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Abstract: In this paper, a distributed secure change control scheme for supply chain systems is
presented under denial-of-service (DoS) attacks. To eliminate the effect of DoS attacks on supply
chain systems, a secure change compensation is designed. A distributed policy iteration method
is established to approximate the coupled Hamilton–Jacobi–Isaacs (HJI) equations. Based on the
established reinforce–critic–actor (RCA) structure using reinforcement learning (RL), the reinforced
signals, performance indicators, and disturbance input are proposed to update the traditional time-
triggered mechanism, and the control input is proposed to update the dynamic event-triggered
mechanism (DETM). Stability is guaranteed based on the Lyapunov method under secure change
control. The simulation results for supply chain systems show the effectiveness of the secure change
control scheme and verify the results.

Keywords: denial-of-service (DoS) attacks; secure change control scheme; supply chain systems;
dynamic event-triggered mechanism (DETM); reinforcement learning (RL); reinforce–critic–actor (RCA)

1. Introduction

The production and manufacturing of enterprises are closely connected, thus forming a
multi-connected network supply chain system, which is usually a complex network system
composed of manufacturers, distributors, and retailers [1]. The control of the supply chain
production inventory system has always been an important task of enterprise management.
The supply chain production inventory system is designed by the traditional single-level
sub-chain system, but for large enterprises, the production inventory system is a network
system composed of multi-level sub-chains, which is more in line with the research on
modern supply chain systems. Therefore, multi-agent is widely used in research on supply
chain systems [2–4]. The control theory has been widely used in supply chain management.
In [5,6], the supply chain is controlled by synovial control. In [7], the dynamic supply
chain is designed via fuzzy robust control. In [8,9], the multi-agent supply chain is tracked
and controlled at a fixed time. In addition, distributed model predictive control has been
applied to supply chain inventory management [10,11]. However, the modern supply
chain inventory system is faced with many challenges, such as the difficulty in accurately
obtaining system dynamics information and accurately constructing system structure, etc.
Therefore, there is an urgent need to develop data-driven methods that rely only on data
instead of models. In addition, unexpected network attacks will seriously damage the
normal production operation of enterprises and damage the security of the system. How to
develop a security scheme to deal with major network events, and realizing the security
control of the supply chain production and inventory system is an important means to
prevent enterprises from suffering heavy economic losses.

From the perspective of control research on supply chain production inventory sys-
tems, firstly, based on the precise mathematical dynamics model of the system [12], all
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designs are based on the static mechanism model and [13] matrix inequalities are used to
optimize and solve the controller, but this method relies on the precise dynamics informa-
tion of the system. Secondly, with the rapid development of information technology, the
manufacturing industry is developing rapidly towards intelligent production and man-
ufacturing [14]. From the perspective of the agent, the inventory–production–modeling
integrated architecture of the supply chain system is presented in [15]. Intelligent manu-
facturing is composed of interconnected enterprises, machines, and human and physical
systems through the basic network of the industrial Internet. This enables comprehensive
sensing, dynamic transmission, and real-time analysis of industrial data and then intelligent
control and scientific decision-making to improve the efficient allocation of manufactur-
ing resources. During the operation of supply chain systems, a large amount of input
and process data are generated, which are recorded and kept by the system equipment
for the subsequent data-driven design [16]. The operation and execution of the current
large-scale intelligent industrial system and machinery and equipment ensure the smooth
circulation of the large-scale industrial Internet. The accurate transmission of the Internet
equipment determines the normal operation of the machine equipment, and the machine
equipment and the industrial Internet transmission information medium are usually con-
nected through the data; for large enterprises, the network structure is more complex, data
transmission is extremely large and dense, and the transmission equipment requirements
are higher. Therefore, determining how to save transmission data resources for enterprises
and reduce the pressure of communication load is an important problem to be solved in
the supply chain system, and it is also an important task of this study.

With the development of big data, artificial intelligence, and digital twins, modern
supply chain systems have become intelligent systems integrating production equipment,
robots, and the industrial Internet [17]. The intelligent system of a large-scale network
will be subject to unexpected external events, which will lead to supply chain disrup-
tion. Therefore, change control in the face of emergencies has become an important issue
in supply chain design. The authors of [18] developed a recovery control algorithm for
supply chain disruptions. For a non-linear supply chain system, in [19], faced with the
influence of demand disturbance and unexpected events, the feasible solution of the
Takagi–Sugeno fuzzy system is given by using linear matrix inequality. However, network
security events will lead to supply chain system transmission interruption; these security
events will directly attack the information data of the system and destroy the security oper-
ation of the whole supply chain system, resulting in major security accidents. Therefore,
the problem of security change control has been paid more and more attention by enter-
prises. It has become an important task of the inventory control of supply chain systems
to design security change plans for the system and ensure that the system can respond to
emergencies quickly and in a timely manner. At present, secure change control has been
widely explored and studied in the field of multi-agent. For aperiodic persistent network
attacks [20], an estimator is established to compensate for the state under network attacks,
and a double-ended event-triggered mechanism is proposed to ensure the consistency of
system security. A new adaptive dynamic event-triggered mechanism was proposed and
the maximum duration of a network attack was deduced to achieve security consensus
in [21]. Model-free adaptive control is applied to the secure control as an effective data-
driven method. For an aperiodic network attack, the compensation scheme under network
attack is given by [22]. For periodic network attacks, an emergency compensation scheme
was proposed at the time of network attacks and an observer was used to estimate the
output in [23]. Adaptive dynamic programming (ADP) has been widely developed and
studied for solving optimal controllers. RL has been utilized to tackle the optimal control
problem for multi-agent systems, such as tracking control [24,25]. After this, refs. [26,27]
both unitized event-triggered ADP to address optimal control problems. Although the
adaptive dynamic programming technique can be used to approach the optimal controller
in the above paper, the external disturbance is not considered enough. For the supply
chain system, the external uncertain demand is usually unknown, and it will gradually
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amplify along the reverse direction of the product side of the system, which is the bullwhip
effect. Therefore, weakening the adverse impact of the bullwhip effect on the supply chain
system has become another important task in the design of this system. Effective methods
to weaken the bullwhip effect are proposed in [28,29]. However, ADP is rarely applied
to the design of supply chain systems, and a large number of studies have found that the
dynamic event triggering method can reduce the communication load pressure and save
the communication load between supply chains. Therefore, we studied the supply chain
inventory control based on the combination of adaptive dynamic planning technology and
the dynamic event triggering mechanism.

