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Abstract: Along with the popularity of mobile Internet and smart applications, more and more
high-dimensional sensor data have appeared, and these high-dimensional sensor data have hidden
information about system performance degradation, system failure, etc., and how to mine them
to obtain such information is a very difficult problem. This challenge can be solved by anomaly
detection techniques, which is an important field of research in data mining, especially in the domains
of network security, credit card fraud detection, industrial fault identification, etc. However, there are
many difficulties in anomaly detection in multivariate time-series data, including poor accuracy, fast
data generation, lack of labeled data, and how to capture information between sensors. To address
these issues, we present a mutual information and graph embedding based anomaly detection
algorithm in multivariate time series, called MGAD (mutual information and graph embedding
based anomaly detection). The MGAD algorithm consists of four steps: (1) Embedding of sensor data,
where heterogeneous sensor data become different vectors in the same vector space; (2) Constructing
a relationship graph between sensors using their mutual information about each other; (3) Learning
the relationship graph between sensors using a graph attention mechanism, to predict the sensor data
at the next moment; (4) Compare the predicted values with the real sensor data to detect potential
outliers. Our contributions are as follows: (1) we propose an unsupervised outlier detection called
MGAD with a high interpretability and accuracy; (2) massive experiments on benchmark datasets
have demonstrated the superior performance of the MGAD algorithm, compared with state-of-the-art
baselines in terms of ROC, F1, and AP.

Keywords: mutual information; graph embedding; anomaly detection; multivariate time series

1. Introduction

As mobile Internet usage grows and IoT applications expand, more sensors are being
incorporated into industrial systems, data centers, automobiles, and other infrastructure.
Continuous monitoring and control of the devices and sensors is crucial for the upkeep
and operation of Internet of Things applications to safeguard the regular functioning of
the devices or applications. This is particularly true for vital infrastructure such as power
grids, water supply systems, piped gas, heating, etc.

For instance, heating, ventilation, and air conditioning (HVAC) systems result in
considerable energy waste and production-related energy consumption. A report indicates
that the HVAC system is quickly overtaking other building service systems in terms of
energy use. Consequently, it has been difficult to quickly and precisely identify anomalous
HVAC system functioning patterns resulting in energy squandering.

Various sensors may be found in each of the various components of a water treatment
plant, monitoring things like water level, flow rates, water quality, valve condition, and
more. Complex, nonlinear relationships may be formed between the data from various
sensors. For instance, opening a valve might alter the pressure and flow rate, which can
then trigger other changes as automated systems react to the altered conditions.
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A wireless sensor network’s reliance on manual monitoring is unrealistic due to the
excessive number of sensors and the increasingly complex relationships between them.
Instead, anomaly detection, a type of data mining technology, must be applied to the
sensor-generated data series to identify potential anomalies in time, perform necessary
equipment overhauls, and ultimately guarantee the sensor network’s normal operation.

The process of identifying the outliers from normal values is called anomaly detection,
sometimes referred to as outlier detection or novelty detection. According to Hawking, “an
outlier is an observation which deviates so much from the other observations as to arouse
suspicions that it was generated by a different mechanism” [1].

Outlier detection has been an important field of research of concern to industry and
academia. By identifying outliers, researchers can obtain vital knowledge that assists
in making better decisions or avoiding risks. Thus, outlier detection is widely used in
many fields, such as fraud detection [2–6], intelligent transportation [7–10], video content
analysis and detection [11–13], network intrusion detection and IoT security [14–20], data
generation [21,22], and social media analysis [23–26].

The main contributions of our study are listed below.

(1) We propose an unsupervised outlier detection called MGAD with a high interpretabil-
ity and accuracy. It innovatively combines the information of the sensors themselves
with the mutual information between the sensors, which avoids the problem that
previous multivariate time series anomaly detection for sensors either only considers
the information of the sensors themselves or the information between the sensors,
and thus improves the accuracy of the algorithm;

(2) Massive experiments on benchmark datasets have demonstrated the superior perfor-
mance of the MGAD algorithm, compared with state-of-the-art baselines in terms of
ROC, F1, and AP;

(3) In this paper, mutual information is used to assess the closeness of the relationship
between sensors rather than utilizing correlation coefficients, Euclidean distances, or
cosine distances, etc., which will give academics something useful to explore.

