
Citation: Lin, W.; Ma, J.; Li, T.; Ye, H.;

Zhang, J.; Xiao, Y. CrptAC: Find the

Attack Chain with Multiple Encrypted

System Logs. Electronics 2024, 13, 1378.

https://doi.org/10.3390/

electronics13071378

Academic Editor: Zbigniew Kotulski

Received: 13 March 2024

Revised: 1 April 2024

Accepted: 2 April 2024

Published: 5 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

CrptAC: Find the Attack Chain with Multiple Encrypted
System Logs
Weiguo Lin 1, Jianfeng Ma 1, Teng Li 1,*, Haoyu Ye 1, Jiawei Zhang 1 and Yongcai Xiao 2

1 School of Computer Science and Technology, Xidian University, Xi’an 710071, China
2 State Grid Jiangxi Electric Power Research Institute, Nanchang 330077, China
* Correspondence: tengli@xidian.edu.cn

Abstract: Clandestine assailants infiltrate intelligent systems in smart cities and homes for different
purposes. These attacks leave clues behind in multiple logs. Systems usually upload their local
syslogs as encrypted files to the cloud for longterm storage and resource saving. Therefore, the
identification of pre-attack steps through log investigation is crucial for proactive system protection.
Current methodologies involve system diagnosis using logs, often relying on datasets for feature
training. Furthermore, the prevalence of mass encrypted logs in the cloud introduces a new layer of
complexity to this domain. To tackle these challenges, we introduce CrptAC, a system for Multiple
Encrypted Log Correlated Analysis, aimed at reconstructing attack chains to prevent further attacks
securely. CrptAC initiates by searching and downloading relevant log files from encrypted logs
stored in an untrusted cloud environment. Utilizing the obtained logs, it addresses the challenge
of discovering event relationships to establish the attack provenance. The system employs various
logs to construct event sequences leading up to an attack. Subsequently, we utilize Weighted Graphs
and the Longest Common Subsequences algorithm to identify regular steps preceding an attack
without the need for third-party training datasets. This approach enables the proactive identification
of pre-attack steps by analyzing related log sequences. We apply our methodology to predict attacks
in cloud computing and router breach provenance environments. Finally, we validate the proposed
method, demonstrating its effectiveness in constructing attack steps and conclusively identifying
corresponding syslogs.

Keywords: attack chain; SSE; provenance; log correlation

1. Introduction

There are more and more intelligent devices, such as drones, vehicles, and AI cameras,
connected to networks. At the same time, malicious attackers increasingly find breaches
in these systems and make use of them. For instance, in the real world, an experienced
cyberattacker can initiate elusory infiltration steps to prepare for the final attack like
reconnaissance and gathering as much information about the target as possible, scanning
and sending probes to identify the vulnerabilities, and gaining access and exploiting the
breaches [1]. Thus, the malicious adversary has accomplished their goal in advance of
network or device paralysis. Such attacks, e.g., Advanced Persistent Threat [2] (APT) can
infiltrate target systems progressively, establishing a presence within them for an extended
duration while evading detection [3,4]. Intrusions can lead to significant consequences,
including the leakage of private personal information, theft of property, and pilferage of
website content. The consequences can affect regular city services, social order, and the
safety of people’s lives and properties. However, detecting or preventing these attacks
proves challenging. First, they are significantly complicated, and some of the attacks are
government-funded and used as network weapons. Second, they are not hit-and-run
attacks. In layman’s terms, once a network is infiltrated, the perpetrator remains to gain
as much information as possible. Third, they are manually launched against the system

Electronics 2024, 13, 1378. https://doi.org/10.3390/electronics13071378 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071378
https://doi.org/10.3390/electronics13071378
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13071378
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071378?type=check_update&version=2

Electronics 2024, 13, 1378 2 of 23

and are hard to predict. Furthermore, disclosing the root cause and attack trace is vital
for the system or devices to avoid future harm. Even though these attacks are difficult to
detect, they still leave clues after the ’crime’, as various logs record the ’crime scene’. The
clues to these attacks can be spotted, and the regular attack steps can be diagnosed from
the log data. Thus, log analysis provides the ability to identify the malicious adversaries
and respond to security threats.

However, referring to the logs does not grant omnipotence, and there are still pri-
mary and thorny challenges in this field—starting with the vast volume of data posing
a computational challenge. Network devices can create a mass of logs, and leveraging
logs to trace back the origin cause or detect the anomalies is like finding a needle in a
haystack [4]. Second, encrypted log storage [5] posing a searching challenge. Due to the
immense amount of data, logs are transferred to the Syslog Server or cloud for storage.
Because logs are sensitive data, they are usually encrypted to prevent information leakage,
and this can make data searching difficult. Third, logs present a semantic challenge for
analysis due to their siloed lenses and unstructured nature [6]. For instance, a network IDS
focuses on streams and packets, while an application log examines sessions, users, and
requests. Although both systems log similar events, they articulate activities differently.
Moreover, logs record static, fixed points in time, lacking the complete sequence context,
which complicates attack prevention. Thus, these challenges add difficult dimensions to
attack chain construction.

For the observation of attacks on devices or systems, investigating only one type
of log is not enough for a diagnosis [7]. A substantial number of sophisticated attacks
against the system or device and their variants persist. The depiction of regular attack steps,
as indicated by secure syslogs, cannot be fully captured by a singular source of logs [8];
thus, auditors cannot obtain a comprehensive overview of the conditions necessary to
trigger the alarm. Current log analysis techniques [9] are generally applied in the attack
diagnosis field by causally analyzing DNS logs, HTTP logs, WFP logs, and system logs
and correlating them to trace the origins of attacks. However, most current solutions in
logging are coarse-grained (e.g., Cisco routers document unauthorized IP addresses in both
malicious and benign events). The coarse granularity of the chain of attacks and origin will
incur a dependence explosion problem [10,11] and makes it complicated to recognize the
true events relevant to an attack.

As a promising privacy-preserving information retrieval technique, symmetric search-
able encryption (SSE) was first proposed by Song et al. [12]. Following this, a large number
of studies have emerged on this subject. Recently, Wang et al. [13] proposed MFSE to
address the challenge of multi-keyword fuzzy search over encrypted data without a pre-
defined dictionary. However, the above schemes suffer from many shortcomings that
constrain their practical application in the log file system. Moreover, many approaches to
log correlation analysis rely on parameter-based causality analysis [14,15]. They may yield
meaningfully false relations due to their inability to uncover sound logical or semantic
connections among logs or events [16,17]. Moreover, some log analysis approaches are
invalid in the face of the immense volumes of encrypted data, and all-data decryption
is the least efficient way to tackle this problem. Finally, the approaches based on deep
learning [18] and machine learning [19] must combine historic attack chain data in their
training sets and cannot break the bottleneck of detecting new malicious attack chains. A
comparison between current methods and the proposed method is shown in Table 1.

Given the aforementioned constraints, we are motivated to identify the attack chain
by leveraging the information contained in multiple encrypted logs. As an extension of our
earlier work [7,21], we put forward a secure and potential mechanism for logically related
attack path discovery. Because of the immense amount of encrypted logs, deciphering all
the data and analyzing the logs is not practical. Thus, we firstly need to search for related log
files within encrypted data and decrypt the logs into plain text. With this approach, we can
evade deciphering all the data and diminish the time cost. Rather than taking only a single
source of log data, as in [22], we adopt multi-source log data to understand the system’s

Electronics 2024, 13, 1378 3 of 23

state, thereby enhancing the accuracy and relevance of the attack chain reconstruction. It
is noteworthy that, to the best of our understanding, this proposal signifies the inaugural
application of the Longest Common Subsequence (LCS) in identifying logically connected
attack paths. The introduction of LCS allows the detection of subtle and complex behavioral
patterns across different log entries, thus aiding in the identification of threats that might
elude detection due to their intricate or obfuscated nature—something that may not be
readily apparent through traditional analysis methods. These advantages enable CrptAC
to efficiently process vast amounts of encrypted log data, thereby allowing the rapid and
accurate identification of complex attack behaviors within encrypted log data, all while
ensuring the privacy and security of the data.

Table 1. Method Comparison.

Method [9] [10] [18] [16] [20] CrptAC

Ciphertext Search ✓
Correlation ✓ ✓ ✓ ✓
Provenance ✓ ✓ ✓
Training set ✓ ✓ ✓

Note: ✓ indicates that the feature is supported by the method.

In summary, this paper contributes in the following ways:

1. We propose a novel SSE scheme that supports fuzzy multi-keyword search and result
ranking, offering a solution for handling keyword imprecision. This enhances the
system’s ability to recognize various attack patterns, particularly when dealing with
ambiguous or fluctuating keywords. (Section 3.1);

2. We enhance the accuracy of tracing the cause of attacks by integrating and correlating
logs from multiple sources within the system, rather than relying on a singular
perspective. This multi-faceted approach allows for a more comprehensive analysis,
leading to more precise identification of attack origins. (Section 3.2);

3. Our framework employs the LCS matching algorithm for tracing regular steps and
constructing attack chains, enabling the identification of systematic attack patterns
even in the absence of explicit alerts from security system logs. This approach thus pro-
vides a powerful mechanism for early threat detection and prevention. (Section 3.4);

4. Our approach can identify syslog sequences to proactively defend against attacks to
avoid device or network paralysis. (Section 4).

