before
deployment. As reinforcement learning needs no predefined labels, the training process
proceeds through an agent interacting with the environment within a simulator. In our
simulator, the dataset is generated randomly in a squared map of 1× 1; this makes sense
because any practical input map can be normalized using the graph normalization process
proposed in Section 4.2, resulting in an equivalent configuration in a 1× 1 map. The agent
observes the status of the environment and outputs the action (the allocation probability
in our problem) through the policy network, and a reward will be returned by the envi-
ronment, from which the agent can update the network parameters in such a way that the
reward is maximized. The loss function of the policy is defined as the expected reward of
the actions:

L (s; θ) = Ea∼πθ(s)R(a|s) (26)

where s is the status, θ are the parameters of the policy network to be learned, a is the
action obeying policy πθ , and R(a|s) is the reward of the action that can be evaluated by
the negative of the objective function of (10). The loss function can then be optimized by a
policy gradient using the REINFORCE algorithm with the baseline [13]:

∇θL (s; θ) ≈ 1
B

B

∑
i=1

ni

∑
t=1
∇θ log πθ(a(i)t |s

(i)
t )(R(s(i))− b(s(i))) (27)

Note that the loss function is approximated by Monte Carlo sampling in (27), B is the
sampling batch size and ni is the number of actions at the ith sample. Here, baseline b(s)
is critical because the baseline can reduce gradient variance and discriminate good and
bad actions more clearly, therefore increasing the speed of learning as well as stabilizing
the training process. The baseline must improve itself as the training proceeds, so as to
bootstrap the reward towards a higher score. In this paper, we simply set the baseline as
the reward of the best-so-far model and update it periodically.

Another problem we experienced is that the reward cannot be improved for small-
scale instances at the end of the training. This is mainly because the reward is not at a
similar amplitude compared with the large-scale instances. We overcome this by replacing
the advantage function R(s(i))− b(s(i)) of (27) by a relative advantage:

∇θL (s; θ) ≈ 1
B

B

∑
i=1

ni

∑
t=1
∇θ log πθ(a(i)t |s

(i)
t )

R(s(i))− b(s(i))
b(s(i))

(28)

The detailed training process is summarized in Algorithm 1. Note that in line 1, the
parameter of the baseline model is initialized as the same as the current model and is
updated periodically if the performance is improved, as shown in line 14. Line 2 generates
a set of evaluation instances used as an auxiliary to judge if the performance is improved
or not; line 4 is crucial, where both single- and multiple-depot MRTA instances, with a
variable number of robots and tasks, are generated for training, aiming at the generalization
capability of the policy network; line 8–10 calculate the rewards of the baseline; line 11–12
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update the parameters of policy network by gradient back forward algorithm; and boot-
strapping is realized in lines 13–15 by updating the baseline model parameters under
certain criteria.

Algorithm 1: Training a policy network with the bootstrapping REINFORCE
algorithm for MRTA

Input: min and max number of tasks nmin, nmax, min and max number of robots
mmin, mmax, sampling batch size B, training epoch E, update interval T,
learning rate α.

Output: policy πθ .
1 Randomly initialize θ; θb ← θ;
2 seval ← Generate a set of evaluation instances;
3 for epoch=0:E do
4 s← Generate single- and multiple-depot random instances of size B, each with

randomized n and m, n ∈ [nmin, nmax], m ∈ [mmin, mmax];
5 pθ(π|s)← Policy network feeds forward;
6 {a(i), log pθ(a(i)|s(i))} ← Greedily sample actions, ∀i ∈ {1, . . . , B};
7 {R(i)} ← Evaluate episode actions {a(i)}, ∀i ∈ {1, . . . , B};
8 pθb(πb|s)← Baseline model feeds forward;
9 {ab(i), log pθb(ab(i)|sb(i))} ← Greedily sample actions, ∀i ∈ {1, . . . , B};

10 {b(i)} ← Evaluate actions {ab(i)}, ∀i ∈ {∀1, . . . , B};
11 ∇θL (s; θ)← Policy gradient as per (28);
12 θ ← θ + α∇θL (s; θ);
13 if at every T iterations, mean[Rθb(seval)] > mean[Rθ(seval)] then
14 θ ← θb;
15 end
16 end

5. Simulation

The advantage of our model is that it works well both for single- and multiple-
depot MRTA under variable numbers of robots and tasks, without the need to change
the network architecture or additional retraining work. In this section, experiments will
be arranged to evaluate the performance of our proposed policy network with graph
normalization (denoted as gnPN), compared with heuristic, meta-heuristic, and other DRL-
based approaches, from the aspect of both the solution quality and computational time.