The rest of this paper is organized as follows. Section 2 discusses the related work
of this paper. In Section 3, we explain our anomaly detection algorithm in detail. The
experiments and results are discussed in Section 4. Finally, Section 5 presents the findings,
contributions, limitations, and future work.

2. Related Work
2.1. Anomaly Detection in Multivariate Time Series

The goal of anomaly detection research [27–29], which has been extensively explored
across several domains (such as network security, time series, graphs, etc.), is to identify
the situations in which one observation substantially deviates from the other observations
in the same dataset.

Our initial research presented ISOD (interpretable single-dimension outlier detection),
an unsupervised outlier detection technique with good interpretability and scalability that
is based on quantiles and skewness coefficients [30]. However, ISOD targets static data and
is not very applicable to multivariate time series data.

In multivariate time series anomaly detection, long short-term memory and autoen-
coders (LSTM-AEs) have been widely employed [31–33]. These approaches’ primary goal
is to extract robust features from time series based on long short-term memory (LSTM) to
learn typical patterns. Subsequently, an encoder and decoder are used to recreate the data
using the acquired normal patterns. The divergence between the reconstructed and origi-
nal data allows for the detection of anomalous patterns. LSTM-NDT [34] uses LSTM for
multivariate time series prediction and then uses the prediction error to identify spacecraft
anomalies. Using an LSTM-based encoder–decoder model, EncDnc-AE [35] reconstructs
normal data and uses reconstruction errors to identify anomalies to extract latent patterns
from multi-sensor time series.
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These LSTM-based anomaly detection algorithms have some drawbacks. First of all,
its calibration might be difficult and time-consuming as it needs a lot of data inputs and
processing resources. Second, it can be hard to maximize the performance of LSTMs since
they include a lot of parameters that are frequently hard to limit or check. Thirdly, although
LSTMs can preserve the sequential temporal sequence of inputs, they could have trouble
picking up long-term dependencies.

2.2. Graph Embedding

Graph mining has gained popularity because graphs may represent intricate data
structures. Graph embedding is a fundamental technique in graph mining that maps a
graph into a vector space, where each graph is represented by an embedding vector, to
learn the latent representation of a graph. Grover [36] proposed Node2vec, which is based
on the random walk. Using a random walk, Node2vec first converts the graph structure
into a sentence structure. Every graph in the sentence corresponds to a word. Next, the
skip-gram is used to embed the word. Perozzi et al. [37] suggested using a random walk
in the graph embedding method to mine the hidden representation and retrieve local
information. Furthermore, graph embedding has been used for several tasks. For instance,
object tracking can be implemented by combining the Bayesian inference framework with
graph embedding [38].

Its efficacy in modeling multi-relational data in recommender systems and natural
language processing has also been confirmed [39]. On the other hand, the time series data
are continuously changing, while the inputs to these models are static graphs. In order to
overcome this difficulty, a graph representation learning technique has been developed
that embeds the dynamic graph. Yuxuan Gu et al. used graph embedding techniques for
anomaly detection in HVAC systems [40].

These graph embedding-based anomaly detection algorithms, while preserving poten-
tial relationships between nodes, do not have a way to capture long-term dependencies
between nodes’ historical data, which is really what LSTMs are good at.

Therefore, this paper tries to combine an LSTM with graph embedding, which on one
hand can extract the complex potential relationships between nodes, and on the other hand
can also mine the dependencies between nodes’ historical data.

2.3. Graph Neural Network

Graph neural networks (GNNs) are widely used in research to identify anomalies in
multivariate time data [41]. In order to discover anomalous periods through prediction
and reconstruction, gated recurrent units are utilized to record patterns in the time series,
while graph attention networks are utilized to learn correlations across multivariate time
series [42]. The LUNAR anomaly detection technique, which is based on GNNs, was
proposed by Goodge et al. [43]. LUNAR aggregates vertex domain information to detect
abnormalities and adds learnability to anomaly detection using GNNs.

The impact of correlation between time series is not taken into account in the afore-
mentioned anomaly detection techniques, which learn normal patterns using LSTM and
reconstruct them to calculate residuals. To collect the domain information of vertices and
disregard the global information of the graph, approaches based on GNNs take into account
attention mechanisms and convolution.

R-GCN [44] is a type of graph neural network (GNN) that can deal with structured data
from time series and is proposed to analyze transactions in a blockchain-based platform
using the stochastic gradient boosting (SGB) technique.