The previous works focused on supply chain systems under DoS attacks can be used
to detect and mitigate the impact through Machine Learning (ML), Deep Learning (DL),
and reinforcement learning. In the attack detection for supply chain systems, leverage
evolutionary and DL approaches to detect cyber-attacks in a cloud-based Supply Chain
Management environment are proposed in [30]. A Machine Learning approach for network
anomaly detection and constructing data-driven models to detect distributed DoS attacks on
industry is presented in [31]. A federated learning-based efficient detection model named
DFF-SC4N is addressed in [32] to identify intrusions from supply chain 4.0 networks.
In the prediction detection for supply chain systems, Logistic Regression, Decision Tree,
Naïve Bayes, and Random Forest classification algorithms are considered to learn a dataset
for performance accuracies and threat predictions based on the CSC resilience design
principles in [33]. However, RL is the only ML technique that can learn without any dataset.
It is considered that supply chain systems only have initial permission or arbitrary data, so
secure control for supply chain systems can be achieved.

Inspired by the large amount of research mentioned above, we carried out the follow-
ing work. Firstly, the problem of the bullwhip effect caused by uncertain market demand
is considered, and the idea of a zero-sum differential game is introduced into the supply
chain system. Secondly, a goal-heuristic dynamic programming adaptive reinforcement
learning method combined with the dynamic event triggering mechanism is designed.
The dynamic event-triggering mechanism is then compared with a static event-triggering
scheme [34,35]. The dynamic triggering scheme is adopted to further reduce the number
of triggers. Finally, due to the packet loss caused by DoS attacks, an emergency com-
pensation scheme is designed to realize the security change control of the supply chain
systems, and a Lyapunov proof based on emergency compensation under DoS attacks is
given. The simulation results fully demonstrate the effectiveness of the proposed method.
The contributions of this paper are as follows:

(1) For the supply chain production inventory system, the production input and uncertain
demand are regarded as two sides of a zero-sum game. Based on the HJI equation,
the RCA network online learning structure is established.

(2) On this basis, a dynamic event-triggered mechanism is proposed, and appropriate
internal parameters of the dynamic event-triggered mechanism are selected to reduce
the number of iterations of the neural network, so as to realize the dynamic event
triggering tracking control of each sub-chain of the supply chain to the main chain.

(3) A secure change control scheme under DoS attack is proposed to ensure the normal
operation of the supply chain production inventory system. The simulation analysis
carried out proves that the proposed security change scheme can achieve effective
change control.

The structure of the rest of this paper is organized as follows. Section 2 provides some
preliminary knowledge. In Section 3, the dynamic event triggering mechanism and stability
analysis are given. The learning structure of the neural network is presented in Section 4,
the proposed method is verified by simulation, and Section 5 provides the summary and
future research direction of this paper.
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2. Preliminaries
2.1. Algebraic Graph Theory

In this paper, we consider a communication topology G = (V , E ,A) consisting of a
vertex set V = {v1, v2, · · · , vN}. E ∈ V × V is an edge set, which indicates that vi can
obtain state information directly from vj. A =

[
aij
]

is a weighted adjacency matrix with
element aij, aij > 0 if and only if

(
vi, vj

)
∈ E , and aij = 0 otherwise. The in-degree

matrix defines a diagonal matrix D = diag{d1, d2, · · · , dn} with di ∈ ∑
j∈Ni

aij, and the

Laplacian matrix L can be defined as L = D −A. The connected matrix of the leader is
defined as a diagonal matrix B = diag{b1, b2, · · · , bn} where bi > 0 if vi can receive the
information leader and bi = 0 otherwise.

2.2. Problem Formulation

We consider a supply chain system consisting of N subchains and a chain leader.
The dynamics are described as:{

xi(k + 1) = Axi(k) + Bui(k) + Dω̂i(k)
yi(k) = Cxi(k)

(1)

where i = 1, 2, · · · , N, xi(k) ∈ Rn is the production inventory status for the subchain
i at k. ui(k) ∈ Rn is the productivity for the subchain i at k. ω̂i ∈ Rn is the market
demand for subchain i at k, and di ∈ Rn is the constant market. The production inventory,
productivity, and market can be regarded as the state variable, the control input, and
external disturbances for control theory. A, B, and D represent the unknown system matrix.

