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Abstract: Reinforcement learning (RL)–based car-following (CF) control strategies have attracted
significant attention in academia, emerging as a prominent research topic in recent years. Most
of these control strategies focus solely on the motion status of the immediately preceding vehicle.
However, with the development of vehicle-to-vehicle (V2V) communication technologies, intelligent
vehicles such as connected autonomous vehicles (CAVs) can gather information about surrounding
vehicles. Therefore, this study proposes an RL-based CF control strategy that takes multivehicle
scenarios into account. First, the trajectories of two preceding vehicles and one following vehicle
relative to the subject vehicle (SV) are extracted from a highD dataset to construct the environment.
Then the twin-delayed deep deterministic policy gradient (TD3) algorithm is implemented as the
control strategy for the agent. Furthermore, a sequence-to-sequence (seq2seq) module is developed to
predict the uncertain motion statuses of surrounding vehicles. Once integrated into the RL framework,
this module enables the agent to account for dynamic changes in the traffic environment, enhancing
its robustness. Finally, the performance of the CF control strategy is validated both in the highD
dataset and in two traffic perturbation scenarios. In the highD dataset, the TD3-based prediction CF
control strategy outperforms standard RL algorithms in terms of convergence speed and rewards. Its
performance also surpasses that of human drivers in safety, efficiency, comfort, and fuel consumption.
In traffic perturbation scenarios, the performance of the proposed CF control strategy is compared
with the model predictive controller (MPC). The results show that the TD3-based prediction CF
control strategy effectively mitigates undesired traffic waves caused by the perturbations from the
head vehicle. Simultaneously, it maintains the desired traffic state and consistently ensures a stable
and efficient traffic flow.

Keywords: car-following; reinforcement learning; twin-delayed deep deterministic policy gradients;
sequence-to-sequence; motion prediction

1. Introduction

With the continuous advancements in advanced driver assistance systems (ADASs)
such as adaptive cruise control, cooperative adaptive driving control, lane-keeping assis-
tance, and emergency brake assistance, the advent of a transformative era in autonomous
transportation is imminent [1]. As an essential function of ADASs, adaptive cruise control,
which is closely related to the CF strategy, is instrumental in improving driving comfort,
lessening driver strain, enhancing precision in vehicle handling, and bolstering vehicular
safety. Routinely executed by drivers, the task of CF constitutes a fundamental component
of driving activities and has been the subject of various CF models designed to encapsulate
human driving behaviors.

Traditionally CF models have primarily focused on interactions between two vehicles:
a following vehicle and a lead vehicle [2]. This two-vehicle-mode perspective has shaped
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classical car-following research, providing insights into how drivers respond to the actions
of vehicles directly ahead. However, real-world driving necessitates awareness beyond the
immediate lead vehicle, especially when considering braking scenarios and the broader
context of vehicular networks where information exchange can substantially enhance
situational awareness [3].

The advent of high-resolution traffic data, coupled with the advances in artificial
intelligence, has ushered in a new era of CF behavior modeling, redefining the landscape
with an unprecedented level of precision and insight [4,5]. Through the amalgamation of
comprehensive field data and data-driven strategies, this innovative paradigm extends be-
yond the confines of traditional modeling techniques, embracing a multitude of variables to
forge models of unparalleled depth and relevance. Particularly noteworthy is the adoption
of artificial neural networks (ANNs) [6–8] and recurrent neural networks (RNNs) [9–13],
which epitomize the synthesis of advanced pattern recognition and sequential data analysis.
These methodologies not only refine the granularity of driver behavior predictions but also
enhance the models’ adaptability, transcending the limitations of their predecessors. Addi-
tionally, incorporating RL into CF models allows them to adapt dynamically, more closely
mimicking the complexity of real driving situations [14–19]. Overall, these advancements
bring us closer to understanding and simulating driver behavior accurately.

The development of CF models in transportation research has achieved notable ad-
vancements, yet these models still face some limitations that restrict their effectiveness in
dynamic and complex driving environments. Traditional CF models, which depend on a
limited set of parameters and rely on empirical calibration, lack the necessary adaptabil-
ity for varying traffic conditions, potentially leading to issues with model generalization.
Likewise, while data-driven approaches excel at capturing detailed vehicle interactions,
their reliance on extensive historical datasets can result in suboptimal performance, often
influenced by biases or unrepresentative samples of driving behaviors.

In contrast, the integration of V2V communication introduces a transformative aspect
to CF modeling, particularly beneficial in scenarios where autonomous vehicles (AVs)
interact within mixed traffic flows. This enhancement allows AVs to extend their situational
awareness, integrating data from both leading and following vehicles to refine decision-
making processes, optimize speed control, and enhance overall traffic safety.

Amidst these advancements, RL emerges as a pioneering approach, distinguishing
itself from conventional methodologies by facilitating an interactive, dynamic learning
environment. This attribute is especially pivotal in crafting advanced control strategies that
align with the nuanced and unpredictable nature of real-world driving.

To mitigate the identified shortcomings of existing CF models, this research introduces
a predictive deep reinforcement learning (DRL)–based CF control strategy that underscores
some improvements:

1. By focusing on multivehicle scenarios, the strategy provides an exhaustive under-
standing of traffic dynamics, enabling more informed and efficacious decision making
that boosts traffic safety and efficiency.

2. The implementation of the twin-delayed deep deterministic policy gradient (TD3)
algorithm address the issues of prediction accuracy and learning stability, fostering
more reliable CF behavior modeling.

3. The integration of a seq2seq model within the TD3 framework facilitates a more
sophisticated prediction of surrounding vehicles’ movements, increasing the model’s
adaptability and accuracy across various traffic situations.

