
Citation: Shang, Y.; Wang, Q.; Zhu,

W.; Xie, F.; Wang, H.; Li, L.

Evolutionary Competition

Multitasking Optimization with

Online Resource Allocation for

Endmemeber Extraction of Hyper

spectral Images. Electronics 2024, 13,

1424. https://doi.org/

10.3390/electronics13081424

Academic Editor: Silvia Liberata Ullo

Received: 28 February 2024

Revised: 31 March 2024

Accepted: 3 April 2024

Published: 10 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Evolutionary Competition Multitasking Optimization with
Online Resource Allocation for Endmemeber Extraction of
Hyperspectral Images
Yiming Shang 1, Qian Wang 2,* , Wenbo Zhu 3, Fei Xie 4,5,*, Hexu Wang 5 and Lei Li 5

1 School of International Engineering College, Xi’an University of Technolgy, Xi’an 710048, China;
3212231057@stu.xaut.edu.cn

2 School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China
3 State Grid Shaanxi Power Company Xi’an Power Supply Bureau, Xi’an 710032, China; 13759959199@163.com
4 Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710071, China
5 Xi’an Key Laboratory of Human–Machine Integration and Control Technology for Intelligent Rehabilitation,

Xijing University, Xi’an 710123, China; wanghexu@xijing.edu.cn (H.W.); lilei@xijing.edu.cn (L.L.)
* Correspondence: wangqian77@xaut.edu.cn (Q.W.); fxie@xidian.edu.cn (F.X.)

Abstract: Hyperspectral remote sensing images typically have mixed rather than pure pixels. End-
member extraction aims to find a group of endmembers to represent the original image. In fact, the
amount of endmembers is not easily determined in the existing endmember extraction studies.It
requires several separate and laborious runs in order to produce results for endmember extraction
with varying numbers of endmembers. There is also a correlation between the individual runs,
which should be taken into account to accelerate algorithm convergence and improve accuracy. In
this paper, an evolutionary competition multitasking optimization method (CMTEE) is proposed
to achieve endmember extraction. In the proposed method, endmember extraction problems with
different numbers of endmembers are considered as a group of optimization tasks. Specially, these
tasks are assumed to be competitive. Then, online resource allocation is employed to assign suitable
computational resources to the considered tasks. Experiments on simulated and real hyperspectral
datasets demonstrated the effectiveness of the proposed evolutionary competition multitasking
optimization method for endmember extraction.

Keywords: hyperspectral remote sensing images; endmember extraction; evolutionary competition
multitasking optimization; online resources allocation

1. Introduction

Exploiting a collection of images acquired over hundreds of contiguous spectral
bands, hyperspectral remote sensing aims to enhance the recognition of various land cover
classes [1–3]. The abundance of spectrum data obtained by hyperspectral imaging devices
have sparked broad interest, due to their numerous applications in a variety of fields,
including military surveillance, environmental monitoring, and mineral extraction [4,5].
One of the main issues impeding the advancement of remote sensing technology is mixed
pixel decomposition, which can be resolved with the spectral unmixing technique [6–9].
Mixed rather than pure pixels are common in hyperspectral remote sensing photographs.
A mixed pixel contains multiple different kinds of material. Consequently, the measured
spectrum of a single pixel contains a mixture of many ground cover spectra, referred to
as endmembers.

Among the crucial steps in spectral unmixing is endmember extraction. Endmem-
ber extraction has grown in significance in hyperspectral image processing as a result
of the greatly enhanced spatial and spectral resolution offered by hyperspectral imaging
sensors [10,11]. An idealized pure signature for a class is called an endmember. Numerous
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endmember extraction algorithms have been proposed for analyzing hyperspectral images,
such as the pixel purity index (PPI) [12–14], N-FINDR [15,16], vertex component analysis
(VCA) [17], convex cones analysis (CCA) [18], the simplex growing algorithm (SGA) [19],
and others. These algorithms are based on a linear spectral mixture model (LSMM) and
assume the existence of pure pixels. These algorithms fall into two classes: sequential
endmember extraction methods like VCA and SGA, and simultaneous endmember extrac-
tion algorithms like PPI, N-FINDR, and CCA. One of the most well-known and frequently
applied endmember extraction techniques is the pixel purity index (PPI) [12]. This process
involves repeatedly projecting data onto random unit vectors in order to determine the
purity of each pixel. The fast iterative PPI method (FIPPI), which was suggested in [13],
aims to enhance PPI in multiple ways. These algorithms demand a large degree of human
intervention throughout the endmember selection phase. With a specified number of
vertices, Winter’s [16] N-FINDR algorithm finds a simplex with the largest volume. A first
random pick of pixels is made at the start of the process. The new pixel is recognized as a
new endmember if the simplex’s volume increases with it. Based on the idea that endmem-
bers are simplex vertices and that the affine transformation of a simplex is also a simplex,
the vertex component analysis (VCA) proposed in [17] is an unsupervised endmember
extraction method that projects data onto a direction orthogonal to the subspace spanned
by the endmembers already determined.