The chain leader is the tracking target of the other subchains. The dynamics of the
chain leader are described as:

x0(k + 1) = Ax0(k) + Ddi (2)

where x0(k) ∈ Rn is the production inventory status for the chain leader at k.

Definition 1. The design goal of the supply chain production inventory system is to design a
distributed minimum control strategy ui(k) and maximum disturbance strategy ωi(k), so that the
inventory status of all subchains can follow the inventory status of the chain leader xi(0), that is:

lim
k→∞

∥xi(k)− x0(k)∥ = 0 (3)

Definition 2. For the supply chain production inventory system, there exists a bullwhip suppression
parameter, which makes the following bullwhip effect suppression conditions valid, that is:

∞

∑
k=0

eT
i (k)Qiiei(k) +

∞

∑
k=0

uT
i (k)Riiui(k) ≤ γ2

∞

∑
k=0

ωT
i (k)Tiiωi(k) (4)

Assumption 1. The directed communication topology contains a spanning tree with the root node.

Assumption 2. There exists a positive constant m such that:

∥ fi

(
ei(k), ui

(
ki

s

)
, ωi(k)

)
∥ ≤ m∥ei(k)∥+ m∥ϵi(k)∥ (5)

Lemma 1. ([24]). According to Assumption 1, L + B is a positive definite matrix (non-singular).
Then, the consensus error is bounded by:

∥ξ(k)∥ ≤ ∥e(k)∥/λmin(L + B) (6)
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where λmin(L + B) is the minimum singular value of (L + B).

The local neighborhood error of subchain i is defined as:

ei(k) = ∑
j∈Ni

aij
(

xi(k)− xj(k)
)
+ bi(xi(k)− x0(k)) (7)

The global consensus error vector is given by:

e(k) = ((L + B)⊗ In)(x(k)− x0(k)) (8)

where e(k) =
[
eT

1 (k), eT
2 (k), . . . , eT

N(k)
]T ∈ RNn, x(k) =

[
xT

1 (k), xT
2 (k), . . . , xT

N(k)
]T ∈ RNn,

x0(k) = (1 ⊗ In)x0(k) ∈ RNn.
Then, the global synchronization error vector is written as:

ξ(k) = x(k)− x0(k) (9)

where ξ(k) =
[
ξT

1 (k), ξT
2 (k), . . . , ξT

N(k)
]T ∈ RNn.

The dynamic of the local neighborhood error for subchain i is obtained as:

ei(k + 1) = Aei(k) + (di + bi)Bui(k)− ∑
j∈Ni

Buj(k)

+(di + bi)Dωi(k)−
N
∑

j=1
aijDωj(k)

= fi(ei(k), ui(k), ωi(k))

(10)

3. Results
3.1. The Secure Change Consensus Control Scheme

The purpose of DoS attacks is to decrease the supply chain systems’ performance
by blocking the useful information transmitted between the sensor and the controller.
DoS attacks cause packet dropouts in communication channels, resulting in production
equipment being unable to operate normally. The supply chain systems cannot be designed
according to the objective control scheme. The structure of the secure change control for
supply chain systems is shown in Figure 1. The data packets received by the controller can
be transformed into the following form:

ẽdi(k) = αi(k)ei(k) (11)

where αi(k) represents whether the DoS attacks are successful in the communication chan-
nels. If the DoS attacks are successful, αi(k) = 1; otherwise, αi(k) = 0. The probability of
DoS attacks conforms to a Bernoulli distribution, P{αi(k) = 1} = βi,P{αi(k) = 0} = 1− βi.

To eliminate the effects of DoS attacks, the secure change scheme is designed as:

ẽdi(k) = (1 − αi(k))ei(k) + αi(k)ei(k − 1) (12)

The internal dynamic variable θ̃di(k) under the secure change satisfies

θ̃di(k) = (1 − αi(k))θi(k) + αi(k)θi(k − 1) (13)

To improve the tracking performance of the supply chain system, the local internal
performance signals can be described as:

Pi(ei(k), ui(k), u−i(k), ωi(k), ω−i(k))

=
∞
∑

m=k
αm−kri(ei(m), ui(m), u−i(m), ωi(m), ω−i(m))

(14)
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where α ∈ (0, 1) is the discount factor, u−i(k) =
{

uj(k)|j ∈ Ni
}

is the control input of
the i subchain’s neighbors, and ω̂−i(k) =

{
ω̂j(k)|j ∈ Ni

}
is the disturbance input of the i

subchain’s neighbors. The external reinforcement signal is given by:

ri(ei(k), ui(k), u−i(k), ωi(k), ωi(k)) = eT
i (k)Qiiei(k) + uT

i (k)Riiui(k)
+ ∑

j∈Ni

uT
j (k)Rijuj(k)− γ2ωT

i (k)Tiiωi(k)

−γ2 ∑
j∈Ni

ωT
j (k)Tijωj(k)

(15)

where Rii > 0, Rij > 0, Tii > 0, Tij > 0 are all positive symmetric weighting matrices.
Then, the local performance function can be defined as:

Ji(ei(k), ui(k), u−i(k), ωi(k), ω−i(k)) =
∞
∑

l=k

{
eT

i (k)Qiiei(k) + uT
i (k)Riiui(k)

+ ∑
j∈Ni

uT
j (k)Rijuj(k)− γ2 ∑

j∈Ni

ωT
j (k)Tijωj(k)

−γ2ωT
i (k)Tiiωi(k)

} (16)
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Given the admissible control input ui and disturbance input ωi, we define the local
value function Vi(ei(k)) as:

Vi(ei(k)) =
∞

∑
t=k

ηt−kPi
(
ei(t), ui(t), u−i(t), ωi(t), ω−j(t)

)
(17)

where η ∈ (0, 1) is the discount factor.
According to Equation (16), the Bellman equation is given by:

Vi(ei(k)) = Pi(ui(k), u−i(k), ωi(k), ω−i(k)) + ηVi(ei(k + 1)) (18)
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Based on the Bellman optimality principle, the optimal value function V∗
i (ei(k)) of

subchain i satisfies the following HJI equation:

V∗
i (ei(k)) = min

ui
max

ωi

{
Pi(ei(k), ui(k), u−i(k), ωi(k), ω−i(k)) + ηV∗

i (ei(k + 1))
}

= max
ωi

min
ui

{
Pi(ei(k), ui(k), u−i(k), ωi(k), ω−i(k)) + ηV∗

i (ei(k + 1))
} (19)

where the local internal reinforcement signals can be rewritten as:

Pi(ei(k), ui(k), u−i(k), ωi(k), ω−i(k))
= ri(ei(k), ui(k), u−i(k), ωi(k), ω−i(k))
+αPi(ei(k + 1), ui(k + 1), u−i(k + 1), ωi(k + 1), ω−i(k + 1))

(20)

Then, the optimal control pair can be expressed as:

u∗
i (k) = argmin

ui

{Pi(ei(k), ui(k), u−i(k), ωi(k), ω−i(k)) + ηV∗
i (ei(k + 1))} (21)

ω∗
i (k) = argmax

ωi

{Pi(ei(k), ui(k), u−i(k), ωi(k), ω−i(k)) + ηV∗
i (ei(k + 1))} (22)

For subchain i, we denote
{

ki
s
}∞

s=0 as the incrementally triggering sequence.
The local neighbor error is rewritten by:

ei(k) = ei

(
ki

s

)
(23)

The control input of subchain i is rewritten by:

ui(k) = ui

(
ki

s

)
, k ∈

[
ki

s, ki
s+1

)
(24)

Then, we define the error variable ϵi(k) as:

ϵi(k) = ei

(
ki

s

)
− ei(k), k ∈

[
ki

s, ki
s+1

)
(25)

Once the event is triggered, ϵi(k) = 0.
According to the HJI equation under the dynamic event-triggered mechanism, the

optimal control pair can be rewritten as:

V∗
i (ei(k)) = min

ui
max

ωi

{
Pi
(
ei(k), ui

(
ki

s
)
, u−i(k), ωi(k), ω−i(k)

)
+ ηV∗

i (ei(k + 1))
}

= max
ωi

min
ui

{
Pi
(
ei(k), ui

(
ki

s
)
, u−i(k), ωi(k), ω−i(k)

)
+ ηV∗

i (ei(k + 1))
} (26)

The optimal control input under the dynamic event-triggered mechanism is rewritten as:

u∗
i (k) = argmin

ui

{
Pi

(
ei(k), ui

(
ki

s

)
, u−i(k), ωi(k), ω−i(k)

)
+ ηV∗

i (ei(k + 1))
}

(27)

The optimal disturbance input under the traditional time-triggered mechanism is
rewritten as:

ω∗
i (k) = argmax

ωi

{
Pi

(
ei(k), ui

(
ki

s

)
, u−i(k), ωi(k), ω−i(k)

)
+ ηV∗

i (ei(k + 1))
}

(28)

3.2. Stability Analysis

For subchain i, the dynamic event-triggered mechanism is given by:

2m2∥ϵi(k)∥2 ≤
(

1 − 2m2
)
∥ei(k)∥2 + ρiθi(k) (29)
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where 0 < ρi < 1, 0 < m <
√

2
2 , and θi(k) satisfy:

θi(k + 1) = (1 − λi)θi(k) + ξi

((
1 − 2m2

)
∥ei(k)∥2 −

(
2m2

)
∥ϵi(k)∥2

)
(30)

where 0 < (1 − ξi)ρi < λi < 1, 0 < ξi < 1.

Lemma 2. For the dynamic event-triggered mechanism, it satisfies:

θi(k) > 0 (31)

Proof of Lemma 2. According to (28) and (29), one has(
2m2

)
∥ϵi(k)∥2 −

(
1 − 2m2

)
∥ei(k)∥2 ≤ ρiθi(k) (32)

Based on (29), one has

θi(k + 1) ≥ (1 − λi − ξiρi)θi(k) ≥, . . . ,≥ (1 − λi − ξiρi)
k+1θi(0) ≥ (1 − ρi)

k+1θi(0) (33)

It is clear that θi(0) > 0, (1 − λi − ξiρi) > 0; therefore, θi(k) > 0. This completes
the proof. □

Theorem 1. Suppose that Assumption 1 and Assumption 2 hold. Supply chain systems (1) and (2)
could achieve secure change consensus under the dynamic event-triggered mechanisms (28) and
(29) under DoS attacks.