Through these concerted efforts, this study aims to refine CF modeling within the
realm of autonomous driving, advancing our understanding and application of intelligent
transportation systems by leveraging the synergies of advanced AI methodologies and
enhanced vehicular communication technologies.
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2. Multivehicle CF Scenarios

Classical CF control strategies primarily focus on a two-vehicle scenario involving
the SV and the immediately preceding vehicle. Indeed, vehicles trailing the SV are also
crucial in real driving scenarios, particularly when the SV brakes due to emergencies.
With the development of perception and communication technologies, the vehicle behind
the SV can transmit detailed information, allowing for an accurate status perception. In
connected environments, CAVs can receive data from several vehicles ahead and behind
using V2V technology, enhancing traffic operational efficiency and reliability. Therefore,
the multivehicle CF scenarios considered in this study are shown in Figure 1.

Figure 1. The multivehicle CF scenario.

Consider an open, flat, single-lane scenario. In this setup, the SV is indexed as
0. The preceding vehicles in the downstream traffic flow are represented by the set
L = {1, 2, ..., m}, and the vehicles trailing the SV in the upstream traffic flow are indexed
using the set F = {−1,−2, ...,−n}. In a connected environment, the SV is able to gather
the motion statuses of the surrounding vehicles, which always include relative distance
△di,0, relative velocity△vi,0, and acceleration ai of each vehicle ∀i ∈ L ∪ F . The SV then
makes informed decisions based on this information.

3. Methodology
3.1. CF Control Framework

Figure 2 shows the framework for a CF control strategy, which is based on RL and
the prediction of the surrounding vehicles’ motion statuses. Utilizing a seq2seq network,
the acceleration kinematic states of surrounding vehicles, represented as âi(t + 1 : t + H),
∀i ∈ L ∪ F , are predicted, thereby enabling a proactive adaptation to the dynamic traffic
environment at each time step, with CF scenarios extracted from the highD dataset. In this
refined RL framework, the prediction of surrounding vehicles’ motion statuses employs
a sophisticated network that utilizes both real-time and historical data facilitated by V2V
communication technology. The subsequent control strategy rooted in this framework
operates within an interactive RL environment, wherein the agent, guided by the actor-
critic network and the TD3 policy algorithm, seeks to optimize its decisions to enhance the
reward outcomes, hence updating the environment to the succeeding state effectively.

The integration of the predictive mechanism with an RL-based control strategy high-
lights the nuanced application of the highD dataset to scrutinize and interpret complex
multivehicle dynamics. The methodological approach adopted herein delicately navigates
beyond the conventional CF analysis by embedding a multivehicle statuses predictive
model within the RL framework. This fosters the development of an agent endowed with
sophisticated decision-making capabilities.
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Figure 2. Car-following control framework.

3.2. Vehicle Motion Prediction Model

To comprehensively account for the diverse influences on driving behavior and de-
velop an intelligent model for predicting future vehicle motion statuses, a refined seq2seq
deep learning architecture is proposed. This model focuses on harnessing historical vehicle
data to predict future motion statuses within a certain time horizon, aiming to proactively
adapt to dynamic traffic conditions. Specifically, the model integrates a seq2seq network
with bidirectional long short-term memory (Bi-LSTM) units as the encoder and unidi-
rectional LSTM as the decoder. This adaptation utilizes the robustness and sequential
modeling capabilities inherent in LSTM networks. By employing this framework, intricate
motion patterns from historical vehicle motion statuses can be effectively extracted and
understood, facilitating accurate predictions of future motion statuses. Furthermore, an
attention mechanism is introduced to enhance the model’s capacity to capture and prioritize
critical temporal features, thereby generating context vectors at each time interval. The
model is presented in Figure 3.

For a given vehicle i ∈ L ∪F , the input sequence over a historical time window of the
duration T at a specific time interval t is symbolized as Xt−T+1:t. For every incremental time
step t′, each input component is defined as [vi(t− t′ + 1), ai(t− t′ + 1)]T . The correspond-
ing output from the network is denoted as Yt+1:t+H = [âi(t + 1), âi(t + 2), ..., âi(t + H)],
spanning a prediction horizon H.

Then the input sequence is sent to an encoder layer built on the Bi-LSTM structure.
The Bi-LSTM mechanism interprets sequential data bidirectionally, leveraging two separate
hidden layers conjoined to a unified output. The forward layer iteratively produces the
output sequence

−→
h , using inputs from the time step t−T− 1 to t. Conversely, the backward

layer yields the output sequence
←−
h , with the input sequence inverted, encompassing the

interval from t back to t− T − 1.
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Figure 3. Vehicle motion prediction model.

The forward layer outputs are calculated by applying the following updating equations:

−→
ft = σg(

−→
W f Xt +

−→
U f
−−→
ht−1 +

−→
b f ) (1)

−→
it = σg(

−→
WiXt +

−→
Ui
−−→
ht−1 +

−→
bi ) (2)

−→ot = σg(
−→
WoXt +

−→
Uo
−−→
ht−1 +

−→
bo ) (3)

−→
Ct
′ = tanh(

−→
WCXt +

−→
UC
−−→
ht−1 +

−→
bC) (4)

−→
Ct =

−→
ft ∗
−−→
Ct−1 +

−→
it ∗
−→
Ct
′ (5)

−→
ht = −→ot ∗ tanh(

−→
Ct ) (6)

where Xt is the input matrix of the driving behavior; W f , Wi, Wo, WC, U f , Ui, Uo, and UC are
the weight matrices; b f , bi, bo, and bC are the bias vectors; and σg is the sigmoid gate activa-
tion function. The backward layer outputs are calculated in a similar way, and the forward
and backward states are concatenated to obtain the sequence (ht−T+1, ht−T+2, ..., ht−1, ht):

ht = [
−→
ht ;
←−
ht ] (7)