These techniques produce accurate extraction results, with minimal computing cost.
Regretfully, these algorithms have a number of drawbacks. One is that if the real data do not
match the simplex structure’s assumptions, the extraction accuracy will be decreased [20–22].
Another is that they do not have information on the feedback mechanism, and [23] the number
of spectral bands determines the number of endmembers. Moreover, these algorithms produce
the first endmember randomly, which is a laborious and inefficient method of initialization
until the point when the required set of endmembers has been found [19]. Several evolutionary
algorithms, including adaptive differential evolution (ADEE) [21], ant colony optimization
(ACO) [23], and discrete particle swarm optimization (DPSO) [20], have been presented
as innovative algorithms to handle these challenges. In order to increase the accuracy of
the extracted endmembers and lessen the impact of data errors on endmember extraction
outcomes, DPSO, as proposed in [20], uses PSO in discrete space by defining the position
and velocity of particles. For endmember extraction, two ant colony optimization algorithms
have been established, as suggested in [23]. In order to assess the objective function’s practical
importance, the method converts the endmember extraction problem of the decomposition
of mixed pixels into an optimization problem and constructs a workable solution space.
Zhong [21] recently presented an adaptive differential evolution (ADEE) for endmember
extraction. The DE operators use differential evolution (DE) to find the best endmember
combination in the viable solution space. The parameter selection issue is then avoided by
employing an adaptive technique. Moreover, determining how many endmembers to produce
is a challenging task [19]. Many endmember extraction techniques have successfully used
virtual dimensionality (VD) [24] and signal subspace estimation (SSE) [25] to estimate the
number of endmembers.

In fact, it is difficult to determine the number of endmembers in current endmember
extraction research. In general, the results for endmember extraction with different num-
bers of endmembers are obtained by running a number of distinct, time-consuming runs.
Additionally, a correlation exists between the individual runs, which merits consideration
in order to expedite algorithm convergence and enhance accuracy. It is obvious that end-
member extraction can be solved though evolutionary multitasking optimization. A group
of endmember extraction tasks can be established based on the number of endmembers.
Evolutionary multitasking optimization was proposed in [26]. This study was fundamental
to the research community as it established the fundamental ideas that have directed all
of subsequent years’ research.In addition to this significant and groundbreaking contribu-
tion, a number of outstanding theoretical works on evolutionary multitasking have been
published [27,28], exploring a variety of topics such as the impact of complementarities
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between function landscapes on search performance [29], or simply outlining the key com-
ponents that draw interest from the research community in this area of knowledge [30–32].
Furthermore, evolutionary multitasking optimization has been applied in the field of re-
mote sensing. Li et al. proposed a a novel evolutionary multitasking cooperative transfer
framework for multiobjective hyperspectral sparse unmixing [33]. An evolutionary multi-
task ensemble learning model was proposed to deal with hyperspectral image classification
problems in [34].

Recently, Li et al. proposed a new multitasking optimization paradigm called evolu-
tionary competitive multitasking optimization [35,36]. Its unique features included that
the goals of every task were similar, and its optimal solution was the best one among all
individual problem optimal solutions. To address endmember extraction, an evolutionary
competition multitasking optimization method (CMTEE) is presented in this study. End-
member extraction issues with varying numbers of endmembers are treated as a collection
of optimization tasks in the suggested method. In particular, it is considered that these
tasks are competitive. Then, to provide appropriate computational resources for the tasks
under consideration, online resource allocation is used. Tests conducted on both synthetic
and actual hyperspectral datasets showed that the evolutionary competition multitasking
optimization technique suggested for endmember extraction worked well.

The organization of this paper is as follows: Section 2 introduces the related back-
ground on endmember extraction of hyperspectral images. The background on evolution-
ary multitasking optimization is described in Section 2. Section 3 describes the framework
of competitive multitasking endmember extraction. The experiments on simulated and real
datasets are shown in Section 4. The concluding remarks are given in Section 5.

2. Background and Related Works

In this section, background knowledge about endmember extraction of hyperspectral
images is introduced. Then, the concepts of evolutionary multitasking optimization and
some related works are described.

2.1. Endmember Extraction

Because of its simplicity and efficacy, the linear spectral mixture model (LSMM) is the
method of choice for endmember extraction problems. The spectral response of a pixel in
the LSMM is the linear sum of all of its pure spectral endmembers. The LSMM is valid
and distinct endmembers do not interfere with one another [37]. A remote sensing image
with L bands and n pixels is represented by {ri}n

i=1, where ri is the column vector that
represents the spectrum of the ith pixel. One way to express the LSMM is as follows:

ri =
m

∑
j=1

αijej + εi, (1)

where the number of endmembers is m, the endmember set (L ≥ m − 1) is denoted by
{ej}m

j=1, the abundance of the jth endmember in the ith pixel is αij, and errors (such as noise
and modeling mistakes) are represented by εi. {ej}m

j=1 ⊂ {ri}n
i=1 is typically assumed.