The remaining sections of this paper are structured as follows. In Section 2, we provide
a brief overview of related work. Section 3 delineates the system model, presents the
comprehensive construction of our system, and offers a detailed theoretical analysis. In
Section 4, we showcase the experimental results and conduct a performance evaluation of
our system. Finally, we conclude this paper in Section 5.

2. Related Work

Log Correlation Analysis. Log correlation techniques, such as those proposed in [9,21],
are widely adopted in the field of attack diagnosis. These methods conduct causality
analysis on various logs, including DNS logs, HTTP logs, WFP logs, and system logs,
from communication platforms or devices. Through correlating these logs, they establish
attack provenance. However, many existing logging techniques exhibit a coarse granularity,
as seen in the example of Cisco routers reporting unauthorized IPs in both malicious
and benign events. This coarse granularity, when analyzing the attack chain or root
causes, leads to the dependence explosion problem [23], making it challenging to identify
the actual events associated with the attack. Additionally, some log correlation analysis
approaches rely on parameter-based causality analysis [14], which can result in significant
false relations due to a failure to uncover valid logical or semantic relations among logs or
events [16,17]. Moreover, the identification of events in log entries poses a challenge [20,24].

Electronics 2024, 13, 1378 4 of 23

Many approaches attempt to address this issue by relying on sliding time windows [18,25].
However, how to set the time window is often ambiguous, and the heavy workload makes
these approaches impractical for acceptance in a real system [26].

Anomaly Detection. Using syslogs for anomaly detection is a well-researched topic in
systems and networks. Fukuda et al. [27] suppressed less important and usual log messages
to uncover hidden anomalies by employing global weights [25,28]. However, since only
unique events carry high weight, these methods struggle to distinguish apparent differences
in anomaly detection results. FDiag, a diagnostic tool introduced by Chuah et al. [29],
identifies significant events leading to compute node soft lockup failure through message
template extraction, statistical event correlation, and episode construction. Nonetheless, its
diagnostic capabilities are limited to identifying event sequence dates and correlated events
for only one time period. Barre et al. [30] utilize a recent APT malware corpus to extract
features from logs and train classifiers to detect new anomalies. However, these studies
primarily focus on anomaly detection and overlook attack prediction and prevention
aspects. Furthermore, they use the provided training labeled dataset, which cannot be may
not be representative of some new attacks [31].

Symmetric Searchable Encryption. It is widely acknowledged that Song et al. [12]
introduced the first symmetric searchable encryption (SSE) scheme, enabling keyword
searches over encrypted data within linear search time. Subsequently, numerous schemes
have been developed based on this foundational work. In an effort to address the limitation
of static searching, the scheme presented in [32] introduces dynamic SSE. However, it lacks
support for forward privacy. The scheme proposed in [33] addresses this latter concern
by offering forward privacy through a complex hierarchical data structure, and the work
in [34] achieves limited forward privacy. Furthermore, Wang et al. [35] devised an SSE
scheme that resolves the problem of result ranking using techniques such as keyword
frequency and novel order-preserving encryption. Nevertheless, none of the SSE schemes
mentioned above accommodate multi-keyword setting. Seeking to enhance searchability,
Cao et al. [36] introduced a multi-keyword ranked search scheme with privacy-preserving
features using symmetric encryption. However, all of the above schemes exclusively
support exact keyword searches.

3. System Model

Unlike conventional anomaly detection, our proposal focuses on the approach of
reconstructing an attack chain by starting from the point that the IDS have found the
anomalies. We split the multiple keywords from the final attack logs. In the working
environment, the log data are stored encrypted on a cloud or server. Thus, we must search
the related log entries in the encrypted data according to multiple keywords. We regard
these logs as having logical and textual data related to the attack, even though they may be
regular events and not malicious events. If these steps consistently manifest preceding an
attack, we consider them as key steps in the attack chain. For instance, when an adversary
successfully cracks the system’s password, subsequent login activity is deemed a plausible
action that lacks spurious indications in log entries. Such semantic relationships are beyond
the detection capabilities of anomaly detection approaches. The construction of the entire
logical attack chain and the identification of the attacker’s actions pose challenges in our
log correlation analysis.

The overall system, which is shown in Figure 1, consists of three main components:

(1) Cipher text retrieve. Initially, we query encrypted logs for keywords related to the
attack, verifying the integrity of the logs found. This step ensures that we focus only
on relevant data;

(2) Events correlation. Using a weighted graph, we assess how different events relate to
one another, removing logs that do not contribute to understanding the attack. This
analysis helps to streamline the pool of data under consideration;

(3) Attack chain construction. In this part, we aim to establish a logical sequence of events
leading up to the attack. After decrypting the relevant logs, we standardize data

Electronics 2024, 13, 1378 5 of 23

from varied sources like DNS, CPU usage, and firewalls for preprocessing. Then,
employing the LCS algorithm, we convert the identification of attack steps into a
search for the longest common sequence of conditions. Finally, by matching syslogs
with identical timestamps to these conditions, we pinpoint specific events and analyze
syslog templates and parameters to uncover attackers’ tactics.

DO

DU

Index Gen

Query Gen

CSP

Query Enc

Updata

TA

CipherText

Retrieve

Events

Correlation

Attack Chain

Construction

s by weight graph

TPA

Figure 1. System Model.

Through the collaborative interaction of these components, CrptAC offers a swift
and efficient method for dissecting complex attack behaviors within vast volumes of
encrypted logs.

3.1. Fuzzy Multi-Keyword Symmetric Searchable Encryption

In this section, we present the Accurate Dynamic Fuzzy Multi-keyword Symmetric
Searchable Encryption (Search+) approach. The proposal achieves fuzzy multi-keyword re-
trieval over encrypted log files outsourced in the cloud with a more accurate result ranking.

3.1.1. Notations and Preliminaries

Here, we will introduce some major notations and preliminaries used in our proposal.
In Table 2, we show the some important notations.

Table 2. Notations in our proposal.

Notations Descriptions

F = { f1, . . . , fm} The file set of all log files
D = {w1, . . . , wn} The dictionary of all keywords in F
CF = {c1, . . . , cm} The encrypted log file stored in CSP
W(fi) = {wi1 , . . . , wis} The keyword set in fi with number s
F(wj) = { f j1, . . . , f jt} The file set with keyword wj
Q = {wj} The query with each keyword wj

Definition 1 (Term Frequency and Inverse Document Frequency (TF-IDF)). TF-IDF stands
out as one of the most widely employed methods for ranking functions, used to assess the relevance

Electronics 2024, 13, 1378 6 of 23

scores of retrieval results. This technique encompasses two crucial attributes: term frequency (TF)
and inverse document frequency (IDF). TF gauges the significance of a term within a document,
calculated as the number of occurrences of a specific keyword in a file, as illustrated in Equation (1).
Meanwhile, IDF assesses the significance of a term across the entire document collection. The IDF of
a particular keyword in the file set corresponds to the ratio of the total number of documents in the
file set, denoted as F, to the total number of files containing the keyword, as outlined in Equation (2).
The TF-IDF assigns to each keyword a light weight in the file by computation in Equation (3).

t fi,wj = ni,wj (1)

where t fi,wj is the TF value of keyword wj in file fi, and ni,wj is the number of keyword wj in file fi:

id fwj = log
N
|Fwj |

(2)

where N represents the total number of files in file set F and |Fwj | denotes the number of files
containing keyword wj.

tf–idfi,wj
= t fi,wj × id fwj (3)

Definition 2 (Bloom Filter (BF) [37]). A Bloom Filter is a highly space-efficient data structure,
represented by an m-bit array in which all positions are initially set to 0. It serves the purpose of
representing a collection and determining whether an element belongs to the collection. Suppose
a collection as S = {a1, · · · , an}, a Bloom Filter employs l independent hash functions from
H = {hi | hi : S→ [1, m], 1 ≤ i ≤ l} to insert an element ai ∈ S into the Bloom Filter by setting
all of the h(ai)-th positions to be 1. To verify whether an element a′ ∈ S, it is input into each of
the l hash functions to obtain the l array positions. If the bit at any position is 0, then a′ /∈ S;
otherwise, either a′ ∈ S or a′ yields a false positive. The false positive rate of an m-bit Bloom Filter
is approximately (1− e−

ln
m)l . The optimal false positive rate is (1

2)
l when l = m

n · ln2.

Definition 3 (Locality-Sensitive Hashing (LSH)). Given a distance metric d, e.g., Euclidean
distance, a LSH function hashes close items to the same value with higher probability than those far
apart. If any two points s, t and h∈H satisfy:

I f d(s, t) ≤ r1 : Pr[h(s) = h(t)] ≥ p1 (4)

I f d(s, t) ≥ r2 : Pr[h(s) = h(t)] ≤ p2 (5)

A hash function family H is (r1, r2, p1, p2)-sensitive, where d(s, t) is the distance between
the two points s and t. In our proposal, we use a p-stable LSH family.