Proof of Theorem 1. In order to guarantee the stability of the designed systems, consider
the following Lyapunov function for k ∈

[
ki

s, ki
s+1
)

Li(k) = L1i(k) + L2i(k) (34)

where L1i(k) = ẽT
di(k)ẽdi(k), L2i(k) = θ̃di(k). □

(1) If DoS attacks do not occur at two continuous sampling times k and times k + 1, it is
assumed that αi(k) = αi(k + 1) = 0

The difference of L1i(k) can be calculated as follows:

∆L1i(k) = L1i(k + 1)− L1i(k)
= eT

i (k + 1)ei(k + 1)− eT
i (k)ei(k)

≤
(
∥ei(k + 1)∥2 − ∥ei(k)∥2

) (35)

According to Assumption 2 and the Cauchy–Schwarz inequality equation, one has

∆L1i(k) = L1i(k + 1)− L1i(k)
≤ ∥ei(k + 1)∥2 − ∥ei(k)∥2

≤ (m∥ei(k)∥+ m∥ϵi(k)∥)2 − ∥ei(k)∥2

≤ 2m2∥ei(k)∥2 + 2m2∥ϵi(k)∥2 − ∥ei(k)∥2

(36)

The difference of L2i(k) can be calculated as follows:

∆L2i(k) = L2i(k + 1)− L2i(k)
= θi(k + 1)− θi(k)
= −λiθi(k) + ξi

((
1 − 2m2)∥ei(k)∥2 −

(
2m2)∥ϵi(k)∥2

) (37)
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Then,

∆Li(k) = ∆L1i(k) + ∆L2i(k)
≤ (1 − ξi)

(
2m2∥ϵi(k)∥2 −

(
1 − 2m2)∥ei(k)∥2

)
− λiθi(k)

(38)

According to the dynamic event-triggered mechanism, it can be rewritten as:

∆Li(k) = ∆L1i(k) + ∆L2i(k)
≤ (1 − ξi)

(
2m2∥ϵi(k)∥2 −

(
1 − 2m2)∥ei(k)∥2

)
− λiθi(k)

≤ (1 − ξi)ρiθi(k)− λiθi(k)
≤ [(1 − ξi)ρi − λi]θi(k)
< 0

(39)

The secure consensus for the supply chain system is achieved.

(2) If DoS attacks occur at sampling time k and do not occur at sampling time k + 1, it is
assumed that αi(k) = 0, αi(k + 1) = 1.

The difference of L1i(k) can be calculated as follows:

∆L1i(k) = eT
di(k + 1)edi(k + 1)− eT

di(k)edi(k)
= eT

i (k)ei(k)− eT
i (k)ei(k)

= 0
(40)

The difference of ∆L2i(k) can be calculated as follows:

∆L2i(k) = θdi(k + 1)− θdi(k)
= θi(k)− θi(k)
= 0

(41)

The secure consensus for the supply chain systems is achieved.

(3) If DoS attacks do not occur at sampling time k and occur at sampling time k + 1, it is
assumed that αi(k) = 1, αi(k + 1) = 0. We discuss two situations in the next section.

When the triggering mechanisms are satisfied at k − 1, the difference of ∆L1i(k) can be
calculated as follows:

∆L1i(k) = eT
i (k + 1)eT

i (k + 1)− eT
i (k − 1)eT

i (k − 1)
≤ (m∥ei(k)∥+ m∥ϵi(k)∥)2 − ∥ei(k − 1)∥2

≤ 2m2∥ei(k)∥2 + 2m2∥ϵi(k)∥2 − ∥ei(k − 1)∥2

≤
(
2m2 − 1

)
∥ei(k)∥2 + 2m2∥ϵi(k)∥2 + ∥ei(k)∥2 − ∥ei(k − 1)∥2

≤
(
2m2 − 1

)
∥ei(k)∥2 + 2m2∥ϵi(k)∥2 +

(
2m2 − 1

)
∥ei(k − 1)∥2 + 2m2∥ϵi(k − 1)∥2

(42)

The difference of ∆L2i(k) can be calculated as follows:

∆L2i(k) = L2i(k + 1)− L2i(k)
= θi(k + 1)− θi(k − 1)
= θi(k + 1)− θi(k) + θi(k)− θi(k − 1)
= −λiθi(k) + ξi

((
1 − 2m2)∥e(k)∥2 −

(
2m2)∥ϵi(k)∥2

)
−λiθi(k − 1) + ξi

((
1 − 2m2)∥e(k − 1)∥2 −

(
2m2)∥ϵi(k − 1)∥2

)
= −λiθi(k) + ξi

((
1 − 2m2)∥ei(k)∥2 −

(
2m2)∥ϵi(k)∥2

)
−λiθi(k − 1) + ξi

((
1 − 2m2)∥e(k − 1)∥2 −

(
2m2)∥ϵi(k − 1)∥2

)
(43)
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Therefore, combining (42) and (43) can further give:

∆Li(k) = ∆L1i(k) + ∆L2i(k)
≤ ((1 − ξi)ρi − λi)θi(k) + ((1 − ξi)ρi − λi)θi(k − 1)

(44)

According to 0 < (1 − ξi)ρi < λi and θi(k) > 0, θi(k − 1) > 0, one can obtain
∆Li(k) < 0. The secure consensus for the supply chain system is achieved.

