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Abstract: This paper presents a novel adaptive reconfigurable rectifier architecture for radio frequency
energy harvesting (RFEH); in addition, a new metric for high-efficiency dynamic range (DR) is
proposed. The presented rectifier architecture is based on a double-sided diode-feedback cross-
coupled differential-drive rectifier (CCDR) structure incorporating self-body bias for reconfigurable
operation. An adaptive structure based on a Schmitt trigger is proposed to adaptively switch the
rectifier connection without auxiliary voltage (Vaux), with two rectifier stages in parallel at low power
and in series at high power. The system is simulated at a 180 nm CMOS process and the results show
more than 17 dB DR at 900 MHz, with efficiency higher than 50% at a 100 kΩ load.

Keywords: RFEH; rectifier; adaptive controller; wide dynamic range

1. Introduction

The rapid development of the Internet of Things (IoT) has led to the massive de-
ployment of IoT low-power nodes such as smart home equipment, wearable devices, and
medical implantable products. The conventional way of powering these nodes using bat-
teries has obvious drawbacks of unsustainability, environmental pollution, and volume
occupation. Therefore, finding a more suitable way of powering these nodes has become an
issue that needs to be solved urgently [1–6]. Passive IoT provides a solution for this which
is able to harvest energy from the environment to feed low-power sensors in a wireless
sensor network in order to achieve self-powered nodes without batteries [7–11]. RF energy
is one of the accessible environmental energy sources and has the advantage of having been
widely used in RFID, a case of passive IoT [12–15]. Secondly, it is ubiquitous in the real en-
vironment and can be harvested everywhere, which greatly broadens the application range
of sensor nodes. However, due to the low energy density of RF energy itself, coupled with
the energy attenuation and disparity of distribution caused by obstacles like mountains,
buildings, etc., RFEH is faced with the problem of poor quality and inconsistency of the
energy source, which puts high demands on the power conversion efficiency (PCE) and
DR of the RFEH system. At the same time, these two points become the main challenges of
RFEH [16,17].

The RFEH block diagram is shown in Figure 1. The purpose of the impedance match-
ing network is to match the input impedance of the rectifier to the antenna impedance
for maximum power transfer. The rectifier is the critical module in the RFEH system and
the DC–DC converts the low output voltage of the rectifier into a usable voltage for the
sensor. There are two types of basic structures for the rectifier: CCDR and Dickson rectifier.
CCDRs were proposed in [18], the highest PCE can be up to 80%, but they have a small
DR; the Dickson rectifier [19], compared to the CCDR, is more suitable for the acquisition
of the high-input-power range, the low input power under the Dickson structure is not
advantageous [20]. As there are complementary properties of the two structures, it has been
the focus of many studies to build wide-range energy harvesting systems by combining
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the characteristics of the two structures. A. Choo et al. utilized a structure combining the
CCDR and Dickson topologies to improve the DR performance of the rectifier in [21,22],
yet the disadvantage was that the design required Vaux, which greatly limited the applica-
tion scenarios of the system, regardless of whether the Vaux came from batteries or other
ambient energy sources, thus leaving the system without passive operation. A. Choo et al.,
in [23], proposed another structure that adaptively selects the CCDR or Dickson structure
at the last stage, achieving a DR of 21 dB at an efficiency above 20% and a 79.9% peak
PCE without the need for an external power supply; however, this structure has a smaller
DR at high efficiency. D. Khan et al. used two identical rectifiers for switching, with the
same disadvantage of requiring Vaux [24]. In addition to the strategy of combining the two
structures to improve DR, M. H. Ouda et al. and A. S. Almansouri et al. proposed the use
of CCDR-based resistor feedback [20] and diode feedback [25], respectively, to improve
DR, which not only improves the efficiency at high power, but also possesses an excellent
efficiency performance, similar to the CCDR at low power, with no external power supply
involved. Furthermore, S. M. Noghabaei et al. used dynamic and static compensation
techniques to reduce the transistor threshold voltage to improve the rectifier performance,
but only achieved 42.4% efficiency at a 450 kΩ load [26]. In addition, the use of the body
biasing technique also reduces the losses during RF–DC operation, and thus, improves the
PCE and DR. In [27], Amin Khalili Moghaddam et al. describe the principle of body biasing
in detail and use the outputs of the CCDR structure as the voltage of the body bias for
inter-stage biasing to achieve the rectification efficiency improvement. The RF–DC circuit
in [28] is also based on the CCDR structure for body biasing, but unlike in [27], the body
bias voltage used in [28] is derived from the single-stage circuit itself. Yan Li et al. also use
body biasing to achieve PCE improvement in [29], but with a narrower DR.
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Figure 1. Block diagram of RFEH system energy conversion.