A novel detection and multi-classification vision-based approach for IoT-malware
is proposed [45]. Rather than starting from scratch with training models, this strategy
leverages the advantages of the deep transfer learning methodology and combines several
ensembling strategies and a fine-tuning method to improve detection and classification
performance.
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GNNs can perform relatively good feature extraction on data in Euclidean space, as
CNNs have performed with success in image recognition. But the relationships between
nodes in graph data, which are in non-Euclidean space, are far more complex than the
relationships between pixel points of an image. Therefore, the GCN technique, a graph
neural network, has been invented to mine the complex relationships between images. This
is an important technical basis of this paper.

3. Proposed Algorithm
3.1. Problem Statement

In our study, the training data consist of sensor data (a kind of multivariate time
series) from N sensors over Ttrain time ticks. The training sensors’ data are indicated as
S = [s1, s2, · · · , sN ]N×Ttrain

∈ RN×Ttrain which is used to train our proposed algorithm. At
each time t, the sensor data are st = {s1t, s2t, · · · sNt}. Similarly, the test dataset is denoted
as being derived from N sensors over Ttest time ticks. This algorithm finally outputs a
binary value: if it is 1, it means that there is an anomaly at that time tick; if it is 0, that
moment is normal.

In the context of data mining, unsupervised algorithms generally train the algorithms
using a training dataset that consists entirely of normal data, so we default to a dataset
S that is entirely normal data. Correspondingly, the test dataset T will contain a small
amount of abnormal data. Our goal in training the algorithm using the training dataset is
to find as many potentially abnormal data as possible in the test dataset.

3.2. Algorithm Overview

The MGAD algorithm consists of four steps:

(1) Embedding of sensor data, where heterogeneous sensor data become different vec-
tors in the same vector space; it employs embedding vectors to obtain the unique
characteristics of each sensor.

(2) Constructing a relationship graph between sensors using their mutual information
about each other;

(3) Learning the relationship graph between sensors using a graph attention mechanism,
to predict the sensor data at the next moment;

(4) Comparing the predicted values with the real sensor data to detect potential outliers.

The above four steps are shown in Figure 1. In Section 4, we compared the performance
of the MGAD algorithm with eight other benchmark algorithms on four public datasets,
using F1, AP, and ROC for performance evaluation. We use 70% of the dataset for training
and 30% for testing.

3.3. Sensors Embedding

Distinct sensors can have highly distinct properties in numerous sensor data contexts,
and these differences might be intricately tied to one another. In agricultural IoT applica-
tions, for example, it is often necessary to take temperature and humidity data. Temperature
and humidity at the same location are strongly correlated with each other, while comparing
temperature data from different locations often does not make much sense.

Therefore, we would like to use a flexible approach to capture potential relationships
in multivariate sensor data. In addition, different sensors do not have the same range
of values, discrete or continuous values, and units, so we will use sensor embedding
techniques to turn each sensor’s data into a vector in the same vector space to represent
their relationships with each other.

vi ∈ Rd, i ∈ {1, 2, · · · N} (1)

In the experimental part of this paper, we will use Deepwalk [37] for graph embedding.
After being randomly initialized, these embedding vectors are trained with the rest of the
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model, as shown in Equation (1). In Equation (1), vi is the vector obtained after embedding
and d is the dimension of the vector.

These embedding vectors will be used in two ways in our algorithm MGAD: (1) to
learn the relationships between sensors in our structure, and (2) to execute attention over
neighbors in our attention mechanism in a way that supports heterogeneous effects for
various kinds of sensors.

As a result, sensors with similar embedding values should be highly likely to be
associated with one another. The similarity between these embeddings thus suggests a
similarity of behaviors.
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3.4. Mutual Information Graph Construction

The advantage of this algorithm is that not only the data from the sensors themselves
but also the information between the sensors are used to detect anomalies. We will use
a graph to accomplish this, where the nodes stand in for sensors and the edges for the
dependencies between them, which is mutual information in this scenario.

According to the definition of mutual information, mutual information is symmetric,
which means the mutual information is the same for both vertices. However, for the
convenience of computation and saving computational resources, we only keep the first half
of the large mutual information, as shown in Equation (2). In contrast, mutual information
can be obtained by using the equations in Section 2.2.