Given the heterogeneous distribution of sequence data features, the consequential
effect on the output is not uniform. To safeguard the initially input information from
attenuation by subsequent inputs during long sequence processing, an attention paradigm
is incorporated within the hidden layer. This allows the decoder’s input to assimilate
diverse intermediate semantics, denoted as c. Each c is derived through the weight a and
the output from the Bi-LSTM’s encoder hidden layer. By allocating distinct weights to
specific values, this paradigm adeptly discerns pivotal features contingent on the input



Electronics 2024, 13, 1133 6 of 20

sequence’s influence. Let the state of the decoder’s hidden layer be represented by si; the
correlation between hj and si is calculated by applying the additive attention mechanism:

eij = W1
T tanh(W2si + Uqhj) (8)

where W1, W2, and Uq are the weight matrices.
The context vector at a certain time step ci is calculated as follows:

ci =
t

∑
j=t−T+1

αijhj (9)

αij =
exp(eij)

∑t
k=t−T+1exp(eik)

(10)

where αij is the weight of the hidden state hj on the context vector ci.
The decoder iteratively predicts âi, and at a decoding time step j, the decoder receives

the prediction from the previous decoding time step âi(t + j− 1), the context vector cj, and
the hidden state st−1. The prediction sequence at each step is computed similarly to the
forward layer outputs.

3.3. Reinforcement Learning

RL, fundamentally based on the MDP, relies on the continuous interaction between
an agent and its environment to autonomously explore optimal behaviors. The core
components of RL are defined by the tupleM = (S, A, P, R, γ), where S denotes the state
space, A represents the action space, P : S× A is the state transition function, R : S→ R is
the reward function, and γ ∈ (0, 1] is the discount factor. The state transition function is
given by pt(st+1|s, a) = P(St+1 = st+1|St = st, At = a). The policy, denoted as π(a|s), is a
strategy that selects an action based on the observed state from the environment.

In the MDP framework, for a given state st, the agent tasks an action at according
to the policy π(a|st). This action causes the environment to transition to the next state
st+1 with the probability pt ∈ P and results in the reward rt. Starting from an initial state,
the agent repeats this process until reaching a terminal state. The cumulative reward
Gt = ∑∞

k=0γkRt+k is discounted by γ to balance immediate and future rewards. The
principal objective of RL is to identify the optimal policy π∗ that maximizes Gt. The
interaction process between the agent and its environment is depicted in Figure 4.

Figure 4. Interaction process between agent and environment.
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There are mainly three functions in the framework of RL: action-value function, opti-
mal action-value function, and state-value function. The action-value function Qπ repre-
sents the expected reward given the action at taken by the agent when the environment is
in the state st:

Qπ(st, at) = ESt+1,At+1,...,Sn ,An [Gt|St = st, At = at] (11)

The state-value function represents the expected reward given the state st:

Vπ(st) = EAt ,St+1,At+1,...,Sn ,An [Gt|St = st] (12)

Both Equations (11) and (12) can be reformulated into the recursive Bellman equation
as follows:

Qπ(st, at) = ESt+1,At+1 [Rt + γQπ(St+1, At+1)|St = st, At = at], (13)

Vπ(st) = EAt ,St+1 [Rt + γVπ(St+1)|St = st] (14)

RL algorithms are typically bifurcated into two primary classifications: policy-based
and value-based methodologies. The policy is denoted as πθ(a|s) within policy-based
techniques, and the optimal policy is ascertained by fine-tuning parameters θ to augment
the gradient of E[G]. The parameter θ typically originates from a neural network, known
as the policy network, which approximates the policy function π(a|s). For a value-based
method, the agent achieves the optimal policy by continuously modifying the policy
according to updates from Equation (11), with π∗ = arg max Qπ(st, at). It is noteworthy
that policy-based techniques, reliant on cyclic updates via the Monte Carlo approach,
frequently manifest as algorithmic inefficiencies accompanied by pronounced variance. In
contrast, value-based techniques grapple with the intricacies of expansive or continuous
action domains. To address these limitations, the actor-critic framework, which merges
policy-based and value-based methods, was proposed. In this framework, the actor-
network selects actions based on the policy, taking the state as input while outputting
the subsequent action. Concurrently, the critic-network evaluates the state-action value
function utilizing the action delineated by the actor-network, subsequently furnishing
feedback to the actor-network for policy refinement.

3.4. Twin-Delayed Deep Deterministic Policy Gradients

The actor-critic paradigm is characterized by its dual-network structure, where an
actor network, denoted as µ(s; θ), facilitates action determination, and a critic network,
expressed as Q(s, a; ω), undertakes action evaluation. Building on this, the DDPG algorithm
emerges as a continuous variant harnessing deterministic policy gradients, resulting in
pronounced efficiency by minimizing required training data and bolstering algorithmic
convergence [20].