When the triggering mechanisms are dissatisfied at k − 1, the difference of ∆L1i(k) can
be calculated as follows:

∆L1i(k) = eT
i (k + 1)eT

i (k + 1)− eT
i (k − 1)eT

i (k − 1)
≤ (m∥ei(k)∥+ m∥ϵi(k)∥)2 − ∥ei(k − 1)∥2

≤ 2m2∥ei(k)∥2 + 2m2∥ϵi(k)∥2 − ∥ei(k − 1)∥2

≤
(
2m2 − 1

)
∥ei(k)∥2 + 2m2∥ϵi(k)∥2 + ∥ei(k)∥2 − ∥ei(k − 1)∥2

≤
(
2m2 − 1

)
∥ei(k)∥2 + 2m2∥ϵi(k)∥2 +

(
2m2 − 1

)
∥ei(k − 1)∥2 + 2m2∥ϵi(k − 1)∥2

(45)

The difference of ∆L2i(k) can be calculated as follows:

∆L2i(k) = L2i(k + 1)− L2i(k)
= θi(k + 1)− θi(k − 1)
= θi(k + 1)− θi(k) + θi(k)− θi(k − 1)
= −λiθi(k) + ξi

((
1 − 2m2)∥e(k)∥2 −

(
2m2)∥ϵi(k)∥2

)
−λiθi(k − 1) + ξi

((
1 − 2m2)∥e(k − 1)∥2 −

(
2m2)∥ϵi(k − 1)∥2

)
= −λiθi(k) + ξi

((
1 − 2m2)∥ei(k)∥2 −

(
2m2)∥ϵi(k)∥2

)
−λiθi(k − 1) + ξi

((
1 − 2m2)∥e(k − 1)∥2 −

(
2m2)∥ϵi(k − 1)∥2

)
(46)

It is noted that ∥ϵi(k − 1)∥2 = 0; thus, the Lyapunov function ∆Li(k) is calculated as:

∆Li(k) = ∆L1i(k) + ∆L2i(k)
≤ ((1 − ξi)ρi − λi)θi(k)− λiθi(k − 1) + (1 − ξi)

(
2m2 − 1

)
∥ei(k − 1)∥2 (47)

Since 0 < (1 − ξi)ρi < λi, λi > 0, 0 < ξi < 1, 0 < m <
√

2
2 , we have ∆Li(k) < 0, and

the secure consensus control for supply chain systems could be achieved.

(4) If DoS attacks occur at two continuous sampling times k and k + 1, it is assumed that
αi(k) = αi(k + 1) = 1. We also discuss two situations in the next section.

When the triggering mechanisms are satisfied at k − 1, the difference of ∆L1i(k) can be
calculated as follows:

∆L1i(k) = eT
i (k)ei(k)− eT

i (k − 1)ei(k − 1)
≤
(
2m2 − 1

)
∥ei(k − 1)∥2 + 2m2∥ϵi(k)∥2 (48)

The difference of ∆L2i(k) can be calculated as follows

∆L2i(k) = θi(k)− θi(k − 1)
= −λiθi(k − 1) + ξi

((
1 − 2m2)∥ei(k − 1)∥2 −

(
2m2)∥ϵi(k − 1)∥2

) (49)

From (43) and (44), it follows that:

∆Li(k) = ∆L1i(k) + ∆L2i(k)
≤ ((1 − ξi)ρi − λi)θi(k − 1)

(50)

Based on 0 < (1 − ξi)ρi < λi and θi(k − 1) > 0, it yields that ∆Li(k) < 0. The secure
consensus for the supply chain system is achieved. Thus, this completes the proof.
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When the triggering mechanisms are dissatisfied at k − 1, the difference of ∆L1i(k) can
be calculated as follows.

∆L1i(k) = eT
i (k)ei(k)− eT

i (k − 1)ei(k − 1)
≤
(
2m2 − 1

)
∥ei(k − 1)∥2 + 2m2∥ϵi(k − 1)∥2 (51)

The difference of ∆L2i(k) can be calculated as follows:

∆L2i(k) = θi(k)− θi(k − 1)
= −λiθi(k − 1) + ξi

((
1 − 2m2)∥ei(k − 1)∥2 −

(
2m2)∥ϵi(k − 1)∥2

) (52)

Since ∥ϵi(k − 1)∥2 = 0, the difference of ∆Li(k) can thus be calculated as follows:

∆Li(k) = θi(k)− θi(k − 1)
= −λiθi(k − 1)− (1 − ξi)

((
1 − 2m2)∥ei(k − 1)∥2

) (53)

Based on θi(k − 1) > 0, it yields that ∆Li(k) < 0. The secure consensus for the supply
chain systems is achieved. Thus, this completes the proof.