Aij =

{
MIij, when MIij in the top N

2 of the neighbors of sensor i
0, elswise

(2)

Since the dependency patterns between sensors do not have to be symmetric, we
employ a directed graph. This directed graph is represented by an adjacency matrix A,
where Aij represents the presence of a directed edge from sensor i to sensor j. In Equation
(2), MIij is the mutual information between node i and node j.

We end up with a mutual information graph as shown in Equation (3). In Equation
(3), V is the set of vertices and E is the set of edges between vertices.

G = (E, V)
V = {vi} i ∈ {1, 2, · · · N}
E =

{
Aij

}
i, j ∈ {1, 2, · · · N}

(3)

3.5. Graph Structure Learning

We employ a forecasting-based strategy in which, using historical data, we project
each sensor’s anticipated behavior at any given time. This makes it simple for the user to
identify the sensors that significantly deviate from their expected behavior. Additionally,
each sensor’s expected and observed behavior can be compared by the user to help them
understand why the model considers a particular sensor to be anomalous.

3.5.1. Input Layer

We define the input of the proposed algorithm, as shown in Equation (4). x(t) is the
input vector consisting of the data from N sensors at moment t.

x(t) =
[
vij

]
N×w ∈ RN×w (4)

3.5.2. Hidden Layer

We use a graph attention-based feature extractor to fuse a node’s information with
its neighbors based on the learned graph structure, thereby capturing the relationships
between sensors.

Our feature extractor incorporates the sensor embedding vectors vi, which characterize
the various behaviors of different types of sensors, unlike existing graph attention mecha-
nisms. We calculate the aggregated representation zi of node i, as shown in Equation (5).

z(t)i = ReLU(γi,iWx(t)i + ∑
j∈N(i)

γi,jWx(t)j ) while N(i) =
{

j
∣∣Aij > 0

}
γi,j =

exp(χ(i,j))
∑k∈N(i)∪{i} exp(χ(i,k))

χ(i, j) = LeakyReLU(a × (g(t)i ⊕ g(t)j ))

g(t)i = vi ⊕ Wx(t)i

(5)

We use LeakyReLU as the nonlinear activation to compute the attention coefficient
and normalize the attention coefficients using the softmax function.



Electronics 2024, 13, 1326 7 of 15

In Equation (5), ⊕ means concatenation, which is a trainable weight matrix that applies
a shared linear transformation to every node. x(t)i is sensor i’s input feature. vi can obtained
from Equation (1). a is a vector of learned coefficients for the attention mechanism, and γij
is the attention coefficient between node i and its neighbour node j.

3.5.3. Output Layer

From the above feature extractor, we obtain representations for all N nodes,{
z(t)1 , z(t)2 , · · · , z(t)N

}
. For each z(t)i , to predict the vector of sensor values at time step t + 1,

we element-wise multiply (denoted as ×) it with the corresponding time series embedding
and use the results across all nodes as the input of stacked fully-connected layers.

The model’s predicted output is denoted as ˆs(t), as shown in Equation (6).

ˆs(t) = fθ(v1 × z(t)1 , v2 × z(t)2 , · · · , vN × z(t)N ) (6)

We use the mean squared error between the predicted output ˆs(t) and the observed
data s(t), as the loss function for minimization; in order for the algorithm to be more general,
we used the mean square error as the loss function, as shown in Equation (7).

LMSE =
1

Ttrain

Ttrain

∑
t=w+1

∥∥∥ ˆs(t) − s(t)
∥∥∥2

2

(7)

3.6. Anomaly Scoring

Our goal is to identify and explain anomalies that deviate from the learned relation-
ships. As we will demonstrate in our experiments, our model achieves this by computing
the unique anomalousness scores for each sensor and combining them into a single anoma-
lousness score for each time tick. This enables the user to localize which sensors are
anomalous.

The process of calculating the anomaly score is shown in Equation (8).

Γi(t) =

∣∣∣∣s(t)i − ˆ
s(t)i

∣∣∣∣−minvi

maxvi−minvi
, i ∈ [t = w + 1, Ttrain]

O(t) = max
i∈{1,2,··· ,N}

Γi(t)
(8)

maxvi, minvi is the max value and min value of sensor i in the current time window.
In Equation (8), Γi(t) is the anomaly score of sensor i in time tick t. Among the anomaly
scores of N sensors, the maximum value is taken to obtain the final anomaly score.

3.7. Pseudocode of MGAD

Finally, we give the pseudocode of the MGAD algorithm as Algorithm 1.