As an evolved variant of DDPG, a TD3 algorithm integrates essential modifications to
enhance performance [21]. In order to overcome the overestimation problem of DDPG,
the strategy termed clipped double Q-learning is proposed, which incorporates twin value
networks Q(s, a; ω1), Q(s, a; ω2) and one policy network µ(s; θ). Each network aligns with
a respective target counterpart, namely, Q(s, a; ω̄1), Q(s, a; ω̄2), and µ(s; θ̄). The second key
enhancement in TD3 is the addition of noise ξ, drawn from a clipped normal distribution,
to further improve the algorithm’s robustness:

āt+1 = µ(st+1; θ̄) + ξ (15)

where ξ ∼ CN (0, σ2,−c, c) is a normal distribution with zero mean and standard deviation
σ. The random variable has zero probability of lying outside the interval [−c, c].
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Subsequent to this adjustment, dual critic networks collaboratively assess state-action
pairs, favoring the lesser computed value to derive the time difference (TD) error δi,t:

ȳt = min{rt + γQ(st+1, āt+1; ω̄i)} i = 1, 2 (16)

δi,t = Q(st, at; ωi)− ȳt i = 1, 2 (17)

The critic network parameters are updated following the direction of the minimization
of the TD error:

wi ← argmin
wi

1
N ∑tδ

2
i,t i = 1, 2 (18)

where N is the size of the sample minibatch transition tuples [st, at, rt, st+1] stored in the
replay buffer B, which is obtained by implementing the action at to the environment at
each time step.

The update direction of the actor network µ(s; θ) is as follows:

1
N ∑t∇aQ(st, a; w1)|a=µ(st ;θ)∇θµ(st; θ) (19)

Within the TD3 algorithm framework, the parameters governing the critic networks
undergo iterative updates at each computational step. In contrast, the parameters of the
actor networks experience periodic updates, specifically at intervals of K steps. This update
scheme serves to attenuate the variance inherent in the approximated action value function.

3.5. Car-Following Control Strategy Construction

For the CF control strategy, which is constructed under the MDP framework, the state
st is defined as follows:

st = [v0(t), ai(t), ∆vi,0(t), ∆di,0(t)] ∀i ∈ L ∪ F (20)

where v0(t) is the velocity of the SV, ai(t) is the acceleration of the vehicle i, and ∆vi,0(t)
and ∆di,0(t) are the relative velocity and distance between the vehicle i and the SV. The
exploratory action, provided by the actor network, combines the SV acceleration with
added randomness:

a0(t) = µ(s; θ) + ϵ (21)

where ϵ denotes the noise function derived from the Ornstein–Uhlenbeck (OU) stochastic
process. As demonstrated by [20], this function enhances the exploratory stochasticity of
the action, facilitating the agent’s investigation into prospective optimal strategies. The
state transition process of v0(t), ∆vi,0(t), and ∆di,0(t) is calculated as follows:

v0(t + 1) = v0(t) + a0(t)∆t (22)

∆v0,h(t + 1) = ∆v0,h(t) + (v0(t + 1)− vi(t)− ai(t)∆t) (23)

∆d0,h(t + 1) = ∆d0,h(t) + 0.5(∆v0,h(t + 1) + ∆v0,h(t))∆t (24)

where v0(t) is the velocity of the SV at the time step t.
Another crucial element in constructing the CF strategy is the reward function. It

provides the agent with a reward signal, allowing it to discern the quality of its behavior
from positive or negative feedback, thereby reinforcing or mitigating its actions. A well-
designed reward function enables RL agents to rapidly learn the intended behavior and
accelerates convergence during training.

The prediction horizon of the seq2seq model is assumed to be H, and for each time
step t ∈ [t, t + H − 1], the reward functions, which account for safety, comfort, energy
consumption, and efficiency, are defined as follows:
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1. Safety reward function JSa f ety: This study employs the inverse time-to-collision,
termed iTTC, as the safety evaluation metric. The risk level is assessed based on a
range deemed acceptable to drivers. Accordingly, the safety reward function, founded
on this risk threshold, is presented as follows:

JSa f ety =

{
log iTTCthr

iTTC(t) if iTTCthr > iTTC0

0 otherwise
(25)

where iTTCthr denotes the risk threshold. A more substantial penalty is imposed
when iTTC(t) exceeds iTTCthr.

2. Comfort reward function JCom f ort: Jerk is an essential indicator for evaluating ride
comfort, which is determined by acceleration variation. Mitigating abrupt changes in
jerk during driving minimizes the vehicular inertia felt by passengers, enhancing ride
comfort and fuel consumption. The comfort reward function, centered around jerk, is
formulated as follows:

JCom f ort = β2eβ1(
a0(t)−a0(t−1)

△t )2
(26)

3. Energy consumption reward function JEnergy: To quantify energy usage, this study
employs the VT-Micro model, which is rooted in velocity and acceleration parameters,
to build the energy consumption reward function:

JEnergy = β3e∑3
i=0 ∑3

j=0 Ki,j(a0(t))vi
0(t)aj

0(t) (27)

where coefficients Ki,j(a0(t)) depend on the sign of a0(t) and the values are selected
according to [22].

4. Efficiency reward function JE f f iciency: Fuel consumption tends to increase with the
vehicle’s velocity. As a result, when the vehicle is moving at higher velocities, it
may face significant fuel consumption penalties, making it challenging to maintain
a stable time headway. To counterbalance the increased consumption due to higher
velocities, a velocity-based reward is introduced to counterbalance the impact of
increased velocity, encouraging the vehicle to progress swiftly. The efficiency reward
function, developed with this perspective, is presented as follows:

JE f f iciency = β4v0(t) + β5 log (1 +
|T0,i(t)− β6|

2
) (28)

where T0,i(t) is the time headway (thw) based on the ratio of relative distance and SV
velocity.

Overall, the combined reward is the aggregate of all of the above-mentioned reward
functions:

rt = JSa f ety + JCom f ort + JEnergy + JE f f iciency (29)

To account for future dynamics in the traffic environment, the traditional actor-critic
network is augmented as depicted in Figure 5. The actor network provides the acceleration
sequence spanning the predictive horizon at the current time step, represented by a0(t :
t + H − 1). The architectures of actor and critic networks consist of an input layer, four
fully connected hidden layers, and an output layer. The hidden layers encapsulate neuron
counts of 128, 64, 32, and 16 in descending order. The activation functions of these hidden
layers are the rectified linear unit (ReLU), whereas the hyperbolic tangent function (tanh) is
adopted by the output layer for its activation procedure.
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Figure 5. Actor-critic network based on surrounding vehicles’ motion prediction.