Definition 4 (P-stable LSH). A p-stable LSH is a kind of LSH that has the form:

ha,b(v) =
⌊

a · v + b
w

⌋
(6)

where a, v are vectors, b ∈ [0, w] is a real random, and w is a fixed constant for one family.

3.1.2. Search+ Model

The system model of our proposed verifiable dynamic fuzzy multi-keyword symmetric
searching encryption system with accurate ranking consists of Trusted Authority (TA),
Third Party Auditor (TPA), Data Owners (DO), Cloud Service Provider (CSP), and Data
Users (DU). TA is the essential entity for managing system parameters and generating
and distributing the keys of symmetric key encryption. DO generates a sequence of log
files periodically and continuously in incremental form. The log files will be encrypted
with symmetric key encryption (i.e., AES) and then uploaded to CSP dynamically. DO is
responsible for generating a secure index for the log file set and outsource the index to

Electronics 2024, 13, 1378 7 of 23

CSP with encrypted log files. DU queries and receives encrypted log files from CSP. When
querying for documents, DU generates a token and transmits the secure token to the CSP.
Upon receiving the top-k results ranked by the CSP, the DO decrypts the results using a
symmetric key. CSP supports unlimited storage for encrypted log files and secure index.
Meanwhile, the CPS can also provide query and computing services for DO and DU. TPA
is used to check the integrity of the encrypted logs search results by interacting with CSP
by running the public auditing protocol.

3.1.3. Threat Model

In our system, TA and DO are assumed to be fully reliable, whereas CSP and TPA are
considered to be “honest-but-curious”, that is, honestly conducting the designated protocol
while attempting to infer and disclose the stored documents and private data. CSP may
also observe the queries of DU or the search results to conclude whether the same keyword
is being searched from secure indexes and tokens. Moreover, CSP may deduce the linkage
of one token to another and the relationship between these queries. Furthermore, searching
ability may be granted to unauthorized DU, which may incur data leakage. Finally, with
periodically generated log files, CSP may learn some specific keywords contained in newly
added log files.

3.1.4. Design Goals

In our work, we devise an efficient dynamic fuzzy multi-keyword top-k log file
retrieval system with more ranking accuracy in a multi-user setting. The design goals of
the system are as briefly explained below:

(1) Dynamic rank fuzzy multi-keyword search: The proposal should support top-k search
result ranking and the dynamic updating feature;

(2) Privacy guarantee: The CSP should be prevented from containing additional informa-
tion from encrypted logs, secure index, search result, and newly added logs;

(3) Token unlinkability: The CSP should have no ability to infer the relationship be-
tween tokens to determine whether they are from the same query, which requires
randomized algorithms in tokens and queries;

(4) Multi-user support: The unauthorized DU should not have the same ability as the
authorized ones;

(5) Efficiency and accuracy: The efficiency should be at least equivalent to that of the
original scheme while achieving improved high ranking accuracy in search results.

3.1.5. Construction

We assume that the keyword dictionary of the log file set has been constructed in
advance. In our proposal, we introduce the p-stable LSH and Bloom Filter for fuzzy
keyword searching. To satisfy the requirement of LSH, we employ unigram to covert
each keyword into a vector. In addition, to improve the accuracy of the ranked results,
we leverage the TF-IDF technique as well as the Privacy-preserving Euclidean Distance
Comparison (PEDC) scheme [38] to generate auxiliary indexes for accurate result ranking.
Moreover, in a log system, a new log file is continuously generated and uploaded to a semi-
trusted CSP; thus, the secure index needs to be updated simultaneously and the integrity of
the search results also need to be verified, which brings new challenges. Furthermore, the
log system should satisfy the conditions of a multi-user setting, i.e., grant search ability only
to authorized data users. To meet these requirements, we propose the scheme Search+, the
workflow of which is shown in Figure 2. Specifically, our proposal contains the following
algorithms: KeyGen, BuildIndex, TokenGen, LFSearch, Update.

KeyGen (1λ, F): The algorithm is executed by TA. Given the security parameter λ, the
TA generates the secret key SK = {M1, M2, S} in which M1, M2 ∈ Rλ×λ are two invertible
random matrices of λ× λ dimension and S ∈ {0, 1}λ is a random vector of λ dimension
in which the number of 0 is approximately equal to that of 1. Meanwhile, the TA will
construct another system secret key SK′ = {M3, M3

−1}. Here, M3 ∈ R(n+µ+1)×(n+µ+1) is

Electronics 2024, 13, 1378 8 of 23

an invertible random matrix of (n + µ + 1)× (n + µ + 1) dimension, where n is the total
number of keywords W in file sets F (µ is a random number). The output of the algorithm
is sk = {SK, SK′}. Finally, the TA generates a secure symmetric key encryption scheme
SE = {GenKey, SEnc, SDec} and runs GenKey to obtain Ksym for file set encryption.

DU DO CSP TA

BuildIndex

IndexEnc

&AIEnc

FileEnc

Upload &Update

Authorization

TokenGen

LFSearch

KeyGen

KeyGen

TPA

Verify
Search Result

Search Result

Initialization

Encryption

Search

Figure 2. The Workflow of Search+.

FileEnc (F, Ksym): The algorithm encrypts each file fi ∈ F with SE to generate its
ciphertext Ci = SE.Enc(fi, Ksym) and signature σi = (H0(i) · hH1(Ci))Ko , where i is the index
of each ciphertext Ci in the encrypted log file set and H0, H1 are two collision-resistant hash
functions generated before by TA.

BuildIndex (D, F, sk): DO generates two indexes, that is, the primary index is for
query search and result ranking, the auxiliary index is for accurate ranking. As shown
in Algorithm 1, for each log file fi, the algorithm firstly runs FunGen(fi) to create hash
functions Hi = {hi|i ∈ [1, l], hi ∈ H} and a λ-bit Bloom Filter (BF) Ii for the primary index
and keyword set W(fi) = {wi1 , . . . , wis} for the auxiliary index. Then, the auxiliary index
is generated by AIGen(W(fi), F) = {Score(w1, fi), . . . , Score(wn, fi)}(wj ∈ F).

Algorithm 1 Index Construction

Require: D, F, SK
Ensure: SI

1: for each fi in F do do
2: (Hi, BF, W(fi)) = FunGen(fi)
3: for each wij in W(fi) do do
4: Ii = BF(Hi(unigram(W(fi))))
5: end for
6: AIi = AIGen(W(fi), F)
7: SI′ = IndexEnc(SK, Ii)
8: SI′′ = AIEnc(SK′, AIi)
9: end for

Electronics 2024, 13, 1378 9 of 23

IndexEnc (SK, Ii): The algorithm is executed by the data user, shown in Algorithm 2.
After the index Ii, each log file is divided, and the primary index will be encrypted by
SI′ = {M1

T · Ii1, M2
T · Ii2}.

AIEnc (SK′, AIi): The algorithm aims to encrypt the auxiliary index for the log file
set F. Given the vector AIi for each log file, the algorithm will extend it with random
numbers to (n+u+1) dimensions and obtain AIi

′ = {AIi, α1, α2, . . . , αµ, 1}. It will compute
SI′′ = Enc(AIi

′) = (β · AIi
′ + γI)×M3, where β ∈ R, rI ∈ Rλ.

TokenGen (Q, sk): The algorithm is executed by the data user. Given the query
Q = {wj}, it generates a query vector −→q = {q1, . . . , qn}, where qj = 1 if wj ∈ D, otherwise,
qj = 0. Selecting two random integers η and ζ, it generate a λ-bit Bloom Filter VQ and
inserts the query Q into the vector VQ using the same method as BuildIndex.

Algorithm 2 Index Encryption

Require: SK, Ii
Ensure: SI′

1: Divide the index Ii into two parts (Ii1, Ii2) with the random vector S of SK using the
following steps.

2: for each ij in Ii do do
3: if sj = 1 where sj ϵ S then
4: i1j = i2j = ij
5: else
6: i1j = 0.5ij + r (r is a random number)
7: i2j = 0.5ij − r
8: end if
9: end for

LFSearch (SI, TQ): The algorithm is executed by CSP. For each log file, the CSP
computes the relevance of the query and current log file using the following process:

Scorerel =< SI′, TQ
′ >

= M1
T Ii1 ·M1

−1 ·VQ j′ + M2
T Ii2 ·M2

−1 ·VQ j′′

= Ii1
T ·VQ j′ + Ii2

T ·VQ j′′
(7)

The above score is used to rank the result top-k log files that are most relevant to the
query. Then, the corresponding top-k file identifiers will be returned to the data user. When
there exist equal scores for some log files, it is usually challenging for CSP to obtain a more
accurate ranking result. Thus, in our design, the auxiliary index works for a further ranking
in this scenario. The specific procedure is described below:

Scoreprec =

⌊
SI′′ × TQ

′′

β2

⌋
=

⌊
Enc(AI′)× TQ

′′

β2

⌋
=

n

∑
j=1

Score(wj, fi) · qj +
n

∑
j=1

ηαj + ζ

(8)

The above score is effective for accurate ranking in the scenario mentioned above.
Considering multi-user authorization and updating, we have following two algorithms:

TokenGen(Q, sk): After generating the token TQ, DO picks a symmetric key r and
shares this with CSP and authorized data users. Thus, an authorized data user can generate
a valid token by SEncr(TQ) with key r. The CSP also can recover the token with key r by
SDecr(SEncr(TQ)).