The fraction abundances of the endmembers are often subject to two constraints: the
abundances sum to one (also known as the ASC constraint) and the abundances are non-
negative (also known as the ANC constraint) [38]. The following requirements are satisfied
by the fractional abundance αij:

ANC: αi,j ≥ 0, ∀i, (2)

and

ASC:
m

∑
j=1

αij = 1, ∀i, ∀j. (3)
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Following endmember extraction, the abundance {αij}n×m is estimated using the least
squares technique on the original image {ri}n

i=1 and the endmembers {ej}m
j=1. The least

squares approach can be divided into four groups based on the constraint conditions: com-
pletely constrained least square (FCLS), non-negatively constrained least square (NCLS),
sum-to-one constrained least square (SCLS), and unconstrained least square (UCLS). In
FCLS, the endmembers ej and the abundance αij yield the estimate pixel r̂i:

r̂i =
m

∑
j=1

αijej. (4)

When comparing an original image ri to its remixed image r̂i, the root mean square
error (RMSE) is expressed as

RMSE({ri}n
i=1, {r̂i}n

i=1) =
1
n

n

∑
i=1

√
1
L
∥ri − r̂i∥2

2. (5)

The quality of the endmember extraction result increases with decreasing RMSE.
An effective method for comparing the effectiveness of various endmember extraction
methods is to use RMSE. Determining the objective function in evolutionary algorithms is
also crucial. Numerous endmember extraction algorithms also employ the RMSE as their
objective function [20,21].

2.2. Evolutionary Multitasking Optimization

Specifically, the activities of interest could be independent parts of a multitasking
problem, or they could be separate tasks. However, in this study, we only address the
first scenario, which is when there is no prior awareness of any inter-task relationships.
We take into account multitasking across optimization problems that are often considered
separately. The following is a statement of the evolutionary multitasking paradigm with K
optimization tasks:

{x1, x2, ..., xK} = arg min{F1(x), F2(x), ..., FK(x)}
s.t. xi ∈ Ωi, i = 1, 2, ..., K.

(6)

The search spaces for each task in evolutionary multitasking are uniformly encoded
into a single search space Y, which is represented by a population. To elucidate the
differences between the multitask optimization paradigm and the extensively researched
subject of multi-/many-objective optimization [39–41], the reader is directed to Figure 1.
As a result, this study introduces evolutionary multitasking, or multitask optimization, as a
novel paradigm in the field of evolutionary computation. Multitask optimization contains
several distinct search spaces corresponding to the different self-contained optimization
tasks, whereas multi-objective optimization usually has a single search space containing all
objectives. Therefore, for multitask optimization to be effective, one more unification step
is required.

We make reference to the objective space of a fictitious two-factorial issue shown in
Figure 1b to highlight this distinction even more. The individuals p2, p3, p4, p5 belong
to the first nondominated front, while p1, p6 belong to the second nondominated front,
according to the nondominated sorting principles utilized in multi-objective optimization.
Put otherwise, p2, p3, p4, p5 are dissimilar to one another and are always favored over p1, p6.
But according to the definitions in evolutionary multitasking, p1 and p2 (as well as p5 and
p6) are considered strong counterparts. Put differently, p1, p2, p5, p6 are invariably favored
over p3, p4 and are deemed incomparable to one another in the multitasking process. As a
result, there is debate over the individual performance as inferred from the multi-objective
optimization and multitask optimization principles.
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Figure 1. Multiobjective and multitasking optimization. (a) The search space in multiobjective and
multitasking optimization. (b) Objective space in multiobjective and multitasking optimization.
The best solutions for multiobjective optimization are {p2, p3, p4, p5} and the best solutions for
multitasking optimization are {p1, p2, p5, p6}.

3. Methodology

In this section, the framework of competition multitasking endmember extraction
is first introduced. Next, the genetic transfer based differential evolution is described,
to transfer information within and between tasks. Finally, the online resource allocation
strategy with competition reward is shown in detail.

3.1. Framework of Competition Multitasking Endmember Extraction

The framework of competition multitasking endmember extraction is shown in
Figure 2. As previously mentioned, the presence of noise and outliers makes it challenging
for EA-based endmember extraction algorithms to calculate the number of endmembers
in the majority of practical cases. In general, these algorithms change the number of end-
members for extraction iteratively. It is obvious that endmember extraction with different
numbers of endmembers can be considered as a series of optimization tasks. These tasks
can be solved by evolutionary multitasking optimization, to acquire a group of solutions.
Finally, the solution of the optimal number of endmembers is the final output of the utilized
multitasking optimization algorithms. It can be observed that these tasks are competitive.
This paper tries to utilize evolutionary competition multitasking optimization to solve the
above endmember extraction problems. The RMSE between the original and its remixed
images is selected as the objective. In the proposed method, we formulate the competition
multitasking endmember extraction problem as the following optimization problem:

min{RMSE(r, r̂(x1)), RMSE(r, r̂(x2)), · · · , RMSE(r, r̂(xK))}, (7)

where xk(k = 1, · · · , K) is a solution vector containing an extracted endmember subset.
One popular method for solving the above problems is to utilize an optimizer to solve each
task independently, finding the best answer for each component task before selecting the
best one as the optimal solution. The algorithm for competition multitasking endmember
extraction is shown in Algorithm 1. Using a multitasking optimization technique to handle
all separate tasks at once makes sense as well, since there may be correlations between
the multiple activities. During the optimization process, information sharing between
the various tasks can increase the effectiveness of completing each task separately. Some
important components are described as follows:
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222 435 656 1658

434 543 342 654 1454

143 553 612 733 952 1857

Task 1

Task 2

Task K

The number of endmembers m1

The number of endmembers m2

The number of endmembers mK

Multitasking Endmember Extraction 

Figure 2. Framework of Competition Multitasking Endmember Extraction.

Algorithm 1 Algorithm of Competition Multitasking Endmember Extraction.

Input: N: the population size; maxgen: max generation number.
Output: The endmember extraction result with best objective function value.

1: Step (1) Initialization
2: Step (1.1) Generate an initial population P.
3: Step (1.2) Evaluate the population P.
4: Step (2) set t = 0.//the number of cycles
5: Step (3) Cycling
6: Step (3.1) Task Selection: Select a task based on the selection probabilities {p1, · · · , pK}.
7: if t ≤ β · maxgen then
8: Randomly select a task k.
9: else

10: Choose a task by the roulette wheel method based on the selection probabilities.
11: end if
12: Step (3.2) Genetic Transfer: Optimize the selected task based on the genetic transfer

introduced in Section 3.2.
13: Step (3.3) Reward Assignment: Assign rewards to each task based on the online

resources allocation introduced in Section 3.3.
14: Step (3.4) Update the random mating probability matrix.
15: Step (3.5) Update the selection probabilities.
16: Step (4) Stopping criteria:
17: if t < maxgen then
18: t ++ and go to step 3
19: else
20: Stop the algorithm and output.
21: end if

3.1.1. Representation and Initialization

In this paper, xk = {x1
k , x2

k , xm
k } is a solution vector containing a extracted endmember

subset. x1
k is the position of the pixel in the hyperspectral images. For the k task, as shown

in Figure 3, the number of endmembers is m and the positions of these m endmembers
are recorded in xk = {x1

k , x2
k , xm

k }. It can be observed that the K endmember extraction
tasks have different numbers of decision variables. It is necessary to search these solutions
to different endmember extraction tasks in a unified search space Ω = [0, 1]mmax . mmax is
defined as

mmax = max{m1, · · · , mK}. (8)

As a result, in the initialization, the unified search space is randomly generated as K
populations, each of which has N solutions.
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Figure 3. Unified Search Space and Evolutionary Search.

3.1.2. Task Selection

In order to distribute computational resources among the tasks in a dynamic manner,
the proposed method chooses one task to optimize per generation. Due to insufficient data,
it chooses a task at random for the first T generations, in order to assess whether or not
each task should be optimized. T is defined as

T = β · maxgen (9)

where maxgen is the maximum number of generations and β is the control parameter, in
order to prevent a cool start. Next, using the roulette wheel method, a task is chosen based
on the probability distribution.

3.2. Genetic Transfer Based Differential Evolution

Any EAs with a particular information transfer mechanism can be utilized to optimize
the chosen task. The optimizer used in this work is the differential evolution (DE) algorithm.
In order to change the population Pk of task k, differential evolution uses the crossover,
selection, and mutation operators to update the population. The following mutation
operator first creates a mutation vector vi = (vi,1, · · · , vi,m)

T for each unique xi:

vi = xi
r1 + F · (xi

r2 − xi
r3), (10)

where xi
r2 and xi

r3 are randomly chosen from the population Pk, and F is the scaling factor
that regulates the amplification of the difference vector.

The algorithm for the genetic transfer is shown in Algorithm 2. The efficiency of
optimization may be improved by information exchange between tasks. The base vector
xi

r1 is randomly chosen from the population, which is established via the roulette wheel
approach based on random mating probabilities, in order to transmit knowledge across the
tasks. Following the mutation, the binary crossover operator oi = (oi,1, · · · , oi,m)

T generates
the offspring oi:

oj
i =

{
vi,j if randj(0, 1) ≤ CR or j == jrand

xi,j otherwise,
(11)

where randj(0, 1) is a random number in the range of [0, 1], and jrand is an integer that is
randomly chosen from {1, · · · , m}. CR is the crossover rate.