3.8. Time Complexity Analysis

The third step in the MGAD algorithm is the most time consuming and we fo-
cus on the time complexity of the third step. In the third step (Section 3.5), graph
structure learning leads to O(∑D

l=1 M2
l ·K

2
l ·Cl−1·Cl) time complexity. Thus, MGAD has

O(∑D
l=1 M2

l ·K
2
l ·Cl−1·Cl) time complexity. D is the number of convolutional layers that a

neural network has, i.e., the depth of the network.
Compared with the benchmark algorithms used in the experiments in Section 5, the

time complexity of the MGAD algorithm is higher than that of KNN, PCA, OCSVM, and
AE, because the MGAD algorithm is an anomaly detection algorithm based on graph
convolutional neural networks. The time complexity of the MGAD algorithm is close to
that of the LSTM-VAE, DAGMM, AnoGAN, and MAD-GAN. These algorithms are neural
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network-based algorithms and their time complexity is determined by the depth of the
neural network.

Algorithm 1 MGAD

Input: input data x(t) =
[
vij

]
N×w

∈ RN×w

Output: Outlier scores {o1, o2, . . . , oi, . . . , oN}
1. sensors embedding to obtain the embedding vector for each sensor

vi ∈ Rd, i ∈ {1, 2, · · · N}
2. mutual information graph construction

Aij =

{
MIij, when MIij in the top N

2 of the neighbors of sensor i
0, elswise

G = (E, V)
E = {vi} i ∈ {1, 2, · · · N}
V =

{
Aij

}
i, j ∈ {1, 2, · · · N}

3. for i in max epoch number:
carry out graph structure learning

(1) input layer x(t) =
[
vij

]
N×w

∈ RN×w

(2) hidden layer

z(t)i = ReLU(γi,iWx(t)i + ∑
j∈N(i)

γi,jWx(t)j ) while N(i) =
{

j
∣∣∣Aij > 0

}
γi,j =

exp(χ(i,j))
∑k∈N(i)∪{i} exp(χ(i,k))

χ(i, j) = LeakyReLU(a × (g(t)i ⊕ g(t)j ))

g(t)i = vi ⊕ Wx(t)i
(3) output layer

ˆs(t) = fθ(v1 × z(t)1 , v2 × z(t)2 , · · · , vN × z(t)N )

LMSE = 1
Ttrain

Ttrain

∑
t=w+1

∥∥∥ ˆs(t) − s(t)
∥∥∥2

2
4. end for
5. obtain the anomaly score

Γi(t) =

∣∣∣∣s(t)i − ˆs(t)i

∣∣∣∣−minvi

maxvi−minvi
, i ∈ [t = w + 1, Ttrain]

O(t) = max
i∈{1,2,··· ,N}

Γi(t)

6. return {o1, o2, . . . , oi, . . . , oN}

4. Experimental Results and Discussion

This section outlines the experimental dataset, baselines, and evaluation metrics used
in the assessment of the proposed algorithm. We also give a detailed discussion about the
experimental results.

4.1. Datasets

Four real-world datasets of varying sizes and types were used in a series of compara-
tive experiments that we ran to confirm the efficacy of the proposed algorithm. They came
from a variety of domains. Information about these real-world datasets, including number
of data, number of feature, and percentage of anomaly, is shown in Table 1.

Table 1. Information of real-world datasets.

Dataset Number of Data Number of Feature Percentage of
Anomaly

SWaT 92,501 51 11.97%
WADI 136,070 127 5.99%

Credit-g 284,807 31 4.59%
GECCO IoT 248,535 11 8.52%
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(1) The Secure Water Treatment (SWaT) dataset comes from a water treatment test bed
coordinated by Singapore’s Public Utility Board [46] (https://itrust.sutd.edu.sg/
itrust-labs_datasets/dataset_info/ accessed on 5 January 2024);

(2) Water Distribution (WADI), which is an extension of SwaT, is a distribution system
comprising a larger number of water distribution pipelines [47] (https://itrust.sutd.
edu.sg/itrust-labs_datasets/dataset_info/ accessed on 5 January 2024);

(3) Credit-g contains credit card transaction data [48] (https://www.openml.org/d/1597
accessed on 5 January 2024);

(4) The GECCO IoT dataset contains IoT data for drinking water monitoring and was
provided by Thüringer Fernwasserversorgung and the IMProvT research project [49]
(https://www.spotseven.de/gecco/gecco-challenge/gecco-challenge-2018/ accessed
on 5 January 2024).