In this paper, an adaptive reconfigurable RFEH rectifier based on an improved CCDR
structure is proposed, in which the fundamental module utilizes diode-feedback and self-
body-biasing techniques to simultaneously improve the DR and PCE performance. In
addition, the adaptive technique is utilized to automatically switch the rectifier connection
to obtain wide DR under passive conditions. The principle of the proposed architecture is
explained in Section 2, the simulation results are given in Section 3 for comparison with the
literature, and the conclusions are presented in Section 4.

2. Proposed RF Energy Harvester Architecture
2.1. System Design

In order to broaden the application scenarios of the RF energy harvester so that it
can receive a wide range of input power, and thus, increase the energy obtained by the
load, the DR at high power is extended by using an architecture with two rectifiers in
parallel at low power and in series at high power, taking advantage of the fact that the
peak efficiency shifts to high power when two rectifiers are connected in series [24]. The
purpose of the system is to obtain high DR at high efficiency, which requires better PCE
and DR performance for both parallel and series paths. A diode-feedback CCDR structure
incorporating the self-body-biasing technique is proposed as a single-stage rectifier to
improve the PCE and DR at low input power. Finally, to get rid of Vaux to enable the system
to operate independently, an adaptive control circuit is proposed to automatically adjust
the rectifier connection according to the output. Figure 2 illustrates the block diagram of the
RF harvester in this paper, including the impedance matching network, two single-stage
rectifiers, three transmission gate switches for switching paths, and an adaptive control
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circuit, which enables adaptive switching between two states of two-stage rectifiers in
series for high input power and two-stage rectifiers in parallel for low input power.
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2.2. Single-Stage Rectifier Structure

Figure 3 shows the conventional CCDR and diode-feedback CCDR. The CCDR struc-
ture is characterized by a high peak PCE, and it is shown in Ref. [18] that the peak PCE
of the CCDR can reach greater than 80% at 953 MHz and 100 kΩ load, but the DR is very
small. This characteristic of CCDR is due to the two cross-coupled pairs of MOSFET, used
to reduce or increase the on-resistance according to the direction of the input voltage to
increase the PCE, which will greatly improve the efficiency at low power inputs; however,
at high power, this structure will cause a large leakage current, resulting in a reduction in
the PCE at high power, and thus, the DR is not large. For example, when the positive-cycle
MP1 and MN2 are on, and MP2 and MN1 are off, the negative voltage at RF− will reduce the
on-resistance of MP1 and increase the on-resistance of MN1, and the positive voltage at RF+
will reduce the on-resistance of MN2 and increase the on-resistance of MP2. The final effect
is to reduce the on-resistance of the positive conduction path and increase the on-resistance
of the off-path, which results in a significant reduction in operating losses and an increase
in PCE. However, when the input is high power, Vout,rect rises, and when the difference
between Vout,rect and the MP1 gate is greater than |Vthp1| to turn MP1 on, MP1 reverses
conduction to generate leakage current. This reverse leakage current in the CCDR structure
greatly limits the circuit’s PCE at high power inputs and limits the value of DR.
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CCDR was compared with diode-feedback CCDR in [25], which showed that the
diode-feedback structure can greatly extend the DR of the rectifier without significantly
reducing the peak PCE. The main idea of diode feedback is to use the diode-bias voltage
applied to the PMOS gate to reduce the leakage current at high power, and thus, increase
the PCE at high power to improve the DR. When in low-power conditions, the diode cuts off
and the rectifier operates in the conventional CCDR mode, which guarantees a higher PCE
at low-power conditions. When the diode conducts at high power, as shown in Figure 3a,
the voltage difference between the source and gate that determines the magnitude of the
leakage current in the conventional structure is Vout,rect −