Verify (Cr, PKo): The search result Cr with nr ciphertexts of corresponding log files is
sent to TPA for integrity verification. Then, for each log file ciphertext Ci ∈ Cr, TPA selects
a random number ηi ∈R Zp and sends the tuples {(i, ηi)} to CSP. To generate the proof,
CSP computes η = ∑nr

1 ηi · H1(Ci), ν = ∏nr
i=1 σ

ηi
i and sends the proof {η, ν} back to TPA.

Electronics 2024, 13, 1378 10 of 23

Next, TPA checks the equation ê(ν, g) ?
= ê(∏nr

i=1 H0(i)ηi · hη , PKo). If the equation holds,
the integrity of the search result Cr is correct and TPA returns it to DU; otherwise, TPA
reports an error to DU.

Update (D, F, sk): The algorithm is executed by DO. When a new log file is added into
log file set F, the data owner needs to update secure index SI in addition to uploading the
new encrypted log file.

3.1.6. Security Analysis

In this section, we evaluate the security of our system to demonstrate that the proposal
achieves the design goals.

(1) Data Confidentiality: The log files stored in the CSP are encrypted with symmetric
key encryption algorithm. Meanwhile, the symmetric key is unknown to the CSP and
unauthorized users, which ensures the confidentiality of the log files;

(2) Index and token security: In our proposal, the indexes and tokens are all encrypted
with secret key sk, which is kept concealed from the attacker as shown in BuildIndex
and TokenGen. Obviously, it is difficult for attackers to infer additional information
from secure indexes and tokens;

(3) Token unlinkability: The token in our proposal is encrypted as in TokenGen with
non-deterministic encryption algorithms. Hence, the CSP cannot obtain γQ for TQ

′′

and obtain extra information about TQ
′ permuted by pseudo-random functions. As a

result, it is infeasible for the CSP to establish the relationship between two tokens;
(4) Forward Privacy: The CSP cannot obtain more information from encrypted log files or

the secure indexes, which means that the CSP has no ability to link the keyword in the
newly added log files to any stored encrypted keyword. Moreover, as the CSP cannot
obtain search results and establish the relationship between tokens. It also cannot
learn whether the newly log files contains any stored encrypted keywords or not;

(5) Multi-user search ability: In our proposal, we use the group key to protect data users’
token and make sure that only authorized data users can generate valid search tokens.
Unauthorized data users cannot obtain the group key shared by the data owner and
thus have no capacity to generate a satisfactory token. (Assuming that the CSP is not
allowed to collude with the data users)

3.2. Plaintext Data Preprocessing

When we spot the relevant log chunks, we decipher the corresponding parts. Then,
we collect logs encompassing similar types of attacks to pinpoint the timestamps of these
attacks and subsequently retrieve a diverse range of logs from that point onward. We
present the description of the conditions from different data dimensions.

Table 3 gives a sampling log type for a four-dimensional case. The logs are collected
from views of available memory, network traffic, available disk space, number of processes,
database operations, and database network status, which implies that the condition is
described by a 28-dimensional vector. The vector may not act the same for the same attack
condition. For instance, attackers may employ various malicious hosts to compromise the
target system, resulting in varying packet numbers in the LAN log. Nevertheless, when
a picture scales, the original one has equal scaling to the scaled one in each dimension
compared while their size is different, which means that the scale rate need to be evaluated.

Definition 5 (Condition Sequence) Cij represents the jth pre-attack sampling sequence
of the ith type attack, Cij = (⃗cij_1, c⃗ij_2, c⃗ij_3, . . .). For instance, we take the DoS attack as
the second type, and the system obtains a 28-dimension vector every 2 s. c⃗21_1 shows the
condition of the DoS attack happening and c⃗21_2 shows the condition 2 s before the attack.

Definition 6 (Attack Sampling) The ith attack can be represented as ai = (Ci1, Ci2, . . .),
with A = (a1, a2, . . .) denoting the attack sampling cluster. To assess this, scaling rate ω of
the same attack sampling should be obtained first by ωCi1 = Ci2. Then, the initial condition
of the same attack from different samplings is inferred by ωCi1_1 = Ci2_1.

Electronics 2024, 13, 1378 11 of 23

Table 3. The meaning of different dimension data.

D Meaning Calculation

d1 The value of cpu utilization Get from log directly
d2 Rate of increase of cpu utilization (ui − ui−1)/∆t
d3 cpu utilization rank rate (ui − umin)/(umax − umin)
d4 cpu utilization deviation (ui − ū)/ū

To reduce computational complexity, we refrain from adopting k-means or k-medoid
methods as used in Dlog [20]. This decision is driven by the fact that the data source in
this paper originates from multiple types of syslogs, resulting in relatively high-dimensional
data. To enhance processing efficiency, we employ Fast Linear SVM (http://vikas.sindhwani.
org/svmlin.html, accessed on 5 March 2023) for condition classification. If two conditions
are in the same group, they are labeled with the same condition, i.e., ∑di1ϵCi1_1 ∑k

i=1 αi · di1 =

∑di2ϵCi2_1 ∑k
i=1 di2. In addition, the weight ω = α⃗ can be assigned to each tuple of the vector

such that the different sampling data of the same attack can be formalized by a decided ω.

3.3. Log Correlation Analysis

As we have converted diverse types of log information into corresponding vectors, the
identification of relationships among events requires consideration. However, the initial
vectors are not directly available for computation due to their high dimensionality, which
consumes substantial computing resources and hinders efficiency. To tackle this issue, we
utilize dimensionality reduction techniques, like the Principal Component Analysis (PCA)
algorithm. PCA identifies the principal components of the dataset and transforms the
data into a lower-dimensional subspace, enhancing clustering performance. The found
encrypted data are only the primary data for attack chain reconstruction, and some may
not have close relations to the attack. Thus, we need to find the logical relationships among
the events using the plain text and further narrow the relevant event cluster.

We use the low-dimensional vector as the feature edge to construct an initial graph
G = (V, E, D), where V represents the set of log nodes, E denotes the set of feature edges,
and D signifies the dimension of these vectors. For each log entry vi(i = 1, 2, · · · , n),
there will be a corresponding relation matrix Mi,j,k to store the relation vector. Mi,j,k = 1
denotes that there exists a k-dimensional relationship between node i and node j, otherwise
Mi,j,k = 0. However, there are many weak dependencies in the initial graph. A typical one
is that the process of reading a file will be connected with all previous file-writing processes,
but this connection yields almost no significant semantics and instead leads to the depen-
dency explosion problem. Faced with such a situation, we propose a method to transform
the problem of assigning weights to different edges into a convex optimization problem.

We define A to represent an attack-related log set, while B denotes a benign log set.
In the optimal case, |eA| ≫ |eAB| and |eB| ≫ |eAB|, where |eB| represents the edge number
within its own cluster, and |eAB| represents the edge number between these two clusters.
However, in real-world scenarios, the case |eA| ≪ |eAB| often occurs, potentially reducing
the accuracy of cluster identification. To address this issue, we assign corresponding
weights to the edges and achieved the goal ωA·|eA| > ωAB·|eAB| (ωA is the weight assigned
to |eA| and ωAB is the weight assigned to |eAB|). That implies that the algorithm should
assign a global weight vector α⃗ to each edge. Thus, the equation ∑eϵeA ∑k

i=1 αi · ei >

∑eϵeAB ∑k
i=1 αi · ei still holds, where k is the dimension number of the edge vector, ei is the

i-th value of the vector e⃗, and we designate the dot product result as the weight of each edge
(ω = ∑k

i=1 αi · ei). However, the weight can take negative values using this method, and ω
does not represent the global optimal solution in the graph. Consequently, we transform
the aforementioned formula into a convex optimization problem:

http://vikas.sindhwani.org/svmlin.html
http://vikas.sindhwani.org/svmlin.html

Electronics 2024, 13, 1378 12 of 23

max⃗α ∑
eϵeA

k

∑
i=1

αi · ei + ∑
eϵeAB

k

∑
i=1

αi · ei

−λ ∑
eϵeA

k

∑
i=1

αi · ei −
1
2

α⃗T · α⃗

s.t.0 ≤ α⃗Te ≤ 1

(9)

where λ serves as the trade-off parameter to balance the first two terms against the third
term in the objective function. The regularizer 1

2 α⃗T · α⃗ is incorporated to mitigate the risk of
overfitting. The objective function is convex, and the resultant weight vector α⃗ represents
the global optimum.