SwaT, WADI, and Credit-g are time series data, which contain point-wise outliers.
GECCO IoT contains event-driven sequential data, which contain point-wise outliers.

4.2. Baselines

We compared the performance of the MGAD algorithm with eight state-of-the-art
outlier detection algorithms, including statistical approaches, machine-learning approaches,
and neural network-based methods. These eight outlier detection algorithms are as follows:

(1) KNN: K nearest neighbors generates an anomaly score based on the distance between
each point and its kth nearest neighbor [50];

(2) OCSVM is trained using normal data to identify the limits of normal and abnormal
data [51];

(3) PCA: Principal component analysis discovers a low-dimensional projection that
largely accounts for the data’s variance. The reconstruction error of this projection is
called the anomaly score [52];

(4) AE: Autoencoders comprise a decoder and an encoder that rebuilds data samples.
The anomaly score is the reconstruction error [27].

(5) LSTM-VAE: This algorithm combines LSTM and VAE by substituting the feed-forward
network in a VAE with LSTM. The anomaly score is the reconstruction error [53];

(6) DAGMM: This algorithm combine deep Autoencoders with a Gaussian mixture model
to generate a low-dimensional representation, and reconstruction error is the anomaly
score [54];

(7) AnoGAN: This algorithm uses a deep convolutional generative adversarial network
to learn a manifold of normal anatomical variability, accompanying a novel anomaly
scoring scheme based on the mapping from image space to a latent space [55];

(8) MAD-GAN: After training a GAN model on normal data, each sample’s anomaly
score is calculated using the reconstruction-based method and the LSTM-RNN dis-
criminator [56].

4.3. Evaluation Metrics
4.3.1. ROC (Receiver Operating Characteristic)

The receiver operating characteristic (ROC) curve is an important tool often utilized in
assessing the effectiveness of binary classification algorithms. Unlike many other metrics
that provide single values, the ROC curve offers a graphical representation of a classifier’s
performance. A higher ROC value closer to 1 signifies a more accurate detection model. In
contrast, an ROC value equal to or lower than 0.5 indicates the futility of the inspection
model for practical use.

4.3.2. F1-Score

To assess the effectiveness of the proposed algorithm and baselines, we employ the
F1-score (F1) over the test dataset. Equation (9) shows the calculation process of F1-score.

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://www.openml.org/d/1597
https://www.spotseven.de/gecco/gecco-challenge/gecco-challenge-2018/
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In Equation (9), TP, TN, FP, and FN are the numbers of true positives, true negatives, false
positives, and false negatives.

F1 =
2 × Prec × Rec

Prec × Rec
, while Prec =

TP
TP + FP

and Rec =
TP

TP + FN
(9)

Because the datasets used in our experiments are imbalanced, the metric of the F1-
score was chosen because it works well with unbalanced data. We set the threshold for
anomaly detection using the maximum anomaly score across the training dataset. An
anomaly score above the threshold at the test time will be considered abnormal.

4.3.3. AP (Average Precision)

Evaluating outlier detection models can be challenging, particularly in the absence
of labeled data or ground truth data for comparison. One approach to assessing the per-
formance of outlier detection models is by utilizing the average precision (AP). The AP
calculates the average precision across all potential thresholds, with a higher AP value indi-
cating a superior model. This metric is particularly effective for outlier detection scenarios
with rare anomalies or imbalanced data, as it prioritizes the positive class (anomalies) over
the negative class (normal instances).

Nonetheless, the AP may not provide a comprehensive reflection of the model’s
accuracy or specificity, as it fails to consider true negatives or false negatives. Another
method for evaluating outlier detection models is through external validation, which
entails comparing the outcomes with alternative sources of information, such as input from
domain experts, feedback, or historical data.

4.4. Experimental Setup

In subsequent experiments, we will use a Windows PC equipped with an AMD Ryzen
7 5800H CPU and 16 GB of memory. We implement the proposed algorithm and baselines
in PyTorch version 1.7.1, CUDA 9.2.

In the dataset used for experiments, 70% of the data are used as a training dataset
and 30% as a test dataset. The models are trained using the Adam optimizer to speed up
the training process. We train models for up to 100 epochs and use early stopping with a
patience of 10. The learning rate is set to 0.001, the epoch is set to 3000, and the embedding
dimension is set to 16.