(
Vout,rect

2 − VRF
2

)
=

Vout,rect
2 + VRF

2 in

MP1, for example, while in Figure 3b this value is Vout,rect −
(

Vout,rect − VRF
2

)
= VRF

2 in the
diode-feedback structure, which significantly reduces the VSG at MP1 reverse conduction,
making the conditions for the generation of leakage current harsher, and significantly
reducing the power loss due to leakage current. The result is that there is no significant
drop in PCE at high voltage and the circuit can maintain high efficiency over a wider
DR range.

In order to improve the PCE at low power, the key is to reduce the loss in the current
path, which can be achieved by adjusting the threshold voltage (Vth) of the MOSFET. This
method is also known as the self-body-biasing technique [27–29]. The main principle is to
take advantage of the source–body voltage difference of NMOS and PMOS to reduce Vth
when the MOSFET is on, and to increase Vth when the MOSFET is off. The expressions for
Vth of NMOS and PMOS are shown in Equations (1) and (2).

Vthn = Vth0n + γ

(√
|2∅F|+ Vsb −

√
|2∅F|

)
(1)

Vthp = Vth0p − γ

(√
|2∅F| − Vsb −

√
|2∅F|

)
(2)

In this paper, the self-body-biasing technique is utilized on the basis of the diode-
feedback CCDR structure to improve the PCE of a single-stage RF–DC rectifier by super-
imposing bias voltages from the RF source at the bulk terminals of NMOS and PMOS,
respectively. As illustrated in Figure 4, when the MP1 and MN2 conduct in the positive
half-cycle, the negative voltage superimposed on the MP1 bulk terminal makes the voltage
difference between MP1 source and body (Vsbp1) increase, and according to Equation (2), it
is derived that Vthp1 increases, that is, |Vthp1| decreases, which is favorable for the MP1
to conduct, and the positive voltage superimposed on the MN2 bulk terminal makes Vsbn2
decrease, and then Vthn2 decreases, which reduces the resistance of the conduction path
in general, and improves the PCE. It is worth noting that the parasitic diode between the
PMOS source and bulk, shown by the dashed line in Figure 4, precisely serves to balance
the DC component of Vsb, so that the value of Vsb is only affected by the RF AC component,
which better assists the body effect in regulating Vth. In addition, this method of increasing
the PCE, and thus, DR of the rectifier circuit also does not require any external assistance,
as the bias voltage applied to the body terminal is derived from the RF input, so the circuit
achieves an increase in its PCE and DR without consuming external energy. The circuit size
is shown in Figure 4, the size of the MOSFET is derived from the iterative method, CC is
used as a flying capacitor, the value is generally around 500 fF, the role of CB is to couple the
energy from the RF side to the body of the MOSFET, simulation results show that a value
of 1 pF is sufficient to transmit RF energy. The size of the diode affects its threshold voltage;
a large threshold voltage will make the proposed diode-feedback with self-body-biasing
circuit more likely to behave as a CCDR structure, and iteration yields that the rectifier
output voltage is maximized when the diode size is chosen to be the smallest.
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In order to evaluate the performance of the proposed diode-feedback with self-body-
biasing structure more comprehensively, Figure 5 illustrates the graphs comparing the
efficiency of the structure with the diode feedback under 100 kΩ, 200 kΩ, and 50 kΩ
loads. From Figure 5, it can be seen that the efficiency of the proposed diode-feedback
with self-body-biasing structure is improved at all three loads. At a load of 100 kΩ, the
peak PCE moves from the original −17 dBm to −19 dBm, which is 2 dB in the direction
of low power, and the overall efficiency is generally improved by 5% to 10% under low-
power conditions, while there is no degradation of the efficiency at high power, which
significantly improves the DR performance. With a load of 200 kΩ, the peak PCE moves
from the original −18 dB to −20 dB, also moving 2 dB in the low power direction, with
an overall efficiency improvement of about 5% at low power, which also improves the DR
performance. At a load of 50 kΩ, the peak efficiency shifts from −14 dB to −16 dB, by
2 dB in the low-power direction, and the PCE improves by about 5% at low power and
slightly at high power. Comparison of the efficiency curves at the three loads shows that
the proposed diode-feedback with self-body-biasing structure significantly improves the
DR performance of the circuit and the DR improvement is more obvious at low power.
When the system is in the state of low-power two-stage rectifiers in parallel, this structure
can have the effect of promoting DR at low power, which is exactly what we want.