5.1. Experimental Set-Up

The single-depot and multiple-depot cases will be studied separately in these experi-
ments. For the single-depot cases, both randomly generated maps and publicly available
mTSPLib [40] maps will be studied. Regarding the multiple-depot cases, only randomly
generated maps will be present due to the lack of available public datasets.

The approaches use in comparison to ours are:

• A heuristic algorithm, which is realized by OR-TOOLS [41].
• A meta-heuristic algorithm, the GA in this paper.
• Deep-reinforcement-learning-based methods, including the DisPN proposed by

Hu. et al. [15] and the DAN proposed by Cao. et al. [16].

The challenge of using the GA to solve MRTA is the chromosome design; here, we used
two chromosomes, one to represent the visiting orders and the other to represent breaks,
to encode a solution [42]. Since heuristic and meta-heuristic methods run in iteration,
we set the stopping criterion of the two as no further improvement in 1000 iterations,
and to prevent searching for a long time, we limited the maximum searching time to 180 s.



Electronics 2024, 13, 1561 13 of 20

To ensure a fair comparison, all the approaches were run on the same hardware platform:
Intel Core i5 3.0GHz CPU and 16 GB RAM; no GPU is used.

5.2. Testing on Single-Depot MRTA

In single-depot MRTA (denoted as SD-MRTA), all the robots share a common depot.
In this part, we generate a certain number of tasks, one common depot and a certain
number of robots in a squared map of 1× 1. To obtain a stochastic evaluation, we generate
500 instances, then use the five algorithms to solve them independently and calculate
an averaged value as the metric. Table 1 shows the comparison results on small- and
medium-scale instances, where the solution quality is evaluated by the minmax value and
the computational time is indicated by CPU time.

Table 1. Test results of different approaches on small- and medium-scale single-depot MRTA in-
stances; data are averaged over 500 random instances; the best performance for each instance is bold
for convenience.

Approaches
n = 50, m = 5 n = 50, m = 10 n = 100, m = 5 n = 100, m = 10

Minmax CPU Time
(s)

Minmax CPU Time
(s)

Minmax CPU Time
(s)

Minmax CPU Time
(s)

OR-TOOLS 2.121 0.905 2.026 0.966 2.414 9.908 2.195 10.061
GA 2.590 3.624 2.482 3.991 3.246 8.803 2.921 12.257

DisPN 1 2.143 0.024 1.995 0.027 2.493 0.048 2.135 0.044
DAN 1 2.314 0.192 2.037 0.240 2.729 0.449 2.181 0.486
gnPN 2.174 0.001 1.955 0.001 2.484 0.003 2.068 0.004

1 Data slightly different from [15,16], since we re-ran the paper code on our hardware platform rather than
the authors’ platform.

It can be observed that DRL-based methods produce satisfactory solutions in less
computational time than the heuristic and meta-heuristic methods in most cases, and among
the DRL-based methods, our proposed gnPN approach performs better than the others.
Although the improvement on the minmax value is slight, 1.5%∼3.5% typically, the most
exciting enhancement is the inference time; our approach can solve small- and medium-
scale problems within 0.01 s, and this can be attributed to the light-weighted architecture of
our model.

Scalability or generalization on large-scale problems is an important capability that
researchers are interested in for MRTA approaches. Table 2 shows the comparison results on
large-scale instances of the five approaches. Again, a significant improvement is observed
for our gnPN model, and this improvement is outstanding as the scale of the problem
increases. Basically, the inference time is less than 1s for a problem scale of n ≤ 1000, m ≤ 10.
Note that the DisPN model for different numbers of agents, i.e., variant m, has to be re-
trained prior to usage, and the model structure has to be altered if m changes. Both
OR-TOOLS and the GA show limited convergence in the predefined time limitation of 180
s. Although the DAN is comparative in terms of solution quality, it suffers from a drastic
increase in the computational time with regard to the instance scale.