Transferring genetic information between related processes can help with optimization.
However, if the component tasks are uncorrelated, this can also have unfavorable impacts.
Adaptive direct transfer and indirect transfer can be used to categorize methods for lessen-
ing the detrimental consequences of genetic information transfer. Genetic information is
transferred using adaptive direct transfer in the initial search areas of the tasks, and during
the optimization process, the transfer frequency is adaptively learned. Indirect transfer first
converts the task’s original search space into a new one, and then it transfers information
within the new space.
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Algorithm 2 Algorithm of Genetic Transfer.

1: xi
r1 is randomly chosen from the population Pr, which is established via the roulette

wheel approach based on the random mating probabilities RMP.
2: xi

r2 and xi
r3 are randomly chosen from the population Pk.

3: if r == k then
4: Conduct within-task genetic transfer.
5: else
6: Conduct between-task genetic transfer.
7: end if
8: vi = xi

r1 + F · (xi
r2 − xi

r3).

A direct information transfer is carried out in this paper, and the frequency of in-
formation transfer between tasks is controlled via the employment of a random mating
probability matrix RMP. RMP is dynamically changed in order to increase positive trans-
fers and decrease negative transfers. It is assumed that task k is chosen for optimization at
the gth generation. The algorithm for defining the random mating probability matrix is
shown as follows:

RMP(k, j) = min{RMP(k, j) + δ, 1}, i f Rg(j) ≥ Rg(k) (12)

RMP(k, k) = max{RMP(k, k)− δ, 0}, i f Rg(j) ≥ Rg(k) (13)

RMP(k, j) = min{RMP(k, j)− δ, 0}, i f Rg(j) < Rg(k) (14)

RMP(k, k) = max{RMP(k, k) + δ, 1}, i f Rg(j) < Rg(k) (15)

where δ is a small value, which is defined as

δ =
1

maxgen
. (16)

Evidently, the reward of the primary task k and supporting tasks dynamically adjusts the
random mating probability matrix RMP. RMP(k, j) should increase to promote informa-
tion transfer if the reward of the auxiliary task j is equal to or greater than the reward of
the primary task k. This is because the information from task j is useful for optimizing task
k. If not, it ought to drop, in order to lessen the detrimental impacts of information sharing.

3.3. Online Resource Allocation with Competition Reward

It is assumed that the endmember extraction task k is chosen for gth generation
optimization. We refer to the chosen task, k, as the primary task for the sake of description,
with the remaining tasks as auxiliary tasks. Both the primary task and auxiliary tasks ought
to be rewarded in every generation. The objective function value of the population of task k
is denoted by fk.g = { fk,g,1, · · · , fk,g,N}. f ∗g = { f ∗1,g, · · · , f ∗K,g} represents the ideal objective
value of all tasks, where f ∗∗g = min{ f ∗1,g, · · · , f ∗K,g} is the current global best objective
function value.

If the freshly created solution for a problem proves to be superior to the current best
solution, more computational resources will be allocated to it. The benefit of making
improvements to the present best solution is described as

Rb
g(k) = max

{
f ∗∗g−1 − f ∗g,k

f ∗∗g−1
, 0

}
. (17)

It is obvious that the existing global best solution will benefit if it can be made better by
making the primary task more efficient. If not, it receives no benefits. The amount of
computational costs devoted to the primary task should be decreased if its population has
reached a point of convergence or stagnation. Even though its current solutions are not as
good as the best solution, the population of the main task should still be rewarded if it can
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be made even better, because it could yield better results in the future. In light of this, the
benefit of increasing the population is described as

Rp
g(k) =

1
N

N

∑
i=1

IRg(k, i), (18)

where

IRg(k, i) = max

{
fk,g−1,i − fk,g,i

fk,g−1,i
, 0

}
. (19)

The relative improvement rate of the ith individual of task k at the gth generation is denoted
as IRg(k, i). The benefit of population improvement is represented by Rp

g(k), which is equal
to the population’s average relative improvement. It goes without saying that improving a
person will benefit Rp

g(k). Rp
g(k) equals 0 if no solution is improved. One can calculate the

reward for optimizing the main job by combining Rb
g(k) and Rp

g(k) as

Rg(k) = αRb
g(k) + (1 − α)Rp

g(k), (20)

where the coefficient for adjusting the weights of Rb
g(k) and Rp

g(k) is 0 ≤ α ≤ 1. The ratio
of exploration to exploitation can be managed by α. For tasks that currently have the best
global solution, a large value of α is advantageous; on the other hand, tasks with smaller
values of α benefit from solutions that can be greatly improved. Setting a suitable value for
α is a complex task that depends on both the problem and the optimizer. In this piece, we
keep α at 0.5 for simplicity’s sake.

Auxiliary tasks should receive rewards in addition to the primary tasks in each gener-
ation, since their solutions may aid in the optimization of the primary task. The concept of
reward for auxiliary tasks in this paper is the same as that of the reward for the main task;
that is,

Rg(j) = αRb
g(j) + (1 − α)Rp

g(j), (21)

Following the assignment of awards, the historical reward matrix contains all of the task re-
wards. It should be noted that the information transfer technique affects the auxiliary task’s
reward. Different optimizers may require different reward definitions for the auxiliary task
and may have different information transfer protocols. Generally speaking, supplementary
activities should be awarded if they improve the main task’s optimization.