Figure 6 illustrates the training process of the TD3-based actor-critic network. Through-
out this process, each time step yields an information tuple [st, a0(t : t + H − 1), rt, st+1],
which is stored in a replay buffer. Samples from this buffer are subsequently used for
updating primary network parameters. In the critic network’s update phase, the TD3
algorithm employs target policy smoothing by adding truncated normal distribution noise
to target actions. This reduces noise effects on the critic network, bolstering the algorithm’s
robustness. Furthermore, to mitigate overestimation, the TD3 algorithm uses dual critic
networks to independently evaluate state-action pair Q-values and opt for the lesser one.
Thus, TD3 encompasses three primary networks: actor, critic I, and critic II networks,
along with their corresponding target networks. The primary actor network yields the
acceleration sequence a0(t : t + H − 1), with the reward rt representing a cumulative value
spanning the prediction horizon:

rt = r̃t + ∑t+H−1
t′=t+1 rt′ (30)

where r̃t represents the one-step state transition reward from st to st+1 after the action a0(t).
rt′ denotes the reward from st′ to st′+1 after implementing a0(t′) within the prediction time
horizon based on the surrounding vehicles’ motion prediction.

Figure 6. Training process of actor-critic network structure based on TD3 algorithm.

The calculation of rt′ requires the information st′+1, which is based on the prediction of
the future motion statuses of surrounding vehicles. The seq2seq model, utilizing historical
kinematic data, is adept at anticipating the accelerations of these surrounding vehicles
within the defined predictive horizon. The training process of the TD3 algorithm based on
motion prediction is given by Algorithm 1:
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Algorithm 1 Training process of motion-prediction-based TD3 algorithm

1: Randomly initialize critic networks Q(s, a; w1), Q(s, a; w2) and actor network µ(s; θ)
with random parameters w1, w2 and θ

2: Initialize target networks ω̄1 ← w1, ω̄2 ← w2, θ̄ ← θ
3: for each episode do
4: Obtain the observation state st based on the sampled CF scenario
5: for each time step t do
6: Create the action sequence a0(t : t + H − 1) according to Equation (21) and apply

a0(t) to get r̃t after transferring to the new state st+1
7: Applying the seq2seq motion prediction model to obtain the surrounding vehicles’

accelerations within the prediction horizon âi(t + 1 : t + H)
8: for t′ = t + 1 to t + H − 1 do
9: Applying a0(t′) to obtain the one-step reward rt′ and the transferred new state

st′+1
10: end for
11: Calculating the cumulative reward r̄t within the time horizon according to

Equation (30) and store transition tuples [st, a0(t : t + H − 1), rt, st+1] inRB
12: Sample minibatch of N transitions [sj, a0(j), rj, sj+1] fromRB
13: Target actor network prediction ā0(j + 1)← µ(sj+1; θ̄) + ξ
14: Calculating TD error δi,j according to Equations (16) and (17)
15: Updating critics networks wi ← argmin

wi

1
N ∑jδ

2
i,j

16: if t mod K == 0 then
17: Updating the actor network parameter θ according to the deterministic policy

gradient 1
N ∑j∇aQ(sj, a; w1)|a=µ(sj ;θ)∇θµ(sj; θ)

18: Soft updating target actor network θ̄ ← τθ + (1− τ)θ̄
19: Soft updating target critic network w̄i ← τwi + (1− τ)w̄i
20: end if
21: end for
22: end for

4. Experimental Results and Analysis
4.1. highD Dataset Description

The highD dataset, a cornerstone in the realm of naturalistic driving data, was meticu-
lously compiled to capture an array of vehicular attributes, underpinning the data-driven
insights presented in this study. Utilizing advanced aerial surveillance technologies, the
dataset encapsulates comprehensive vehicular dynamics, recorded across six distinct seg-
ments of a German highway near Cologne over the span of 2017 and 2018. The highD
dataset’s granular data acquisition, employing drones operating at a 25 Hz recording fre-
quency, has facilitated the assembly of 60 robust records. Each dataset entry meticulously
documents a suite of vehicular parameters, including position, lateral and longitudinal
velocities, acceleration, and driving direction for an expansive collection of 11,000 vehi-
cles [23].

This rich dataset not only delineates individual vehicle movements with precision but
also provides an aggregate representation of traffic flow dynamics, capturing an average
duration of 17 min and encompassing an average roadway stretch of 420 m per recording
session. The utilization of such precise and expansive data has been pivotal in distilling
nuanced understandings of vehicular interactions and driving behaviors, forming the
empirical foundation for the CF control strategy developed in this study.

4.2. CF Scenario Extraction

Renowned for its comprehensive vehicular data captured via drone technology, the
highD dataset underpins the analytical rigor of this research. In this study, the highD
dataset is employed to explore vehicular behaviors within a multivehicle context, subtly
extending beyond the dataset’s traditional utilization (either disregards the trailing vehicle
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relative to the SV, as delineated in [17], or just focuses on the immediate leading vehicle, as
elucidated in [3]) to encompass a more intricate driving scenario analysis. The investigation
centers on a four-vehicle configuration, focusing on interactions involving two leading and
one trailing vehicles relative to the SV. This refined analysis framework aims to elucidate
the complex vehicle interplay in highway environments, providing a nuanced perspective
on vehicular dynamics.