After we assign weights to the edges in the initial graph, it is necessary to efficiently
extract the cluster structure from the weighted graph. This paper uses the Enhanced
Louvain Algorithm (ELA), which is based on the Louvain algorithm [39], but differs in that
it takes not only modularity but also JSC similarity as optimization objectives and performs
greedy iterations based on multilevel refinement. We will first introduce the optimization
objective of ELA, and then describe the whole process of it.

Optimization objective: We define Ai,j as the weight between node i and node j. ki = ∑j Ai,j
is the weight sum connected to node w. Here, ci is the cluster to which node i is assigned.
Function δ means that if i = j, then δ(i, j) = 1, and otherwise δ(i, j) = 0. Thus, the modularity

is defined as Q = 1
2m ∑i,j[Ai,j −

kikj
2m], where m = 1

2m ∑i,j Ai,j.
Jaccard similarity is the ratio of common neighbors of two nodes to all their neighbor-

ing nodes and it is calculated as follows:

Jac(i, j) =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)| (10)

The cosine similarity is the quotient of the common neighbors of two nodes over the
geometric mean of their respective neighboring nodes, and it is calculated as follows:

Sim(i, j) =
|Γ(i) ∩ Γ(j)|√

didj

(11)

where Γ(i) and Γ(j) are the neighboring node domains of node i and node j, and di and dj
are the degrees of node i and node j, respectively.

JCS similarity is a similarity measure calculated by combining Jaccard similarity and
cosine similarity, and it is calculated as follows:

JCS(i, j) = Jac(i, j) + Sim(i, j) + r (12)

where eij denotes the number of common edges between node i and node j, l denotes the
total number of all edges in the graph and

r =
(

2× eij −
di × dj

l

)
. (13)

We take the modularity and JCS similarity as the optimization objectives of ELA, and
greedily perform bottom-up clustering to identify benign and malicious communities in
the weighted graph.

Main Process of ELA: We conclude the two main phases of the Enhanced Louvain algorithm
in Figure 3: (1) Local Optimization, and (2) Community Refinement and Aggregation.

Electronics 2024, 13, 1378 13 of 23

6 4

2
1

5

3

0

7

8
9

10

11 6 4

2
1

5

3

7

8
9

10

11

Local

movement

Community

refinement

0

0

Node 0 moves to the optimal
community by local movement

Initially the bridge of the two
communities are Node 0

6 4

2
1

5

3
7

8
9

10

11

0

Community 1 is refined into
Community 3 and Community 4

Community 1

Community 2

Community 1

Community 2

Community 3

Community 2

Community 4

Community

Breaks

Figure 3. Main Process of the Enhanced Louvain Algorithm.

Phase 1: Local Optimization. In the first stage of local optimization, we introduce the
idea of the Louvain Prune Algorithm [40], which prunes some neighboring nodes in the
Louvain algorithm that make it difficult to guarantee the growth of modularity, leaving
only those neighbors that have the potential to be able to increase the modularity. It is easy
to observe that the movement of a node i between communities affects only the nodes of its
neighbors, the nodes of its neighboring communities, and the nodes of its new community.
More specifically, when we move node i from community A to community B, four types of
nodes have the potential to increase community modularity:

• Neighboring nodes of the node i that are not in its new communities B that have the
potential to increase the modularity of the original community A;

• Neighboring nodes of the node i that are in in the new community B. Their removal
has the potential to decrease the modularity of the new community;

• Neighboring nodes of community A that have no links to the node i;
• Nodes in community B that have no links to node i.

When we consider only the first group of nodes (because they have the greatest impact
on the modularity), this hardly affects the final result [40]. Assuming that there are k
neighbor nodes of node i, the pruning process can reduce the time complexity of node
movement from O(k) to O(1). Node pruning achieves a faster local optimization process
while ensuring the quality of community division.

The whole process of local optimization is shown in Algorithm 3. We first initialize
each node in G as a single-node community, set up the queue and add log nodes to the queue
in random order, calculate △JCS and △Q of all neighbor nodes, and if max△ JCS > 0
and max△Q > 0, divide node i from the original community A to community B where
the neighbor node with the largest △JCS and △Q is located, and then add all neighbor
nodes of node i that do not belong to the new community B to the queue, and continue this
operation until the queue element is empty, at which time the similarity in the whole graph
reaches the local optimum.

Phase 2: Community Refinement and Aggregation. Another important difference be-
tween ELA and Louvain is the refinement of community . As we can see in Figure 3, if a
bridge node is moved to another community, the original community will break and thus
cause poor connectivity [41]. Obviously, it is better to separate community 1 so that no
disconnected communities are created, which means that nodes 1–6 should be classified
as community 3 and nodes 7 should be classified as community 4. To achieve community
refinement, we need to extract the existing community structure, and for each commu-
nity, construct a sub-network, repeat the local optimization steps in the sub-network, and
identify the refinement communities within it. Then, we aggregate each of the refinement
communities into a super node. At this point, we obtain a new graph consisting of these
aggregated super nodes, after which, we repeat Phase 1 and Phase 2 until the partition
cannot be reduced; then, we can arrive at the globally optimal community.

Electronics 2024, 13, 1378 14 of 23

Algorithm 3 Local Optimization

Require: Gragh G
Ensure: Partition P

P← INITIAL(G);
L← Queue(G);
while isNotEmpty(L) do

i← L.pop();
BestJSC = 0;
BestQ = 0;
for each neighboring node j of i do

Cj = community of j;
if BestJSC < GainJSC ∧ BestQ < GainQ then

BestJSC = GainJSC;
BestQ = GainQ;
BestC ← Cj;

end if
end for
P.MoveToBestC(j);
for each neighboring nodes j of i do

if j isNotIn C then
L.push(j);

end if
end for

end while
return P

Through community detection on the weighted graph, we can successfully cluster
log nodes into benign communities and malicious communities. By further analyzing
the malicious communities in the provenance graph, we can identify the activities of the
attackers and build an attack chain.

3.4. Attack Chain Construction

The LCS of two strings is usually performed in dynamic programming. Suppose
S1 = aqekptpnf and S2 = axkbirplcf, then LCS = akp f . Given a pre-attack sampling
condition sequence, each condition can be regarded as a letter in the above string. If the
same subsequence condition before the attack is detectable, the regular status sequence
before the attack can be identified. Typically, the divide and conquer approach can be
employed to find the subsequence of each pair of condition chains. Assuming there are
N chains in the attack sampling, the LCS computation will be N − 1. Theoretically, divide
and conquer outlines the regular attack steps, but the final result may obscure some diverse
attack steps. For example, when an attacker attempts to crack the username and password
of a router configuration, various methods can be followed to obtain them. For example,
the attacker may inspect the format of the input parameters on the login page and then
initiate a brute force attack. Alternatively, he can analyze and discover the vulnerabilities
of the router after scanning the router configuration. After this, he initiates the attack and
manages to insinuate through the backdoor. The two different attack approaches are shown
in Figure 4. The original log records are shown in Figure 5, and they will record all of the
system conditions along the timeline. We denote these four chains as C11–C14 according to
Definition 6.

Using the LCS cluster tree-building algorithm, the LCS of each pair of pre-attack
history conditions can be determined. As illustrated in Figure 4, since the contents of the
same attack may not share common subsequences, we cannot iterate the LCS algorithm.
Instead, it is imperative to construct a tree of the contents to represent the attack path and
convey the logic of the conditions’ relationships. The appearance time of nodes in the

Electronics 2024, 13, 1378 15 of 23

tree signifies the frequency of the condition, providing insights into the most commonly
adopted attack chains by the attacker.

Figure 4. Two different attack routes.

Figure 5. Different history samples for the same attack.

3.5. Event Analysis

The attack chains constructed from the conditions (Section 3.4) do not directly represent
the events. Instead, they are utilized to identify the corresponding syslogs, enabling the
analysis of correlations among the events through log clusters. Consider the example in
Figure 4. If an attack chain is identified as S0–W1S1–W1S2, then the timestamp of W1S1
is extracted to locate the corresponding syslogs. The log at this timestamp serves as the
central log for the event. A window φ can be set around the central point, with its length
denoted as ϕ. For instance, if ϕ = 20, this means that there are 20 syslogs before and after
the central point. Subsequently, the templates of syslog clusters can be extracted using
the approach from a prior work [20]. Following this, the LCS algorithm, in conjunction
with divide and conquer, is applied to extract fixed log template sequences of the event.
This facilitates the retrieval of original log entries and identification of specific attacker
information, such as IP address, MAC address, and tool information.

4. Performance Evaluation

Our approach is evaluated with logs collected from the Xidian University education
network’s cloud and DragonStack Cloud (DragonStack Cloud address: http://222.25.188.1:
50161/, accessed on 3 May 2023) from 7 January 2022 to 20 March 2022, with a total of
48.6 TB encrypted data. We take the existing work Dlog [20] and HERCULE [9] as the
baseline for comparisons. Dlog discovers the root cause in the routers and HERCULE uses
correlated log grapsh to find attack footprints. To be specific, we design the experiment to

http://222.25.188.1:50161/
http://222.25.188.1:50161/

Electronics 2024, 13, 1378 16 of 23

discover the regular attack steps based on the history syslog and predict the attack before
the system is paralyzed. To validate the performance of the prediction, we launch some
attacks as shown in Table 4 into the system. Figure 6 shows the multiple logs example
of the DragonStack Cloud. We implement the Search+ with JAVA, and we use AES for
symmetric key encryption.