4. Experimental Study

This section tested the benefits of the suggested strategy using simulated and real
hyperspectral remote sensing photos. Six other representative endmember extraction
methods were compared with the suggested MOEE in our trials. In the proposed method,
the population size N, scaling factor F, and crossover rate CR were set to 100, 0.5, and 0.9,
respectively. These algorithms are described as follows:

(1) N-FINDER [16]: This method is based on the observation that the N-volume enclosed
by a simplex made of the purest pixels is greater than any other volume made of any
other combination of pixels in N spectral dimensions. A single realization is defined
as a single run with a single set of random beginning endmembers.

(2) VCA [17]: This procedure takes advantage of two facts: (1) the vertices of a simplex
are its endmembers; and (2) the simplex that results from an affine translation is
likewise a simplex.

(3) PPI [13]: This algorithm expedites its procedure by generating a suitable initial set
of endmembers. To become better at each iteration until it reaches a final set of
endmembers, an iterative rule is designed.

(4) DPSO [20]: In order to decrease the impact of data mistakes on endmember extraction
results and increase endmember extraction accuracy, this algorithm expends PSO in
discrete space during endmember extraction.
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(5) ADEE [21]: With the introduction of a self-adaptive mechanism to adaptively modify
the DE parameters, this approach no longer relies on the theory of convex geometry
and allows for the acquisition of optimal values, without the need for a user-defined
process.

(6) MFEA [26]: This method was implemented within the proposed framework. Endmem-
ber extractions with different numbers of endmembers were considered as multiple
tasks. However, these tasks were not competitive.

4.1. Experiment on Simu-5 Data

In this experiment, we created a simulated hyperspectral image of 80 × 100 pixels
covering 224 bands using a subset of five endmembers from the USGS spectral collection.
The middle of the scene seen in Figure 4a is where the twenty synthetic pictures were
placed in a 4 × 5 matrix. The first row was made entirely of pixel panels, whereas mixes
of two to four endmembers were used to make the last three rows. A mixture of 20%
of each of the five mineral fingerprints was used to replicate the background [42]. The
genuine fractional abundances for each of the five endmembers are displayed in Figure 4b–f.
The five signatures, Alunite AL706 (A), Buddingtonite GDS85 (B), Calcite CO2004 (C),
Kaolinite CM3 (K), and Muscovite GDS107, were selected from the USGS library, as Figure 5
illustrates.

(a) (b) (c)

(d) (e) (f)

Figure 4. Abundance maps of Simu-5 data. (a) Synthetic image; (b–f) Abundance of the five
endmembers.
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One significant factor that affects the accuracy of endmember extraction results is
noise. Simulated white Gaussian noise was applied to the artificial image in Figure 4a that
included 20 implanted panels, in order to obtain signal-to-noise ratios (SNR) of 10:1, 20:1,
and 30:1. The errors determined by each of the five methods with varying numbers of
endmembers are displayed in Table 1.

Table 1. Results on Simu-5 data with seven endmember extraction algorithms.

SNR Task N-
FINDR VCA PPI DPSO ADEE MFEA CMTEE

10

3 0.2721 0.2714 0.3089 0.2728 0.2749 0.2751 0.2649
4 0.2634 0.2610 0.3259 0.2652 0.2634 0.2641 0.2543
5 0.2567 0.2583 0.2637 0.2552 0.2580 0.2583 0.2521
6 0.2516 0.2505 0.2559 0.2523 0.2565 0.2552 0.2487

20

3 0.0905 0.0905 0.2056 0.0927 0.0911 0.0949 0.0892
4 0.0852 0.0852 0.2041 0.0876 0.0877 0.0874 0.0826
5 0.0812 0.0812 0.0930 0.0849 0.0816 0.0849 0.0812
6 0.0797 0.0802 0.0874 0.0847 0.0801 0.0817 0.0789

30

3 0.0395 0.0391 0.0455 0.0389 0.0398 0.0399 0.0388
4 0.0287 0.0282 0.0449 0.0384 0.0366 0.0282 0.0275
5 0.0259 0.0259 0.0443 0.0306 0.0260 0.0256 0.0251
6 0.0257 0.0255 0.0444 0.0301 0.0257 0.0252 0.0249

The accuracy of endmember extraction results is significantly impacted by noise. To
produce signal-to-noise ratios (SNR) of 10:1, 20:1, and 30:1, a simulated white Gaussian
noise was applied to the artificial image in Figure 4a that had 20 implanted panels. The
errors determined by each of the seven methods with varying numbers of endmembers are
displayed in Table 1. It is evident that the suggested MFEA and CMTEE performs better
than N-FINDR, VCA, PPI and DPSO. Based on Table 1, the suggested approach outperforms
competing methods by a significant margin for SNR=10. The computational complexity of
N-FINDR and VCA is less than that of DPSO and the suggested approach. Nonetheless,
CMTEE can achieve improved endmember extraction outcomes by exchanging information
among the multiple tasks. As previously said, there are several benefits to applying
the proposed approach. Initially, distinct endmember extraction outcomes are acquired
during a solitary run. Second, by exchanging knowledge through the genetic transfer, the
suggested strategy performs better than the others.