3.3. Neural Network-Based Dynamic Event-Triggered Mechanism under DoS Attacks

The RCA structure is shown in Figure 2. It can be seen that all training processes use
our methods, and the learning process is introduced in the next section.
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3.3.1. Reinforce NN Learning Network Secure Change Design

For subchain i, we define the local internal reinforcement approximates as:

P̂i
(
Z̃gi(k)

)
= ψgi

(
WT

g2i · ψgi

(
WT

g1i · Z̃gi(k)
))

(54)

where Z̃gi(k) is the reinforced network secure change; it consists of ẽdi(k), ui
(
ki

s
)
, u−i

(
ki

s
)
,

ωi(k), and ω−i(k). Wg1i denotes the weights between the input layer and the hidden layer,
and Wg2i denotes the weights between the hidden layer and the output layer.

When training the reinforced NN, the error function of the reinforced NN is defined as:

δ̃gi(k) = αP̂i
(
Z̃gi(k)

)
− P̂i

(
Z̃gi(k − 1)

)
+ r̃i(k − 1) (55)
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The loss function is to minimize the following objective function:

Ẽgi(k) =
1
2

δ̃T
gi(k)δ̃gi(k) (56)

The weights Wg2i updating the rules for subchain i are expressed as:

Wg2i(k + 1) = Wg2i(k)− µgi

(
∂Ẽgi

∂Wg2i

)
(57)

Based on the chain backpropagation rules, we derive:

Wg2i(k + 1) = Wg2i(k)− µgi

(
∂Ẽgi(k)
∂δ̃gi(k)

∂δ̃gi(k)
∂P̂i(Z̃gi(k))

∂P̂i(Z̃gi(k))
∂Wg2i(k)

)
= Wg2i(k)− 1

2 µgiαδ̃gi(k)
(
1 − P̂2

i
(
Z̃gi(k)

))
ϕgi(k)

(58)

where 0 < µgi < 1 is the learning rate of the reinforced NN, ϕgi(k) = ψgi

(
WT

g1i · Z̃gi(k)
)

.

3.3.2. Critic NN Learning Network Secure Change Design

For subchain i, we define the critic network approximates as:

V̂i
(
Z̃ci(k)

)
= WT

c2iψci

(
WT

c1i · Z̃ci(k)
)

(59)

where Z̃ci(k) is the critic network secure change; it consists of ẽdi(k), ui
(
ki

s
)
, u−i

(
ki

s
)
, ωi(k),

ω−i(k), and P̂i
(
Z̃gi(k)

)
. Wc1i denotes the weights between the input layer and the hidden

layer, and Wc2i denotes the weights between the hidden layer and the output layer.
The error of the critic network is obtained:

δ̃gi(k) = αP̂i
(
Z̃gi(k)

)
− P̂i

(
Z̃gi(k − 1)

)
+ r̃i(k − 1) (60)

The objective function of the critic network to be minimized is:

Ẽci(k) =
1
2

δ̃T
ci(k)δ̃ci(k) (61)

The weights Wc2i updating the rules for subchain i are given by:

Wc2i(k + 1) = Wc2i(k)− µci

(
∂Ẽci(k)

∂Wc2i(k)

)
(62)

Based on the chain backpropagation rules, we derive:

Wc2i(k + 1) = Wc2i(k)− µci

(
∂Ẽci(k)
∂δ̃ci(k)

∂δ̃ci(k)
∂V̂i(Z̃ci(k))

∂V̂i(Z̃ci(k))
∂Wc2i(k)

)
= Wc2i(k)− µciηδ̃ci(k)ψci

(
WT

c1i · Z̃ci(k)
) (63)

where 0 < µci < 1 is the learning rate of the reinforced NN.

3.3.3. Actor NN Learning Network Secure Change Design

For subchain i, we define the optimal control input under the dynamic event-triggered
mechanism as:

ûi(k) = ψai

(
WT

a2i · ψai

(
WT

a1i · Z̃ai(k)
))

(64)

where Z̃ai(k) is the actor network secure change for optimal control input; it consists of
edi
(
ki

s
)
. Wa1i denotes the weights between the input layer and the hidden layer, and Wa2i

denotes the weights between the hidden layer and the output layer.
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The error of the actor network secure change for optimal control input is obtained:

δai(k) = V̂i
(
Z̃ci(k)

)
− Uc (65)

The objective function of the actor network to be minimized is:

Ẽai(k) =
1
2

δ̃T
ai(k)δ̃ai(k) (66)

The weights Wc2i updating the rules for subchain i are expressed as:

Wa2i(k + 1) = Wa2i(k)− µai

(
∂Ẽai(k)

∂Wa2i(k)

)
(67)

Based on the chain backpropagation rules, we derive:

Wa2i(k + 1) = Wa2i(k)− µai

(
∂Ẽai(k)

∂V̂i(Z̃ci(k))
∂V̂i(Z̃ci(k))

∂ûi(k)
∂ûi(k)

∂Wa2i(k)

)
= Wa2i(k)− 1

4 µaiϕai(k)WT
c2i(k)C1(k)

(
1 − û2

i (k)
)[

WT
c2i(k)ψci

(
WT

c1i · Z̃ci(k)
)] (68)

where 0 < µai < 1 is the learning rate of the actor network secure change for optimal
control input, ϕai(k) = ψai

(
WT

a1i · Z̃ai(k)
)
, C1(k) = ∂ψci

(
WT

c1i · Z̃ci(k)
)
/∂ûi(k).