Figure 6. Multiple logs from the DragonStack Cloud.

Table 4. Emulated Attacks.

Attack Name CVE Initial Tactics Post Exploitation

“Cisco IOS Input Validation Error” 2018-0171 Buffer stack overflow Remotely execute system commands
“Cisco IOS XE Static Credential” 2018-0150 Default account vulnerability Unauthorized remote access

“Cisco DCNM Authentication Bypass” 2019-1619 Authentication Bypass Unauthorized access
“Cisco RV320 Access Control” 2019-1653 Unauthorized access control Retrieve sensitive information
“Cisco RV110W Buffer Error” 2019-1663 Buffer stack overflow Arbitrary code execution

“Cisco RV110W Authentication Bypass” 2020-3144 Bypass authentication Unauthorized access control
“Cisco RV110W Remote command execution” 2020-3323 Send a specially crafted HTTP request Arbitrary code execution
“Cisco ASA Remote Arbitrary File Reading” 2020-3452 Unauthorized directory traversal Read sensitive files

4.1. Performance of Search+

We develop three processes to simulate the data owner, data user, and the CSP in
the log file system. The three processes communicate with each other through RPC. We
adopt the 2-stable (

√
3, 2, p1, p2)-LSH where p1 = 0.559 and p2 = 0.286, and choose

l = 50, λ = 5000, n = 140, µ = 10, where λ, n, µ are the parameters used in KeyGen and l is
the number of independent hashes in the Bloom Filter used in BuildIndex. The accuracies
of the search result and ranking and running time of each process are shown in Figure 7.

Figure 7a,b shows the time of index generation with respect to the number of doc-
uments and keywords, respectively. Although we introduce an auxiliary index in our
scheme, the procedure of index generation can be executed in parallel. Thus, the computa-
tional overhead of auxiliary index generation is of little impact. From Figure 7c,d, we can
conclude that our scheme is more efficient than that of [42]. The primary reason is that the
first layer index that the latter contains introduces the encrypted score for each keyword by
Order Preserving Encryption (OPE) to construct an auxiliary ScoreTable, which adds much
computational overhead.

Figure 7c presents the time cost of search for files in the document set. Here, we
set the search keyword number to be five as an example. We find that the time cost of
multi-keyword fuzzy search is in linear relationship with the size of the document files.
Moreover, from the comparison, the time cost of our scheme is less because the search
procedure in [42] includes additional operations relevant to ScoreTable.

Electronics 2024, 13, 1378 17 of 23

500 1000 1500 2000 2500 3000 3500 4000
log file number

100

200

300

400

500

in
de

x
ge

ne
ra
tio

n
tim

e
(s
)

Search+
RMFSSRQ

(a)

10 15 20 25 30 35 40 45 50
keyword number

0

200

400

600

800

1000

in
de

x
ge

ne
ra
tio

n
tim

e
(m

s)

Search+
RMFSSRQ

(b)

1000 1250 1500 1750 2000 2250 2500 2750 3000
log file number

0

200

400

600

800

1000

se
ar
ch

in
g
tim

e
(m

s)

Search+
RMFSSRQ

(c)

2 4 6 8 10 12 14
keyword number

0

20

40

60

80

100

pr
ec

isi
on

 ra
te
 (%

)

Search+
RMFSSRQ

(d)

0 5 10 15 20 25
highest-weighted keywords number

20

30

40

50

60

70

Ke
yw

or
ds

 in
 re

tu
rn

ed
 F

ile
s

%

Search+
RMFSSRQ

(e)

2 4 6 8 10 12 14
keyword number

0

20

40

60

80

100

re
ca
ll
ra
te
 (%

)

Search+
RMFSSRQ

(f)

Figure 7. Performance evaluation of Search+ (RMFSSRQ scheme in [42]). (a) Time of Index Generation
with Documents. (b) Time of Index Generation with Keywords. (c) Time of Keyword Search.
(d) Accuracy of Precision Rate. (e) Accuracy Percentage of Ranking. (f) Accuracy of Recall Rate.

Figure 7d,e,f presents the accuracy of search results from the aspect of precision rate,
ranking, and recall rate. As the accuracies of precision rate and recall rate are dependent
on the parameter of hash functions, which is common between our scheme and [42], the
precision rate and recall rate of two schemes are similar. Nevertheless, the result ranking
of our scheme is more accurate as we introduce the auxiliary index with more accurate
score value.

4.2. Performance of Log Correlation Analysis

As is shown in Section 3.2, each condition contains a vector of 28 dimensions. The di-
mension of the data is so high that it imposes a high computation burden on the computing
nodes and decreases system performance. To counter this, Dlog [20] reduces the dimension
through the use of the PCA algorithm, that is, it can reduce the 28-dimension vector to a
9-dimension vector, achieving a data compression ratio of 67.8%. However, it maintains
data fidelity above 90%. The effectiveness of this dimension reduction is demonstrated in
Table 5, which lists the top nine principal components identified by the PCA algorithm.

Table 5. Top Nine Principal Components.

Eigenvalues Contribution Rate Cumulative

2.73 15.4% 15.4%
2.55 14.8% 30.2%
2.26 13.2% 43.4%
1.94 10.6% 54.0%
1.52 9.8% 63.8%
1.27 8.5% 72.3%
1.01 7.9% 80.2%
0.83 7.4% 87.6%
0.75 5.1% 92.7%

In order to evaluate the performance of attack-related community detection, we use
F1-score to measure the accuracy of classification. The number of nodes correctly classified
as attack logs, the number of nodes incorrectly classified as attack logs, the number of

Electronics 2024, 13, 1378 18 of 23

nodes correctly classified as irrelevant logs, and the number of nodes incorrectly classified
as irrelevant logs are denoted as tp, f p, tn, f n, respectively. We define precision to represent
the proportion of nodes that are actually related to the attack among all predicted attack log
nodes. Recall refers to the proportion of the actual log nodes related to the attack that are
correctly divided into the attack log community. F1-score is the harmonic mean of precision
and recall. When precision and recall are both close to 1, F1-score is also closer to 1, that is,
the detection effect of the corresponding method is better.

precision =
tp

tp + f p

recall =
tp

tp + f n

F1 =
2× precision× recall

precision + recall

(14)

We present a performance comparison between our method and the Dlog and HER-
CULE methods in constructing a provenance graph to detect attack communities in
Figure 8. According to the simulation experiment performance comparison of 16 Cisco
router vulnerabilities in Figure 8, it can be seen that the accuracy of CrptAC in constructing
the provenance graph is generally higher than that of the HERCULE method and the Dlog
method in all eight simulation experiments, and the detection results are relatively more
stable and reliable. The most striking result is for the detection of CVE-2018-0171, where
the F1-score of CrptAC is 10% higher than that of HERCULE and 12% higher than that of
Dlog. This is a significant improvement in the accuracy of attack detection. In addition,
the CrptAC method does not show any outliers in any experiment except CVE-2020-3330,
which indicates that the CrptAC method has higher stability and can obtain more reliable
detection results.

(a) CVE-2018-0171 (b) CVE-2018-0150 (c) CVE-2019-1619 (d) CVE-2019-1653

(e) CVE-2019-1663 (f) CVE-2020-3144 (g) CVE-2020-3323 (h) CVE-2020-3452

Figure 8. Performance of CrptAC, HERCULE, and Dlog on attack-related community detection.

We show a box plot of F1-score for CrptAC, HERCULE and Dlog in Figure 9. This
visualizes the distribution of F1-score for the three methods. Based on the box lengths,
it can be seen that both CrptAC and HERCULE have smaller F1-score fluctuations, but
CrptAC has a higher median and average line; thus, CrptAC has higher accuracy in the
process of malicious community detection. By observing the outliers in the box plot, we
can see that CrptAC rarely has outliers beyond the quartiles, while both HERCULE and
Dlog have more, which indicates that our method is more stable than HERCULE and Dlog.

We show the provenance graph in Figure 10. The red elements represent the malicious
community related to the attack, while the black elements represent the benign community

Electronics 2024, 13, 1378 19 of 23

unrelated to the attack. By analyzing the malicious communities, we can identify the
attack chain.

a b c d e f g h
0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

F
1
-
s
c
o
r
e

 CrptAC
 HERCULE
 Dlog
 Median
 Average
 Outliers

Figure 9. F1-score distribution for CrptAC, HERCULE, and Dlog in detecting malicious communities.
Labels a-h denote the communities evaluated.