4.2. Experiment on Simu-10 Data

The USGS ground-truth mineral spectra served as the basis for the construction
of the simulated image (Simu-10). Figure 6 displays both the true abundance images
and the simulated image. Based on the ten spectra of the following minerals (Figure 5):
Alunite, Buddingtonite, Calcite, Halloysite, Illite, Jarosite, Kaolinite, Muscovite, Nontronite,
and Pyrophyllite, this image (160 × 160) with 224 bands was simulated. Both the prior
experiment and this one using the Simu-10 image are displayed. To produce signal-to-noise
ratios (SNR) of 10:1, 20:1, and 30:1, a simulated white Gaussian noise was applied to the
synthetic image shown in Figure 6.

The errors determined by the seven methods with varying numbers of endmembers are
displayed in Table 2. Higher SNR for the synthetic image allows us to acquire reduced error.
According to Table 2, CMTEE produced superior outcomes than the other six algorithms.
To obtain distinct endmember extraction outcomes with a predetermined quantity of
endmembers, DPSO executes independent runs. With only one run, the suggested CMTEE
performs better and yields a set of solutions.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 6. Abundance maps of Simu-10 data. (a) Synthetic image; (b–k) Abundance of the ten
endmembers.

Table 2. Results on Simu-10 data with seven endmember extraction algorithms.

SNR Task N-
FINDR VCA PPI DPSO ADEE MFEA CMTEE

10

2 0.2874 0.2874 0.3095 0.4143 0.3177 0.3069 0.2796
3 0.2738 0.2690 0.2832 0.2826 0.3001 0.2704 0.2676
4 0.2597 0.2632 0.4291 0.2767 0.2611 0.2570 0.2409
5 0.2465 0.2469 0.2635 0.2628 0.2526 0.2518 0.2411
6 0.2431 0.2440 0.4099 0.2574 0.2431 0.2466 0.2358
7 0.2409 0.2413 0.4200 0.2461 0.2411 0.2448 0.2286
8 0.2372 0.2411 0.2419 0.2418 0.2394 0.2404 0.2213
9 0.2362 0.2350 0.3026 0.2373 0.2360 0.2405 0.2205
10 0.2332 0.2372 0.2395 0.2362 0.2371 0.2371 0.2171

20

2 0.1188 0.1188 0.1120 0.1054 0.1766 0.1185 0.0985
3 0.1069 0.1002 0.1139 0.0982 0.1732 0.1077 0.0977
4 0.0967 0.0967 0.1156 0.0967 0.1731 0.0981 0.0881
5 0.0845 0.0843 0.1155 0.0902 0.0850 0.0974 0.0841
6 0.0845 0.0840 0.1194 0.0884 0.0860 0.0897 0.0815
7 0.0822 0.0807 0.1169 0.0877 0.0822 0.0889 0.0789
8 0.0804 0.0806 0.1139 0.0848 0.0811 0.0883 0.0780
9 0.0802 0.0851 0.1148 0.0837 0.0797 0.0878 0.0778
10 0.0808 0.0787 0.1098 0.0801 0.0796 0.0872 0.0772

30

2 0.0863 0.0863 0.0812 0.0802 0.1542 0.0769 0.0713
3 0.0703 0.0703 0.0809 0.0655 0.1532 0.0602 0.0572
4 0.0563 0.0577 0.0798 0.0620 0.0559 0.0463 0.0425
5 0.0350 0.0358 0.0797 0.0620 0.0363 0.0462 0.0343
6 0.0343 0.0332 0.0841 0.0619 0.0442 0.0454 0.0314
7 0.0304 0.0358 0.0794 0.0617 0.0304 0.0453 0.0275
8 0.0299 0.0378 0.0838 0.0615 0.0300 0.0450 0.0274
9 0.0382 0.0326 0.0836 0.0615 0.0315 0.0449 0.0271
10 0.0315 0.0325 0.0832 0.0614 0.0318 0.0447 0.0268
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4.3. Experiment on Real Data

An airborne visible infrared imaging spectrometer provided the hyperspectral image
that we employed in our tests (AVIRIS). The AVIRIS Cuprite image (400 × 350) with
50 bands ranging from 1.9908 µm (Band 172) to 2.4790 µm (Band 221) was taken in the
vicinity of Cuprite, Nevada, US in 1995, as depicted in Figure 7. A lot of work has gone
into endmember extraction from hyperspectral remote sensing photos using this typical
dataset. This region has a wide variety of complex minerals, such as calcite, alunite,
kaolinite, chalcedony, muscovite, montmorillonite, jarosite, and calcite, as discussed in
Section 2. Additionally, some chert, illite, and buddingtonite are present [43]. Verifying the
precise estimates of the mineral types at the Cuprite mining site is obviously a challenging
undertaking. The majority of other approaches limit the number of end members in
their tests to 5, 10, 15, and 20. Therefore, altering the experiment’s endmember count is
inappropriate. Here, the number of endmembers was limited as in [5,20] for all trials.