2.3. Adaptive Controller

The adaptive control circuit serves to automatically switch the connection of the
rectifier. It consists of two modules, a proposed adaptive structure based on a Schmitt
trigger and a non-overlap structure that prevents overlapping switching conduction.

The adaptive control of this system needs to achieve the function that when the system
output voltage reaches the switching voltage of the rectifier in parallel and series, there
should be a signal that jumps from 0 to 1 to supply the transmission gate to realize the
switching of the path. The Schmitt trigger can realize the function of detecting the input
voltage and output jumping when the threshold is reached. Figure 6 shows the proposed
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adaptive structure based on the Schmitt trigger, and a Schmitt trigger structure is shown
on the right-hand side. The output of the Schmitt trigger is conditioned to jump from 0
to 1 by M2 conduction, and the jump threshold is determined by the ratio of the sizes of
M1 to M5 [30]. In this system, the high-level voltage at the output of the trigger should be
the same as the voltage at the output of the system, so Vdd of the Schmitt trigger should
be charged by Vload. In this case, the relationship between Vin,schmitt at the output of the
Schmitt trigger jump and its decision parameter is as shown in Equation (3).

W1L5

L1W5
=

(
Vin,schmitt

Vload − Vin,schmitt − |Vth1|

)2
(3)
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It can be seen that to determine the value of Vin,schmitt, the relationship between Vload
and Vin,schmitt needs to be established. In addition, the signal to be detected in this system is
Vload, whereas in the original structure of the Schmitt trigger, the signal to be detected is the
input, but it is not possible to connect Vload directly to Vin,schmitt, which would prevent M2
from conducting and block the path to the output pull-up. As a result, based on the above
two perspectives, providing another pathway to correlate Vload with Vin,schmitt becomes an
indispensable design to realize the function of the system. The left voltage sensor part in
Figure 6 provides the relationship between Vload and Vin,schmitt in different cases, which
consists of resistor R and the diode connection of M7.

The objective of the system is that the output does not jump when Vload is low and
the output jumps when Vload is high. Equation (3) defines the threshold value of Vin,schmitt,
and the moment it is established occurs at the instant when M2 is about to turn on, so
the method of determining the relationship between Vload and Vin,schmitt when the output
jumps is feasible and intuitive by measuring the conditions under which M2 conducts. The
output is 0 when M2 does not conduct, and the output jumps to 1 when M2 conducts. The
condition for M2 to turn on is shown in Equation (4).