(a) CVE-2018-0171 (b) CVE-2018-0150 (c) CVE-2019-1619 (d) CVE-2019-1653

(e) CVE-2019-1663 (f) CVE-2020-3144 (g) CVE-2020-3323 (h) CVE-2020-3452

Figure 10. Distribution of malicious communities from log analysis, highlighting red for attack-
related and black for benign communities, aiding in attack chain identification.

4.3. Performance with Respect to Finding the Attack Chain

In CrptAC, we employ the Fast Linear SVM algorithm for data processing to avoid
computation of all the dimensions and cluster them under the same condition to transform
the high-dimensional vector into a label. As a result, LCS can be obtained without directly
involving the high-dimensional data. As Figure 11 shows, the approaches can perform
well with the plaintext log, but the time cost with the encrypted log is almost five times the
former. The results indicate that CrptAC can greatly decrease the time cost in finding the
attack chain, whereas the time complexity of LCS is O(n2). The factor of n2 is reduced from
0.13 (0.13x2 + 3.7x + 137.03) to 0.00594 (0.00594x2 − 0.031x + 101.51).

Electronics 2024, 13, 1378 20 of 23

(a) Time cost with plaintext log (b) Time cost with encrypted log

Figure 11. Time Cost Comparison.

The accuracy with respect to finding the attack chain (i.e., Equation (15)) is also
compared. In Figure 12, the highest accuracy comes from the approach that utilizes the
original high-dimensional data as it preserves the most information about the events. PCA
can obtain an accuracy rate of 53% on average while causing data loss and data confusion
during the condition comparison. CrptAC can achieve a higher accuracy rate than PCA,
approaching that of the original data. The training of the Fast Linear SVM incurs an average
loss of 92.4% accuracy. Overall, CrptAC can achieve better results in terms of time cost
without compromising too much on accuracy.

Accuracy =
Correct chain f inding number

Total chain f inding number
(15)

1 4 7 10 13 16 19 22
0

0.2

0.4

0.6

0.8

1

Number of Log (*10
4
)

A
c
c
u

ra
c
y
 R

a
te

Original

PCA

CrptAC

Figure 12. Attack chain finding accuracy comparison

4.4. Performance with Respect to Extracting the Event’s Log Sequences

With the determination of condition sequences before an attack, it becomes essential
to associate the event with the condition based on knowledge of the log sequences for the
specific event. Upon detecting an attack, the syslogs can be referenced directly without
computing multiple source logs. For a specific condition of n sampling, the divide and
conquer approach is employed to identify the LCS. The recursive tree has lg n + 1 layers.
The cost of each layer is denoted by cn, and the total cost of the entire tree is cn lg n + cn.

We compare CrptAC with Dlog, which employs the log tree to extract templates for
events, unlike the approach presented in this paper. The time complexity of Dlog that
we fit is 0.14n2 + 4.349, obtained by traversing the log tree, as depicted by the red line in
Figure 13a. The time cost of CrptAC, with a time complexity of 0.69n lg n + 1.3n + 4.39,
is represented by the green line. As the input attack chain increases, CrptAC consumes
less time when the chain exceeds 45. When processing extensive historical data, it yields
satisfactory results in seeking log sequences of events.

Electronics 2024, 13, 1378 21 of 23

(a) Time cost of finding the event’s log sequences (b) Precision and recall of attack prediction

Figure 13. Time Cost Comparison.

4.5. Performance with Respect to Predicting the Attack

There are four types of attacks (shown in Table 4) initiates in a cloud computing
platform consisting of Windows hosts, Cisco routers, and Cisco firewalls. The history data
are used for attack chain discovery, while the syslogs are directly inspected to detect the
previous steps of the attack. Figure 13b illustrates the worst performance in predicting
Turla. This implies that the attacker employs multiple vulnerability toolkits in the first step,
leading to various forms of conditions and syslogs in the system. In the case of different
attack modes, regular steps can be employed for predicting the attack. With regard to the
other three attacks, relatively fixed regular steps can be found before the attack and sound
results obtained for their predication.

5. Conclusions

In this article, we introduce an approach, CrptAC, designed to automatically correlate
multiple source logs and reconstruct attack chains in a secure manner. In our proposal, we
search related log entries in encrypted logs according to keywords gained from an attack
event even if the CSP is malicious. Then, we use a weighted graph to analyze the relations
among events and further delete irrelevant logs. As our experimental results show, CrptAC
can detect the attack steps of different injected threats and improve the speed from 0.13n2

to 0.00594n2 compared to approaches in the literature. CrptAC can also help the system
prevent the attack proactively. In our future work, we intend to break the bottleneck of
the deciphering process, and we will carry out all steps contained in the approach on the
encrypted data and preserve the privacy of the users on the cloud.

Author Contributions: Conceptualization, W.L. and T.L.; methodology, W.L. and T.L.; software, W.L.
and T.L.; validation, W.L. and J.Z.; formal analysis, W.L., T.L. and J.Z.; investigation, W.L. and T.L.;
resources, J.M. and H.Y.; data curation, J.M. and Y.X.; writing—original draft preparation, W.L. and
T.L.; writing—review and editing, W.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is funded by the National Key Research and Development Program of China
(2022YFB3103500), National Natural Science Foundation of China under Grant (No. 62272370, No.
U21A20464), the Fundamental Research Funds for the Central Universities (QTZX23071, XJSJ23183),
Young Elite Scientists Sponsorship Program by CAST (2022QNRC001), the China 111Project (No.
B16037), the Qinchuangyuan Scientist + Engineer Team Program of Shaanxi (No. 2024QCY-KXJ-149),
and Science Basic Research Program of Shaanxi (Program No. 2024JC-YBMS-544).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Yongcai Xiao was employed by the company State Grid Jiangxi Electric
Power Research Institute. The author declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronics 2024, 13, 1378 22 of 23

The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. Zhang, K.; Shi, Y.; Karnouskos, S.; Sauter, T.; Fang, H.; Colombo, A.W. Advancements in industrial cyber-physical systems:

An overview and perspectives. IEEE Trans. Ind. Inform. 2022, 19, 716–729. [CrossRef]
2. Rahman, Z.; Yi, X.; Khalil, I. Blockchain based AI-enabled Industry 4.0 CPS Protection against Advanced Persistent Threat. IEEE

Internet Things J. 2022, 10, 6769–6778. [CrossRef]
3. Xiong, C.; Zhu, T.; Dong, W.; Ruan, L.; Yang, R.; Chen, Y.; Cheng, Y.; Cheng, S.; Chen, X. CONAN: A Practical Real-time APT

Detection System with High Accuracy and Efficiency. IEEE Trans. Dependable Secur. Comput. 2020, 19, 551–565. [CrossRef]
4. Hassan, W.U.; Bates, A.; Marino, D. Tactical Provenance Analysis for Endpoint Detection and Response Systems. In Proceedings

of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020.
5. Wang, J.; Yin, X.; Ning, J.; Xu, S.; Xu, G.; Huang, X. Secure Updatable Storage Access Control System for EHRs in the Cloud. IEEE

Trans. Serv. Comput. 2022, 16, 2939–2953. [CrossRef]
6. Yu, L.; Ma, S.; Zhang, Z.; Tao, G.; Zhang, X.; Xu, D.; Urias, V.E.; Lin, H.W.; Ciocarlie, G.; Yegneswaran, V.; et al. ALchemist: Fusing

Application and Audit Logs for Precise Attack Provenance without Instrumentation. In Proceedings of the 2021 Network and
Distributed System Security Symposium, Virtually, 21–25 February 2021.

7. Li, T.; Ma, J.; Shen, Y.; Pei, Q. Anomalies Detection and Proactive Defence of Routers Based on Multiple Information Learning.
Entropy 2019, 21, 734. [CrossRef]

8. Hassan, W.U.; Noureddine, M.A.; Datta, P.; Bates, A. Omega-Log: High-Fidelity Attack Investigation via Transparent Multi-Layer Log
Analysis; NDSS: San Diego, CA, USA, 2020.

9. Pei, K.; Gu, Z.; Saltaformaggio, B.; Ma, S.; Wang, F.; Zhang, Z.; Si, L.; Zhang, X.; Xu, D. Hercule: Attack story reconstruction via
community discovery on correlated log graph. In Proceedings of the Computer Security Applications, Los Angeles, CA, USA,
5–8 December 2016; pp. 583–595.

10. Kwon, Y.; Wang, F.; Wang, W.; Lee, K.H.; Lee, W.C.; Ma, S.; Zhang, X.; Xu, D.; Jha, S.; Ciocarlie, G.; et al. Mci: Modeling-
based causality inference in audit logging for attack investigation. In Proceedings of the NDSS, San Diego, CA, USA,
18–21 February 2018.

11. Irshad, H.; Ciocarlie, G.; Gehani, A.; Yegneswaran, V.; Lee, K.H.; Patel, J.; Jha, S.; Kwon, Y.; Xu, D.; Zhang, X. TRACE:
Enterprise-Wide Provenance Tracking for Real-Time APT Detection. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4363–4376.
[CrossRef]

12. Song, D.X.; Wagner, D.; Perrig, A. Practical techniques for searches on encrypted data. In Proceedings of the 2000 IEEE
Symposium on Security and Privacy, S&P 2000, Berkeley, CA, USA, 14–17 May 2000; pp. 44–55.