Trajectories of surrounding HDVs were extracted from the highD dataset and kept
fixed for the SV during the training process of the RL-based CF strategy. This allows the
agent to gain a deeper insight into human driving behavior and identify potential policy
enhancements. There are 1612 four-vehicle mode scenarios extracted from the dataset based
on the following criteria. The probability distribution histograms of the motion statuses
of surrounding vehicles are shown in Figure 7, and kernel density estimation has been
employed to approximate the probability density function:

1. The CF behaviors from on-ramp areas are not included.
2. All the vehicles included are cars.
3. The lane changing, cut-in and cut-out behaviors for the vehicles are not included.
4. The duration of CF scenarios is at least 15 s.

Figure 7. Probability density of surrounding vehicles’ motion status. (a) Velocity. (b) Acceleration.

4.3. Surrounding Vehicles’ Motion Prediction

The parameters for a seq2seq motion prediction network structure are shown in
Table 1. The 1612 CF scenarios are utilized for both training and testing the prediction
model. These scenarios are divided into 80% for training, 10% for validation, and 10% for
testing. The historical feature sequence It−T+1 within the time window is sent to the model
at the time step t. The model then predicts the sequence Ot+1:t+H with the length of H, as
required by the TD3 algorithm. This process repeats at each subsequent time step. The
input sequence shifts by an interval △t until the entire data length for the surrounding
vehicles is covered.

Table 1. Parameters of seq2seq network structure.

Parameters Value

Encoder hidden units number 128
Decoder hidden units number 128
LSTM layer number 2
Batch size 256
Learning rate 0.001
Learning dropout factor 0.5
Epoch number 200
Historical input data window length 40
Prediction target data window length 20
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The prediction performance of the seq2seq model on the test dataset for a specific
scenario is shown in Figure 8. During the online operation of the RL-based CF strategy, it is
imperative for the seq2seq model to precisely predict the kinematic states of surrounding
vehicles within the prediction time horizon. As evident from Figure 8, the predicted values
for velocity, acceleration, relative distance, and relative velocity are close to the real values.
This observation is further corroborated by the mean squared error (MSE) presented in
Table 2.

Figure 8. The seq2seq prediction performance on the scenario with SV no. 2336 and preceding
vehicle no. 2331 of track 26 in the test dataset. (a) Longitudinal velocity. (b) Longitudinal acceleration.
(c) Relative distance. (d) Relative velocity.

Table 2. MSE of prediction result in test dataset.

Prediction Feature MSE on Test Dataset

Velocity (m/s) 0.3136
Acceleration (m/s2) 0.0293
Relative distance (m) 0.6358
Relative velocity (m/s) 0.3312

4.4. Validation of TD3 CF Control

For the 1612 extracted CF scenarios, a subset comprising 90% (i.e., 1450) was allocated
for training purposes, while the remaining 10% (i.e., 162) was reserved for validation.
During training, the agent simulates CF scenarios from the shuffled training data. Once a
CF scenario concludes, a new one is randomly selected from the training scenarios, with the
agent’s state initialized using empirical data from the selected scenario. The training was
repeated for 1000 episodes with each episode representing a CF scenario in this context.

The parameters pertinent to the TD3 model can be found in Table 3. In the refinement
of the TD3 network, the parameters were meticulously adjusted via the Adam optimizer,
capitalizing on the stochastic nature of minibatches to ensure a comprehensive traversal
of the solution space. The application of OU-noise, characterized by a mean of 0.15 and
a variance of 0.2, was instrumental in augmenting the exploratory capabilities of the
action space, thus enhancing the robustness of the model against local optima. This was
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complemented by the implementation of Gaussian noise, with a 0 mean and a standard
deviation of 0.2, to the target policy, thereby inducing a smoothing effect that further
entrenched the stability of the learning process. The learning rates for actor and critic
networks were chosen to balance convergence speed and learning stability. A replay buffer
of 20,000 and a minibatch size of 256 struck a balance between memory efficiency and
sufficient training diversity.

The discount factor at 0.99 ensures a focus on long-term rewards. Soft updates with
a coefficient of 0.005 provided gradual target network adjustments. Reward function pa-
rameters, such as β1 to β6, were fine-tuned to accentuate the aspects of safety, comfort,
energy efficiency, and overall vehicular efficiency. For instance, the β1 and β2 parameters
in the comfort reward function are configured to penalize high jerk, promoting a driving
experience that prioritizes passenger comfort. Similarly, the energy consumption reward
function utilizes β3 to effectively weigh the energy expenditure against vehicular dynamics.
Particularly, the β4 and β5 coefficients within the efficiency reward function harmonize
the intricate relationship between fuel consumption and velocity. The chosen coefficients
incentivize fuel-efficient behaviors while also ensuring adherence to optimal time head-
ways, thus reinforcing the synergy between efficiency and safety. Lastly, the threshold
iTTCthr was anchored at 0.25, aligned with safety standards and validated through a series
of simulations to safeguard against hazardous proximities.

Table 3. Parameters of TD3 CF control strategy.

Parameters Value

Learning rate of Adam optimizer for actor networks 3 × 10 −4

Learning rate of Adam optimizer for critic networks 1 × 10 −3

Replay buffer capacity 20,000
Minibatch size 256
Reward discount coefficient 0.99
Soft update coefficient 0.005
iTTCthr 0.25
β1 −0.06
β2 0.5
β3 −150
β4 0.1
β5 −1.2
β6 2

Given the variable length of CF episodes and the actor network’s random exploration,
a moving average of episode rewards with a window size of 50 is utilized to discern
reward trends and evaluate the algorithm’s performance. This entire process undergoes
10 rounds to evaluate the algorithm’s convergence. To verify the performance of the
proposed method, some mainstream RL algorithms, such as DDPG, SAC, and PPO, are
implemented for comparison. Figure 9 depicts the evolution of the moving average episode
reward during the training episodes. Solid colored lines indicate the mean over multiple
rounds, while shaded regions denote the standard deviation around these mean values. The
TD3 agent’s moving average episode reward outperforms those of other agents, including
those involving human driving actions. The TD3 algorithm’s reward converges around
820, whereas the SAC reward stabilizes around 635. Both the PPO and DDPG algorithms
consistently underperform compared with human driving.
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Figure 9. Algorithm performance over episodes.