VX − Vin,schmitt = |Vth2| (4)

Since VX is less than Vload, M2 must not conduct when Vin,schmitt rises immedi-
ately after Vload, thus preventing Vout,schmitt from rising, which is realized by the sam-
pling resistor R in the voltage sensor. The relationship between Vload and Vin,schmitt is
Vin,schmitt = Vload − IR, when Vload is low, I changes slightly and Vin,schmitt rises imme-
diately after Vload. At this time, Vout,schmitt will not jump, instead, when Vin,schmitt rises
with Vload and exceeds the thresholds of M3 and M4, Vout,schmitt will be pulled to ground,
realizing the function of a Vout,schmitt level of 0 under low power. The final level of the
trigger output is 0, as shown in Figure 7, when the input is −20 dBm.
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To reduce the system power consumption, M7 is set to be in the subthreshold region
even when Vload reaches its highest value. When Vload and Vin,schmitt rise to the point that

M7 enters the subthreshold region, the state of M7 is ID7 = ID0
W
L e

Vgs7
ξVT . Due to the current

limitation, the voltage across M7 will be maintained at a stable value. Vin,schmitt no longer
rises with Vload, but is fixed by the voltage at the terminals of M7, which gives M2 a chance
to conduct, and thus, make the output rise. When Vload is higher than a certain value of
Vin,schmitt, so that Equation (4) is established, Vout,schmitt jumps, realizing the function of a
Vout,schmitt level of 1 under high power. As shown in Figure 7, when the input is −10 dBm,
the jump occurs at 0.5 µs, and after 0.5 µs the trigger output is the same as Vload with a
level of 1.

The proposed adaptive structure based on a Schmitt trigger can automatically detect
the value of Vload to realize that the output is 0 for low voltage and 1 for high voltage.
In this system, this trigger threshold is set to 1.2 V, which is the output voltage when
switching between the series and parallel structures, and can be determined by adjusting
the size of the transistors and resistor. This paper focuses on the procedure of the trigger
output jumping from 0 to 1, the jump threshold is mainly determined by M1,2,5, M7, and R.
The sizes of M3 and M4 affect the minimum input power of the system to start switching
between series and parallel, larger M3 and M4 sizes make it easier for the input power
to pass through, but M1–4 should not be set too large to ensure that the path from Vdd to
ground has a certain value of resistance without creating too much leakage. The M6 sizing
affects the drop threshold of the trigger, which does not need to be considered in this paper.
After iteration, the dimensionality diagram of the proposed adaptive structure based on
a Schmitt trigger is shown in Figure 6. The adaptive triggering of this module allows the
system to operate autonomously, free from external power sources.

As shown in Figure 8, in order to prevent current leakage due to simultaneous con-
duction of different switches at the switching moment, non-overlap structure is used to
control TR1, TR2, and TR3 in parallel and series paths, so that TR1 is switched individually
and TR2 and TR3 are switched at the same time, which reduces the current loss at the
switching moment.
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3. Simulation Results

The system operates at 900 MHz and a comparison of the simulation curves of the
proposed switching efficiency with those of the parallel and series circuits is shown schemat-
ically in Figure 9, from which it can be seen that the system achieves the ideal switching
effect. Due to the presence of control circuit losses, the switching power point is shifted to
the right to become −15 dBm, where the efficiency at the lowest point is 51%. In addition,
the proposed system shows superior DR performance. The system efficiency reaches 50%
at the −23 dBm input, so the power supplied to the output at this point is 2.5 µW, which
is four times the power that can be supplied at 20% efficiency in [23], and it is enough for
some low-power nodes to operate. For the loads to receive high enough power even at
low-power conditions, the system viability is, therefore, better reflected by the use of PCE
over 50% as an indicator of system DR.
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Because of the threshold limitations of M3 and M4 in the adaptive Schmitt trigger, the
system starts switching between series and parallel structures normally from −26 dBm
input: the two rectifiers are connected in parallel in the case of −26 dBm to −15 dBm input;
and the two rectifiers are connected in series in the case of the input power being greater
than −15 dBm. The proposed rectifier exhibits dual PCE peaks, reaching 64% PCE at
−19 dBm and 69% PCE at −11 dBm under 100 kΩ load at 900 MHz frequency. Meanwhile,
the efficiency is above 50% from −23 dBm to greater than −6 dBm, achieving an ultra-wide
DR of more than 17 dB. It is important to note that unlike the work in [21,22,24] the excellent
performance achieved by the proposed system is built on the basis that Vaux is not required,
which greatly broadens the application scenarios of the system. Table 1 lists a comparison
between the proposed system and the recently released CMOS RFEH rectifiers operating
in the GSM900 band. In terms of DR, the RF energy harvester proposed has a superior
bandwidth to all those proposed in the literature without the need of Vaux. The DR listed
from the comparative literature are all estimated from the figure. Since this paper focuses
on the improvement of DR performance and pays more attention to the expansion of the
system’s application range, the requirement of PCE is not strict. The single-stage structure
is then dedicated to DR improvement, and the proposed adaptive structure uses two-stage
switching technique to extend the DR of the system as well; therefore, the peak PCE of
the system is not really high, and it can also be seen in Table 1 that the peak PCE is lower
than those reported in the literature [22,23,32,33], which is a trade-off. Nevertheless, the
double-peak PCE of more than 60% in this paper also shows some competitiveness.
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Table 1. Performance comparison with previously published work.