Furthermore, we can take a close look at specific instances. Fortunately, Necula et al. [40]
released public single-depot mTSP datasets marked with (sub)optimal solutions that are,
so far, the best. The four datasets we tested in this paper are eil51, berlin52, eil76, and rat99,
with the first node assigned as the common depot and the number of agents fixed as
m = 5. The test results of different approaches on the dataset can be seen in Figure 7.
The task allocation of each agent is highlighted by different colors and the individual
visiting sequence of an agent is marked with arrows in the figure. OR-TOOLS is the most
comparative solution to the optimal so far; even better solutions are found for eil76. The
GA performs well on eil51 and berlin52, but deteriorates on eil76 and rat99. As the DisPN
model for this experiment is trained on n = 50, m = 5, it performs quite well on the eil51;
however, the generalization capability is not good enough when it comes to larger-scale
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instances. Both the DAN and our gnPN model perform well on larger-scale instances,
but the performance of the latter seems more steady. The inference time improvement is
indicated in Tables 1 and 2. Another advantage of the gnPN model that can be observed
in Figure 7 is that the entanglement across the sub-routs is scarce compared with the
other four approaches; this can mainly be attributed to the particularly designed objective
function (10) and (11), which mainly optimizes the max tour length while keeping an eye
on the tour of the other agents.

Table 2. Test results of different approaches on large-scale single-depot MRTA instances; data are
averaged over 500 random instances; the best performance for each instance is bold for convenience.

Approach
n = 200, m = 5 n = 200, m = 8 n = 200, m = 10 n = 500, m = 5

Minmax CPU Time
(s)

Minmax CPU Time
(s)

Minmax CPU Time
(s)

Minmax CPU Time
(s)

OR-TOOLS 2.919 139.011 2.647 132.914 2.772 129.144 9.850 180
GA 4.444 22.431 3.855 29.459 3.742 32.542 7.344 83.183

DisPN 1 3.210 0.201 - - 2.436 0.161 4.891 0.933
DAN 3.414 1.819 2.628 1.772 2.420 1.786 5.342 15.502
gnPN 3.083 0.045 2.387 0.028 2.261 0.026 4.244 0.265

n = 500, m = 8 n = 500, m = 10 n = 800, m = 5 n = 800, m = 8

minmax CPU time
(s)

minmax CPU time
(s)

minmax CPU time
(s)

minmax CPU time
(s)

9.918 180 9.923 180 14.787 180 14.869 180
6.296 99.761 5.879 103.249 10.010 165.935 8.617 174.628

- - 3.340 0.537 6.377 2.575 - -
3.806 15.576 3.309 15.757 7.327 61.359 5.034 61.096
3.251 0.179 2.941 0.153 5.195 0.697 3.895 0.469

n = 800, m = 10 n = 1000, m = 5 n = 1000, m = 8 n = 1000, m = 10

minmax CPU time
(s)

minmax CPU time
(s)

minmax CPU time
(s)

minmax CPU time
(s)

14.793 180 18.364 180 18.368 180 14.853 180
8.181 180 12.524 180 10.847 180 10.397 180
4.304 1.406 7.432 4.428 - - 4.986 2.366
4.196 61.641 8.751 119.120 5.841 119.117 4.868 119.209
3.474 0.390 5.810 1.128 4.282 0.729 3.831 0.639

1 For DisPN, the results of n = ∗, m = 8 instances are not available because the model was not trained on this
number of agents.

5.3. Testing on Multiple-Depot MRTA

The character of multiple-depot MRTA (denoted as MD-MRTA) is that each robot
occupies an independent depot, rather than sharing a common depot like in SD-MRTA.
Unfortunately, there is little research on MD-MRTA, but we believe it is worth studying.
Furthermore, the multiple-depot scenario is a generalized form of its single-depot counter-
part, and, in real applications, the multiple-depot scenario is inevitable if the robot and task
scales are large enough.

Because OR-TOOLS and all the existing DRL-based methods cannot be adapted to
MD-MRTA cases, we compare our approach with the GA only, and due to the lack of public
datasets, we generate instances randomly in this part of the experiment. The test results can
be seen in Figure 8. Generally speaking, the GA performs well on instances with n < 50,
while on larger-scale instances, our model generates better solutions than the GA. Also,
refer to Tables 1 and 2 for the computational time enhancement.
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Figure 7. Test results of five different approaches on four public SD-MRTA (the single-depot mTSP)
instances with the number of agents fixed as m = 5. (a–f) eil51 instance with the optimal solution
so far and solutions found by OR-TOOLS, GA, DisPN, DAN, and gnPN, respectively; (g–l) berlin52
instance with the optimal solution so far and solutions found by OR-TOOLS, GA, DisPN, DAN, and
gnPN, respectively; (m–r) eil76 instance with the optimal solution so far and solutions found by
OR-TOOLS, GA, DisPN, DAN, and gnPN, respectively; (s–x) rat99 instance with the optimal solution
so far and solutions found by OR-TOOLS, GA, DisPN, DAN, and gnPN, respectively.