TD3’s dual Q-learning mechanism aims to mitigate overestimations of Q-values, while
its delayed policy updates ensure infrequent policy modifications. Furthermore, TD3
introduces a policy noise clipping technique, preventing excessive variations during policy
updates. In continuous action scenarios like CF, vehicles are expected to respond smoothly
and consistently across varying driving scenarios. Any abrupt or substantial policy shifts
can lead to suboptimal driving behavior. In comparison, DDPG may suffer from over-
estimation of Q-values, leading to unstable training. While PPO exhibits commendable
performance in discrete action space tasks, it may not be as adept as TD3 or SAC in contin-
uous control tasks. On the other hand, while SAC enhances its policy’s exploratory nature
using the maximum entropy principle and is generally effective, its stochastic approach
can sometimes lead to undue exploration. This might cause SAC to underperform relative
to TD3 in certain driving scenarios. Subsequent analysis will thus center on comparing the
TD3 agent’s performance with human driving behavior.

To juxtapose the performance of the TD3 policy with human driving behavior, the
quantitative evaluation results are presented in Table 4. The safety check index represents
the ratio of the CF scenarios where iTTC surpasses a given threshold to the total number of
CF scenarios. The energy consumption index of the SV is calculated based on Equation (27).
The other indices are the average results calculated based on the whole test dataset.

Table 4. Quantitative evaluation results on test dataset.

Evaluation Index TD3 highD

Average velocity of SV (m/s) 22.5929 20.2627
Relative distance with 1st preceding vehicle (m) 25.1463 29.5840
Relative Distance with 1st following vehicle (m) 35.8522 29.8769
Relative Velocity with 1st preceding vehicle (m/s) 0.1741 1.1348
Relative velocity with 1st following vehicle (m/s) 0.0432 0.0206
Safety check 0.63% 6.47%
Time headway (s) 1.7021 2.4786
Energy consumption index of SV −4.8632 −6.3158
Jerk (m/s3) 0.0532 0.2107

As indicated in Table 4, the penalty imposed during TD3 agent training for exceeding
the risk threshold iTTCthr results in only 0.63% of scenarios surpassing iTTCthr, which is
lower than that of the highD dataset. Additionally, Table 4 highlights that the TD3 agent’s
average velocity surpasses that of the highD dataset. With a focus on safety, the TD3-
controlled agent not only maintains a reduced relative distance to the preceding vehicle
but also ensures sufficient acceleration room for the following vehicle. This observation
underscores the significant efficacy of the TD3-controlled agent in enhancing the efficiency
of CF behaviors. Figure 10 compares the performances of the TD3 agent and human driving
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in a specific scenario. It reveals that the TD3-controlled SV excels in maintaining a steady
traffic flow, especially in the relative velocity between the preceding and following vehicles.
This is due to the seq2seq model’s prediction for the motion status of the surrounding
vehicles within the prediction horizon. Such anticipatory capabilities enable the model to
incorporate the prospective motion trajectory of the SV during acceleration determinations
at each iterative step, thereby circumventing potential compromises in CF safety and effi-
ciency due to abrupt accelerations or decelerations exhibited by the preceding vehicle. On
the other hand, the jerk exhibited by the TD3-controlled agent is considerably diminished
relative to human drivers. This not only enhances ride comfort but also results in a better
time headway compared with human drivers.

Figure 10. Comparison of performances between the TD3 agent and human driving on the scenario
with SV no. 2742, 1st preceding vehicle no. 2738, 2nd preceding vehicle no. 2736, and 1st following
vehicle no. 2744 of track 25 in the test dataset. (a) Velocity. (b) Acceleration. (c) Relative velocity
to preceding vehicle. (d) Relative velocity to following vehicle. (e) Relative distance to preceding
vehicle. (f) Relative distance to following vehicle. (g) Thw. (h) Jerk.

4.5. Platoon Analysis

Given the stable highway conditions in the highD dataset, in order to fully exploit
the advantages of TD3-controlled agents in traffic oscillation multivehicle scenarios, the
platoon analysis, which consists of nine vehicles with one head vehicle, is performed.
The optimal velocity model (OVM) is utilized to depict the dynamics of HDVs, and the
parameters are referred to [24]. The first simulation examines a traffic wave scenario,
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induced by introducing a sinusoidal velocity perturbation to the head vehicle around
an equilibrium velocity of 15 m/s. Within the platoon, two CAVs are positioned as the
fourth and seventh vehicles. The model predictive control (MPC) controllers for CAVs
are implemented according to [24] to compare the performances of the TD3-controlled
CAVs. The control objective for the platoon is to stabilize the velocity of each vehicle
around 15 m/s, while maintaining the intervehicle spacing close to 20 m. The acceleration
constraints for the CAVs range from −5 m/s2 to 2 m/s2, while the intervehicle spacing
constraints range from 5 m to 40 m . The results are shown in Figure 11, where the first
row represents the scenario where all vehicles in the platoon are HDVs and the second and
third rows, respectively, illustrate the performance of the platoon that includes two CAVs
controlled by the MPC controller and the TD3 algorithm.

Figure 11. Sinusoidal perturbation platoon analysis. The first row in the figure represents the all-HDV
scenario, while the second and third rows represent the MPC-controlled CAVs and TD3-controlled
CAVs, respectively.