CMOS
Technology Frequency Topology No. of

Stages
Output

Load Vaux Peak PCE DR (≥50%)

This Work ** 180 nm 900 M
Self-Biasing,

Double Sided,
Reconfigurable

1–2 100 kΩ No 64%@−19 dBm
69%@−11 dBm (−23~>−6) >17

MTT’18 [25] * 180 nm 900 M Self-Biasing,
Double Sided 1 100 kΩ No 66%@−18.5 dBm (−22.6~−15) 7.6

VLSI’22 [21] * 130 nm 900 M Dickson,
Reconfigurable 6–12 100 kΩ Yes 34.93%@−10 dBm --

TCAS-I’22 [26] * 130 nm 915 M
Cross-Coupled

Voltage
Compensation

10 450 kΩ No 42.4%@−16 dBm --

VLSI’23 [22] 130 nm 900 M Cross-Coupled
Dual Topology 3 100 kΩ Yes 78.4%@−16 dBm *

88%@−16.5 dBm **
(−19~−13.3) 5.7 *

(−19.5~−7.3) 12.2 **

TCAS-II’23 [23] * 65 nm 900 M
Cross-Coupled

Advanced Topology
Amalgamation

3 100 kΩ No 79.77%@−17.5 dBm (−22~−11.7) 10.3

AICSP’23 [32] ** 180 nm 920 M Body Control 1–3 100 kΩ No 71.2%@−15.6 dBm (−18~−12) 6

AICSP’24 [33] ** 180 nm 900 M
Diode-Feedback and

Feed-Forward
Rectifier

1 100 kΩ No 76.13%@−19 dBm (−24~−14) 10

* Measurement result; ** simulation result.

4. Conclusions

In this paper, a novel adaptive reconfigurable CMOS rectifier is presented, in addition,
a new DR metric capable of providing sufficient power to the load is proposed. The
proposed RF energy harvester does not require an external power supply, Vaux, to realize
the DR improvement. The DR of the single-stage rectifier is improved by using a diode-
feedback structure incorporating self-body bias as the base structure. The effect of switching
the rectifier connection mode while eliminating Vaux is achieved by utilizing the proposed
adaptive technique based on a Schmitt trigger structure. Simulation results show that the
first time the PCE exceeds 50% is at −23 dBm. A peak PCE of 64% is achieved at −19 dBm,
with the rectifiers connected in parallel at low power, and a 69% peak PCE is attained at
−11 dBm, with the rectifiers connected in series at high power. An efficiency of 58% is still
achievable up to −6 dBm, demonstrating the superior performance of this system. In order
to extend this paper, future work could configure the rectifier to other commonly used
frequency bands so that the RF–DC circuits can harvest energy from multiple frequency
bands to extend the range of the rectifier’s applications. In addition, the current multistage
switching circuits for harvesting are limited to a fixed detection voltage to switch the
number of stages; to make RF energy harvesting more practical, an adaptive harvesting
network for different loads is a promising direction.
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