Figure 7. Three-dimensional cube form of the Cuprite image. (R: Band 183, 2.1010 µm. G: Band 193,
2.2008 µm. B: Band 207, 2.3402 µm).

The suggested technique could obtain endmember extraction results after 300 itera-
tions if the number of endmembers was set to [5,20]. The spatial locations of the retrieved
endmembers generated by the proposed algorithm are displayed in Figure 8. The endmem-
bers in the figure are the pixels with open circles around them. The suggested approach
performed well for endmember extraction, as seen from a visual examination of Figure 8.
The accuracy of the sequential endmember extraction algorithms, which located endmem-
bers one at a time in accordance with the increasing strategy, was influenced by the other
tasks. The results were typically inconsistent, yielding a different number of endmem-
bers with a different initialization, because they extracted endmembers from the images
after they had been converted by the MNF algorithm. The accuracy of each of the seven
endmember extraction algorithms was assessed by calculating the difference between the
original and remixed images. As seen in Table 3, CMTEE outperformed N-FINDR, VCA,
and PPI for every endmember number. The suggested approach appeared to produce more
appropriate endmember extraction results. The suggested CMTEE could produce superior
endmember extraction outcomes as compared to MFEA.

Table 3. Results on real data with the seven endmember extraction algorithms.

Task N-
FINDR VCA PPI DPSO ADEE MFEA CMTEE

5 6.0611 6.2016 16.3606 9.7311 6.0725 5.6523 5.2366
6 5.0002 5.1319 16.2041 6.8691 5.9088 5.9938 4.9047
7 4.5431 4.8048 6.9553 6.5380 5.7093 5.2285 4.5731
8 4.0494 4.4860 6.8615 6.3917 5.8609 4.9255 4.2613
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Table 3. Cont.

Task N-
FINDR VCA PPI DPSO ADEE MFEA CMTEE

9 5.6754 5.1432 6.7402 6.3256 5.6077 4.2932 4.0963
10 5.9306 10.1650 6.6598 8.7772 5.6515 4.2632 3.9851
11 4.0359 4.3421 5.1278 8.6297 4.0411 4.0371 3.7638
12 3.9731 4.8311 5.1191 5.1801 4.6753 4.2423 3.7474
13 4.3615 4.0256 4.9558 4.8639 4.1949 4.1287 3.4663
14 3.7515 3.6142 5.0971 6.2888 4.4934 4.0804 3.4071
15 3.3183 3.4531 5.0172 7.5295 4.4459 3.7511 3.1989
16 3.2659 3.3616 4.6365 4.6269 3.6865 3.2994 3.1068
17 3.9059 3.8367 4.6918 4.5709 3.6453 3.2287 3.1962
18 3.4909 3.3714 4.3271 4.4648 3.7064 3.2217 3.0987
19 3.5707 3.0910 4.1299 4.4276 3.5280 3.1338 2.9892
20 3.1629 3.5117 4.9582 4.3434 3.7154 3.1301 2.8980

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 8. Endmembers extracted by the proposed algorithm with (a) 5, (b) 6, (c) 7, (d) 8, (e) 9, (f) 10,
(g) 11, (h) 12, (i) 13, (j) 14, (k) 15, (l) 16, (m) 17, (n) 18, (o) 19, (p) 20 endmembers.

5. Concluding Remarks

Images from hyperspectral remote sensing usually contain mixed, and not pure, pixels.
Finding a set of endmembers to represent the original image is the goal of endmember
extraction. In actuality, it is difficult to estimate the number of endmembers in endmember
extraction investigations. To generate results for endmember extraction with different
numbers of endmembers, multiple tedious runs are needed. To address endmember extrac-
tion, an evolutionary competition multitasking optimization method was proposed in this
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study. The solution that was suggested treats endmember extraction problems that have
varying numbers of endmembers as a collection of optimization tasks. It was specifically
anticipated that these duties are competitive. Then, online resource allocation was used
to allocate the appropriate computational resources to the tasks under consideration. The
efficacy of the evolutionary competition multitasking optimization approach for endmem-
ber extraction was shown through experiments conducted on both simulated and actual
hyperspectral datasets. In the future, we hope to investigate multitasking multiobjective op-
timization for multiple competitive tasks where the endmember extraction task is modeled
as a multiobjective optimization problem.
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