Figure 11 illustrates that as the sinusoidal perturbation wave propagates backward
through the platoon, its amplitude amplifies, leading to a significant increase in overall fuel
consumption and collision risk. In contrast, when the platoon incorporates CAVs controlled
by either the MPC or TD3 algorithm, the amplitude of the traffic shockwave is effectively
attenuated, which underscores their capabilities in mitigating disturbances and stabilizing
the traffic flow. Furthermore, the quantitative evaluation results between the MPC controller
and the TD3 algorithm are shown in Table 5. It is worth noting that MPC employs precise
linearized dynamics around the equilibrium state for control input design, and it can be
served as a valuable benchmark for comparison, while the TD3 algorithm directly relies
on the raw data obtained from the environment to perform the self-exploration strategy.
As Table 5 indicates, TD3-controlled CAVs slightly outperform MPC in noise-perturbed
nonlinear traffic systems, even in the absence of explicit system knowledge. Specifically,
although CAVs controlled by the TD3 algorithm slightly decreased the platoon’s overall
average speed in comparison with those controlled by MPC, the relative velocities and
accelerations are reduced. In the meantime, the relative distance between vehicles closer
to the equilibrium state and the enhanced ride comfort are sustained. This highlights the
capability of TD3-controlled CAVs to achieve a more stable and fuel-efficient traffic flow.



Electronics 2024, 13, 1133 18 of 20

Table 5. Evaluation results on sinusoidal perturbation scenario.

Evaluation Index TD3 MPC

Average velocity (m/s) 14.8051 14.9559
Average relative velocity (m/s) 0.4960 0.5314
Average accelerations (m/s2) 0.4640 0.5837
Average relative distance (m) 18.4775 15.8521
Average jerk (m/s3) 0.0063 0.0103

In the second scenario, an emergency braking event is simulated to assess the safety
efficacy of TD3-controlled CAVs. Initially, the head vehicle in the platoon sustains an
equilibrium velocity of 15 m/s for the first second. It then abruptly decelerates at a rate
of −5 m/s2 for the subsequent 2 s and reaches a lower velocity of 5 m/s. Subsequently, it
maintains this lower velocity for 6 s. Afterward, it accelerates back to its original velocity at
a rate of 2 m/s2 and maintains that velocity for the remaining time. The results are shown
in Figure 12.

Figure 12. Braking perturbation platoon analysis. The first row in the figure represents the all-HDV
scenario, while the second and third rows represent the MPC-controlled CAVs and TD3-controlled
CAVs, respectively.

In Figure 12, it is evident that with an all-HDV platoon, significant velocity fluctuations
arise due to the braking perturbation of the lead vehicle. However, introducing two
CAVs controlled by MPC and the TD3 algorithm results in a significant attenuation of the
undesired traffic wave. Upon detecting the lead vehicle’s braking, these CAVs promptly
decelerate, thereby ensuring a safer following distance. When comparing the performances
of the MPC controller and the TD3 algorithm, the TD3 algorithm yields more stable velocity
and acceleration profiles, while MPC demonstrates some overshoots. The quantitative
assessments presented in Table 6 further substantiate these observations.

Table 6. Evaluation results on braking perturbation scenario.

Evaluation Index TD3 MPC

Average velocity (m/s) 12.2833 12.7025
Average relative velocity (m/s) 0.3838 0.4323
Average accelerations (m/s2) 0.5255 0.6101
Average relative distance (m) 17.6641 14.2603
Average jerk (m/s3) 0.0016 0.0142
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5. Conclusions

In this study, a CF control strategy leveraging the reinforcement learning TD3 algo-
rithm is proposed. The CF scenario considered is the four-vehicle mode, which includes
two vehicles ahead of the SV and one vehicle behind. To encapsulate the dynamic uncer-
tainties inherent in CF control, a seq2seq predictive module is integrated. Modifications to
the TD3 algorithm ensure that the strategy is adaptive to potential uncertainties in future
traffic conditions, which improves the robustness of the algorithm. The algorithm is first
validated in the environment composed of the trajectories extracted from the naturalis-
tic driving dataset to simulate the mixed traffic flow of HDVs and CAVs. The reward
function encompassing the safety, comfort, efficiency, and fuel consumption metrics is
designed for guiding the agent navigate through the environment. The training and testing
results of the improved TD3 algorithm are compared with some typical reinforcement
learning algorithms based on the trajectories sampled from the highD dataset, and the
results indicate superior reward convergence with the TD3 algorithm. Subsequently, two
traffic perturbation scenarios are implemented to further demonstrate the capabilities of a
mixed platoon with TD3-controlled CAVs. The results show that CAVs effectively mitigate
undesired traffic waves stemming from head vehicle perturbations while maintaining the
desired traffic states. Finally, when compared with the performance of the MPC-controlled
CAVs, the TD3-controlled CAVs consistently sustain a more stable and efficient traffic flow.

Future improvements to this work could include the following aspects: First, the
reward function can be extended to represent different types of human drivers, such
as aggressive or conservative drivers. Their distinct perceptions of the environment and
driving objectives necessitate specific strategies for agents interacting with them. This study
primarily focuses on scenarios with relatively stable motion statuses of the surrounding
vehicles, but in an actual traffic environment, more intricate traffic situations like the lead
vehicle changing lanes, the cut-in behaviors of the vehicles in the adjacent lanes, and
overtaking maneuvers should be considered. Lastly, the highD dataset primarily provides
stable CF scenarios, and an aggregation of popular naturalistic driving datasets currently
available could facilitate agent training across a wider range of scenarios and enhance the
performance of the agent in diverse situations.
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