An interesting yet challenging special form of MRTA is mixed single- and multiple-
depot MRTA (MSMD-MRTA); namely, some robots share a common depot like in SD-MRTA
while the others have their own independent depots like the scenario of MD-MRTA. This is
rarely studied in the literature to the best of our knowledge. But this can be solved easily
by our model without any modifications of the network structure or additional re-training
work. The comparison result is shown in Figure 9, where more than half of the robots share
a common depot, while the others depart from their independent depots. The solutions are
also satisfactory for these complex scenarios.
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Figure 8. Test result of two different approaches on four MD-MRTA instances. (a,b) n = 20, m = 4
instance, solutions found by GA and gnPN, respectively; (c,d) n = 50, m = 5 instance, solutions
found by GA and gnPN, respectively; (e,f) n = 100, m = 10 instance, solutions found by GA and
gnPN, respectively; (g,h) n = 150, m = 12 instance, solutions found by GA and gnPN, respectively.
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Figure 9. Test result of two different approaches on four MSMD-MRTA instances. (a,b) n = 20, m = 4
instance, solutions found by GA and gnPN, respectively; (c,d) n = 50, m = 5 instance, solutions
found by GA and gnPN, respectively; (e,f) n = 100, m = 10 instance, solutions found by GA and
gnPN, respectively; (g,h) n = 150, m = 12 instance, solutions found by GA and gnPN, respectively.

6. Discussion

The quick feed-forward and learnable characteristics make the proposed policy net-
work architecture an efficient approach to resolving either single-depot, multiple-depot or
even mixed single- and multiple-depot MRTA cases, as demonstrated in Section 5. How-
ever, the solution quality highly depends on the training data; for example, in Figure 7l,
the model performs poorly on the instance of berlin52. The main reason for this is that the
training data are generated in a uniform manner during the training process, whilst the
tasks in the berlin52 case are not uniformly distributed. To overcome this, a post-processing
technique can be applied. For example, Figure 10 shows the test result of the gnPN model
post-processed using large neighborhood search (LNS) [43]. There is approx. a 10.9%
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improvement in the solution quality; the computational time, however, increased by 2.9 s
due to the additional post-processing effort.
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Figure 10. An example of the gnPN model post-processed using large neighborhood search, taking
the berlin52 instance as an example. (a) Before post-processing, (b) after post-processing.

Robustness is inherently guaranteed by our approach thanks to the proposed graph
normalization technique. This technique facilitates seamless adaptation to real-world
applications, regardless of the map scale or orientation. In contrast, other DRL-based
methods struggle with this, as it is hard to decide a coordinate transformation. To illustrate
this point, consider Figure 11a,b for the DisPN, where a slight scaling and rotation of the
configuration leads to significantly different solutions. In contrast, our approach captures
the essential characteristics of the configuration, and the deterministic solution can be
guaranteed, see Figure 11c,d.
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Figure 11. An example to illustrate the functionality of graph normalization. (a) DisPN’s solution for
the original map; (b) DisPN’s solution for the scaled and rotated map of (a); (c) gnPN’s solution for
the same map in (a); (d) gnPN’s solution for the same map in (b).

7. Conclusions

Graph deep-reinforcement-learning-based methods are promising to tackle MRTA
problems compared with conventional iteration-based methods; satisfactory solutions
can be generated within a very short computational time thanks to the feed-forward and
trainable policy network. We propose a robust architecture that can handle cases with
variable numbers of agents and tasks in single-depot, multiple-depot, or even mixed
single- and multiple-depot cases, without modification of the policy network structure
and additional re-training efforts. The network is encoder–decoder-structured, using the
GraphSAGE concept to extract the nodes’ features and the cross-attention mechanism to
decode the action. We propose using graph normalization prior to GraphSAGE, which
enables an easy adaption to real applications and guarantees a deterministic solution.
Extensive experiments demonstrate the high efficiency and robustness of the proposed
approach to handle various MRTA scenarios. In addition, the solution quality can be further
improved by some post-processing techniques like large neighborhood search.

Future work will pay attention to enhancing the model’s capability of handling con-
straints like time-window and mileage limitations. Attention will also be given to hetero-
geneous multi-robot task allocation problems, where DRL-based methods can be used to
solve the inner task allocation of a group of robots that are still homogeneous.
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