For subchain i, we define the worst-case disturbance input under the traditional
time-triggered mechanism as:

ω̂i(k) = ψai

(
WT

d2i · ψai

(
WT

d1i · Z̃di(k)
))

(69)

where Z̃di(k) is the actor network secure change for the worst-case disturbance input; it
consists of ẽdi(k). Wd1i denotes the weights between the input layer and the hidden layer,
and Wd2i denotes the weights between the hidden layer and the output layer.

The error function of the actor network secure change for the worst-case disturbance
input and objective function are the same results as in (57) and (58).

The weights Wd2i updating the rules for subchain i are expressed as:

Wd2i(k + 1) = Wd2i(k)− µdi

(
∂Ẽdi(k)

∂Wd2i(k)

)
(70)

Based on the chain backpropagation rules, we derive:

Wd2i(k + 1) = Wd2i(k)− µdi

(
∂Ẽai(k)

∂V̂i(Z̃ci(k))
∂V̂i(Z̃ci(k))

∂ω̂i(k)
∂ω̂i(k)

∂Wd2i(k)

)
= Wd2i(k)− 1

4 µdiϕdi(k)WT
c2i(k)C2(k)

(
1 − ω̂2

i (k)
)[

WT
c2i(k)ψci

(
WT

c1i · Z̃ci(k)
)] (71)

where 0 < µai < 1 is the learning rate of the actor network secure change for the worst-case
disturbance input, ϕdi(k) = ψdi

(
WT

d1i · Z̃di(k)
)
, C2(k) = ∂ψci

(
WT

c1i · Z̃ci(k)
)
/∂ω̂i(k).

4. Simulation

In this section, we consider a supply chain system to testify to the validity of the
proposed results. We consider a supply chain system with four subchains and one

chain leader. The system matrices are A =

[
0.7 0
0 0.8

]
, B =

[
1 −1
0 1

]
, and D =

[
0
−1

]
.

The topology of the communication network is illustrated in Figure 3. The four subchains
are denoted 1 2 3 4 and one chain leader is 0.
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We can obtain the edge matrix with a21 = a31 = a42 = 1 and the pinning gain with
b1 = b2 = 1, b3 = b4 = 0. The weight matrices are selected as Qii = I2×2,
R21 = R31 = R42 = 1, R11 = R22 = R33 = R44 = 1. We set the initial production in-
ventory status as x0(0) = [1.5, 1.5]T, x1(0) = [1, 1]T, x2(0) = [1, 1.2]T, x3(0) = [0.5, 1.2]T, and
x4(0) = [0.8, 0.9]T. The initial productions are chosen as u1(0) = [0.3, 0.1]T, u2(0) = [0.5, 0.2]T,
u3(0) = [0.1, 0.3]T, and u4(0) = [0.2, 0.4]T. The initial demand market is chosen as
ωi(0) = 0.1. The attenuation level of the bullwhip effect γ is chosen as γ = 1 and
the constant demand market d = 0.1.

In the training process, we select the discount factors α = η = 0.9 and the learning
rates µgi = µci = µai = µdi = 0.04. Next, we choose dynamic event-triggered parameters
m2 = 0.1, λi = 0.2, ρi = 0.1, and ξi = 0.3 and the initial internal dynamic variable
θ1(0) = 1, θ2(0) = 2, θ3(0) = 3, and θ4(0) = 4. The parameters of DoS attacks are chosen
as βi = β2 = β3 = β4 = 0.5. The initial weights are selected randomly in (0, 1).

The results are shown in Figures 4 and 5. The production inventory status of the
four subchains and chain leaders under the proposed secure change control scheme can
be seen.
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The weight curves of the reinforced neural network, the critic neural network, and
the actor neural network are shown in Figures 6–9. It can be observed that the weights
are convergent at k = 5 a day. Due to the supply chain system still operating using the
RCA structure under DoS attacks, the subchains cannot track the supply leaders. Thus, in
Figures 4 and 5, it can be seen that the production inventory status of all subchains and
supply leaders demonstrates that synchronization is achieved around k = 60 a day under
DoS attacks.
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5. Conclusions

In this paper, supply chain systems are provided by a new data-driven method
based on the established RCA structure. The problems of unknown demand and the
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dynamic model can be solved by this method under Dos attacks. The secure change
control problem for supply chain systems under DoS attacks is solved under the dynamic
event-triggered mechanism. The proposed method requires no system model information,
only the inventory status, production input, and disturbance input. Firstly, to alleviate the
influence of DoS attacks, a structure of secure change control for supply chain systems is
designed. A secure change mechanism is used to store the latest received data packets based
on the structure. Then, a dynamic event-triggered mechanism is proposed for supply chain
systems using RL. In addition, an RCA structure of secure change control for supply chain
systems is provided. The dynamic event-triggered mechanism is applied to reduce the
number of production input updates. The stability proof is provided by using the Lyapunov
function under DoS attacks. Finally, the simulation results verify that the subchains can be
tracked by the chain leaders using an RCA structure under DoS attacks. The weight curves
of the network are eventually convergent.

It is worth noting that the proposed method can be applied not only to linear supply
chain systems to achieve secure change tracking control but also to non-linear supply chain
systems. However, considering that actual supply chain systems’ DoS attacks are usually
aperiodic and unpredictable, supply chain systems’ aperiodic denial of service attacks
under network attack events may be developed and studied in future work.
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