13. Wang, B.; Yu, S.; Lou, W.; Hou, Y.T. Privacy-preserving multi-keyword fuzzy search over encrypted data in the cloud. In
Proceedings of the INFOCOM, Toronto, ON, Canada, 27 April–2 May 2014; pp. 2112–2120.

14. Zengy, J.; Wang, X.; Liu, J.; Chen, Y.; Liang, Z.; Chua, T.S.; Chua, Z.L. Shadewatcher: Recommendation-guided cyber threat
analysis using system audit records. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 22–26 May 2022; pp. 489–506.

15. Li, Z.; Chen, Q.A.; Yang, R.; Chen, Y.; Ruan, W. Threat detection and investigation with system-level provenance graphs: A survey.
Comput. Secur. 2021, 106, 102282. [CrossRef]

16. Kimura, T.; Ishibashi, K.; Mori, T.; Sawada, H.; Toyono, T.; Nishimatsu, K.; Watanabe, A.; Shimoda, A.; Shiomoto, K. Spatio-
temporal factorization of log data for understanding network events. In Proceedings of the INFOCOM, Toronto, ON, Canada,
27 April–2 May 2014; pp. 610–618.

17. Kavousi, M.; Yang, R.; Ma, S.; Chen, Y. SemFlow: Accurate Semantic Identification from Low-Level System Data. In Proceedings of
the Security and Privacy in Communication Networks; Garcia-Alfaro, J., Li, S., Poovendran, R., Debar, H., Yung, M., Eds.; Springer
International Publishing: Berlin/Heidelberg, Germany, 2021.

18. Du, M.; Li, F.; Zheng, G.; Srikumar, V. DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning. In
Proceedings of the CCS, Dallas, TX, USA, 30 October–3 November 2017; pp. 1285–1298.

19. Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.K.; Makaya, C.; He, T.; Chan, K. When edge meets learning: Adaptive control for
resource-constrained distributed machine learning. In Proceedings of the INFOCOM, Honolulu, HI, USA, 16–19 April 2018;
pp. 63–71.

20. Li, T.; Ma, J.; Sun, C. Dlog: Diagnosing router events with syslogs for anomaly detection. J. Supercomput. 2018, 74, 845–867.
[CrossRef]

21. Li, T.; Ma, J.; Pei, Q.; Shen, Y.; Lin, C.; Ma, S.; Obaidat, M.S. AClog: Attack Chain Construction Based on Log Correlation. In
Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December2019;
pp. 1–6.

22. Hassan, W.U.; Lemay, M.; Aguse, N.; Bates, A.; Moyer, T. Towards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs. In Proceedings of the NDSS; Internet Society: San Diego, CA, USA, 2018.

23. Zhu, T.; Wang, J.; Ruan, L.; Xiong, C.; Yu, J.; Li, Y.; Chen, Y.; Lv, M.; Chen, T. General, Efficient, and Real-Time Data Compaction
Strategy for APT Forensic Analysis. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3312–3325. [CrossRef]

http://doi.org/10.1109/TII.2022.3199481
http://dx.doi.org/10.1109/JIOT.2022.3147186
http://dx.doi.org/10.1109/TDSC.2020.2971484
http://dx.doi.org/10.1109/TSC.2022.3232230
http://dx.doi.org/10.3390/e21080734
http://dx.doi.org/10.1109/TIFS.2021.3098977
http://dx.doi.org/10.1016/j.cose.2021.102282
http://dx.doi.org/10.1007/s11227-017-2165-9
http://dx.doi.org/10.1109/TIFS.2021.3076288

Electronics 2024, 13, 1378 23 of 23

24. Zou, Q.; Singhal, A.; Sun, X.; Liu, P. Automatic Recognition of Advanced Persistent Threat Tactics for Enterprise Security. In
Proceedings of the Sixth International Workshop on Security and Privacy Analytics, New Orleans, LA, USA, 18 March 2020.

25. Yang, J.; Zhang, Q.; Jiang, X.; Chen, S.; Yang, F. Poirot: Causal Correlation Aided Semantic Analysis for Advanced Persistent
Threat Detection. IEEE Trans. Dependable Secur. Comput. 2021, 19, 3546–3563. [CrossRef]

26. Gui, J.; Li, D.; Chen, Z.; Rhee, J.; Xiao, X.; Zhang, M.; Jee, K.; Li, Z.; Chen, H. APTrace: A Responsive System for Agile Enterprise
Level Causality Analysis. In Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX,
USA, 20–24 April 2020.

27. Fukuda, K. On the use of weighted syslog time series for anomaly detection. In Proceedings of the 12th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2011) and Workshops, Dublin, Ireland, 23–27 May 2011; pp. 393–398.

28. Hu, E.; Fu, A.; Zhang, Z.; Zhang, L.; Guo, Y.; Liu, Y. ACTracker: A Fast and Efficient Attack Investigation Method Based on Event
Causality. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Vancouver, BC, Canada, 10–13 May 2021.

29. Chuah, E.; Kuo, S.h.; Hiew, P.; Tjhi, W.C.; Lee, G.; Hammond, J.; Michalewicz, M.T.; Hung, T.; Browne, J.C. Diagnosing the
root-causes of failures from cluster log files. In Proceedings of the 2010 International Conference on High Performance Computing,
Goa, India, 19–22 December 2010; pp. 1–10.

30. Barre, M.; Gehani, A.; Yegneswaran, V. Mining data provenance to detect advanced persistent threats. In Proceedings of the 11th
International Workshop on Theory and Practice of Provenance (TaPP 2019), Philadelphia, PA, USA, 3 June 2019.

31. Li, Z.; Cheng, X.; Sun, L.; Zhang, J.; Chen, B. A Hierarchical Approach for Advanced Persistent Threat Detection with Attention-
Based Graph Neural Networks. Secur. Commun. Netw. 2021, 2021, 9961342. [CrossRef]

32. Kamara, S.; Papamanthou, C.; Roeder, T. Dynamic searchable symmetric encryption. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, Raleigh North, CA, USA, 16–18 October 2012; pp. 965–976.

33. Kim, K.S.; Kim, M.; Lee, D.; Park, J.H.; Kim, W.H. Forward secure dynamic searchable symmetric encryption with efficient
updates. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA,
30 October–3 November 2017; pp. 1449–1463.

34. Bost, R.; Minaud, B.; Ohrimenko, O. Forward and backward private searchable encryption from constrained cryptographic
primitives. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA,
30 October–3 November 2017; pp. 1465–1482.

35. Wang, C.; Cao, N.; Ren, K.; Lou, W. Enabling secure and efficient ranked keyword search over outsourced cloud data. IEEE Trans.
Parallel Distrib. Syst. 2011, 23, 1467–1479. [CrossRef]

36. Cao, N.; Wang, C.; Li, M.; Ren, K.; Lou, W. Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE
Trans. Parallel Distrib. Syst. 2013, 25, 222–233. [CrossRef]

37. Bloom, B.H. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 1970, 13, 422–426. [CrossRef]
38. Yuan, J.; Tian, Y. Practical privacy-preserving mapreduce based k-means clustering over large-scale dataset. IEEE Trans. Cloud

Comput. 2017, 7, 568–579. [CrossRef]
39. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory

Exp. 2008, 10008. [CrossRef]
40. Ozaki, N.; Tezuka, H.; Inaba, M. A simple acceleration method for the Louvain algorithm. J. Comput. Electr. Eng. 2016, 8, 207.

[CrossRef]
41. Traag, V.A.; Waltman, L.; Van Eck, N.J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 2019,

9, 5233. [CrossRef] [PubMed]
42. Wang, J.; Yu, X.; Zhao, M. Privacy-preserving ranked multi-keyword fuzzy search on cloud encrypted data supporting range

query. Arab. J. Sci. Eng. 2015, 40, 2375–2388. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TDSC.2021.3101649
http://dx.doi.org/10.1155/2021/9961342
http://dx.doi.org/10.1109/TPDS.2011.282
http://dx.doi.org/10.1109/TPDS.2013.45
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1109/TCC.2017.2656895
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.17706/IJCEE.2016.8.3.207-218
http://dx.doi.org/10.1038/s41598-019-41695-z
http://www.ncbi.nlm.nih.gov/pubmed/30914743
http://dx.doi.org/10.1007/s13369-015-1737-3

	Introduction
	Related Work
	System Model
	Fuzzy Multi-Keyword Symmetric Searchable Encryption
	Notations and Preliminaries
	Search+ Model
	Threat Model
	Design Goals
	Construction
	Security Analysis

	Plaintext Data Preprocessing
	Log Correlation Analysis
	Attack Chain Construction
	Event Analysis

	Performance Evaluation
	Performance of Search+
	Performance of Log Correlation Analysis
	Performance with Respect to Finding the Attack Chain
	Performance with Respect to Extracting the Event's Log Sequences
	Performance with Respect to Predicting the Attack

	Conclusions
	References