4.5. Experiment Result and Discussion

In this section, we give the experimental results of MGAD for the datasets in Tables 2–4.
The highest score is marked in bold, which means that the algorithm achieves the best
performance for this dataset.

Table 2. ROC scores of outlier detector performance.

Algorithm SWaT WADI Credit-g GECCO IoT Average
ROC

KNN 0.880 0.928 0.871 0.891 0.892
OCSVM 0.981 0.605 0.765 0.620 0.743

PCA 0.640 0.803 0.680 0.893 0.754
AE 0.677 0.880 0.717 0.910 0.796

LSTM-VAE 0.602 0.645 0.644 0.699 0.648
DAGMM 0.609 0.891 0.736 0.679 0.729
AnoGAN 0.964 0.891 0.813 0.704 0.843

MAD-GAN 0.834 0.730 0.956 0.851 0.843
MGAD 0.988 0.939 0.867 0.897 0.923
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Table 3. F1-scores of outlier detector performance.

Algorithm SWaT WADI Credit-g GECCO IoT Average F1

KNN 0.736 0.683 0.747 0.834 0.750
OCSVM 0.677 0.661 0.835 0.782 0.739

PCA 0.656 0.757 0.83 0.7 0.736
AE 0.833 0.664 0.825 0.762 0.771

LSTM-VAE 0.668 0.777 0.707 0.723 0.719
DAGMM 0.780 0.725 0.719 0.791 0.754
AnoGAN 0.678 0.658 0.692 0.65 0.670

MAD-GAN 0.698 0.692 0.655 0.739 0.696
MGAD 0.822 0.841 0.832 0.822 0.829

Table 4. AP of outlier detector performance.

Algorithm SWaT WADI Credit-g GECCO IoT Average AP

KNN 0.673 0.911 0.780 0.858 0.806
OCSVM 0.588 0.721 0.913 0.651 0.718

PCA 0.947 0.899 0.572 0.64 0.765
AE 0.935 0.859 0.674 0.724 0.798

LSTM-VAE 0.687 0.651 0.883 0.72 0.735
DAGMM 0.566 0.646 0.819 0.565 0.649
AnoGAN 0.700 0.749 0.766 0.893 0.777

MAD-GAN 0.875 0.804 0.829 0.751 0.815
MGAD 0.966 0.889 0.886 0.883 0.906

As can be seen from Table 2 and Figure 2, the MGAD algorithm achieved the best
performance on the SWaT and WADI datasets, the third best performance on the Credit-g
dataset, and the second best performance on the GECCO IoT dataset. Lastly, the MGAD
algorithm had the highest average ROC.
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From Table 3 and Figure 3, the MGAD algorithm achieves the second best performance
on the SWaT dataset, the best performance on the WADI dataset, and the second best
performance on both the Credit-g dataset and the GECCO IoT dataset.
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MGAD also has the highest average AP, which can be seen from the data in Table 4
and Figure 4. In all four datasets, MGAD’s algorithm is either the optimal or the front
runner in terms of performance.
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With an average ROC of 0.923, an average F1-score of 0.829, and an average accuracy
of 0.906, the proposed MGAD achieves the best performance. It is noteworthy that, by ana-
lyzing the data in Tables 2–4, the MGAD algorithm does not achieve the best performance
in every dataset, but it is a relatively high-level performance, if not the first, which can be
seen in Figures 2–4.

5. Conclusions

In this paper, we present a novel unsupervised outlier detection algorithm based on
mutual information and graph embedding called MGAD. MGAD can be mainly divided
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into four phases: (1) Embedding of sensor data; (2) Constructing a relationship graph
between sensors using their mutual information about each other; (3) Learning the rela-
tionship graph between sensors using a graph attention mechanism; (4) Comparing the
predicted values with the real sensor data to detect potential outliers.

The experimental results in Section 4 show that the MGAD algorithm has a strong
detection performance along with a high interpretability. The MGAD algorithm is an
anomaly detection algorithm based on graph convolutional neural networks, and thus
requires a large amount of data to train the model, which costs a lot of computational
resources and training time. In addition, in some sensor applications, the transmission
channel reliability of the data is not high, which leads to the presence of noise in the data,
which can also bring negative effects on the training of the MGAD algorithm. These are
further future research directions for MGAD algorithms.
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