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Abstract: The UAV-assisted space–terrestrial integrated network provides extensive coverage and
high flexibility in communication services. UAVs and ground terminals collaborate to train models
and provide services. In order to protect data privacy, federated learning is widely used. However, the
participation of UAVs and ground terminals is not gratuitous, and reasonable incentives for federated
learning need to be set up to encourage their participation. To address the above issues, this paper
proposes a federated reliable incentive mechanism based on hierarchical reinforcement learning.
The mechanism allocates inter-round incentives at the upper level to ensure the maximisation of
the server’s utility, and performs inter-client incentive allocation at the lower level to ensure the
minimisation of each round’s latency. The reasonable incentive allocation enables the central server
to achieve higher model training accuracy under the limited incentive budget, which reduces the
cost of model training. At the same time, an attack detection mechanism is implemented to identify
malicious clients participating in federated learning, preventing their involvement in aggregation and
revoking their incentives. This better ensures the security of model training. Finally, we conducted
experiments on Fmnist, and the results indicate that this method effectively improves the accuracy
and security of model training.

Keywords: UAV; space–terrestrial integration networks; federated learning; incentive mechanism;
deep reinforcement learning

1. Introduction

The space–terrestrial integrated network is based on the existing network on the
ground, and expands to the space network, so as to realise a communication network with
global coverage [1]. Although the basic communication facilities can basically meet the
daily communication needs, when there is an unexpected situation or in unconventional
temporary scenarios, relying only on ground wireless communication facilities is not
enough [2]. For example, network reconstruction in major natural disasters, temporary
communication deployment in remote areas, and wireless resource allocation at the scene
of gathering activities during major holidays [3]. In order to effectively improve the
quality of wireless communication in these scenarios, Unmanned Aerial Vehicles (UAVs)
can be deployed to assist communication [4]. As small flying devices, UAVs have many
advantages that can make mobile communication more convenient [5]. Therefore, UAV-
assisted communication is a potential indispensable technology in mobile networks. By
acting as a relay, UAVs can meet the requirements of dynamic adjustment and timely
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deployment, effectively solving the transmission problem of temporary communication
hotspots [6–8]. In addition, UAVs are not easily blocked by obstacles (e.g., buildings) when
flying at high altitude, which is also an important advantage [9].

With the widespread use of 5G communications and the development of 6G com-
munications, the demand for communications is increasing [10,11]. Based on their own
advantages of versatility, high mobility, ease of deployment, and low cost, UAVs can be
used as airspace-assisted communication platforms [12,13]. In addition, UAVs can also be
used as user terminals with high mobility and be responsible for data collection in scenarios
such as environmental monitoring. Processing and training large amounts of data by UAVs
remains a challenge due to the absence of large storage capacity for content caching [14]
and limited computational power [15]. Traditional machine learning solutions require
uploading the local data from the UAVs to a central server, which may pose significant
privacy and security concerns for the terminals. In addition, uploading all the data directly
from UAVs to the central server requires a much larger transmission bandwidth and also
consumes a lot of energy. To protect the UAVs’ data privacy, we consider the use of fed-
erated learning between the UAVs and the ground terminals, which enables the UAVs to
work with the ground devices to provide extensive coverage.

Federated learning, a distributed learning technique, allows UAVs and ground termi-
nals to retain data locally and upload the trained parameters to a central server after using
the local data for model training [16]. Federated learning protects the privacy of UAVs
and ground terminals while reducing their data transfer costs and improving global model
performance. UAVs and ground terminals need to consume their own arithmetic resources
and communication overheads when participating in federated learning, and in the era of
big data, data as a valuable asset have a certain inherent value [17]. Therefore, only if the
central server provides a certain amount of compensation will UAVs and ground terminals
be of interest.

Therefore, the incentive settings for UAVs and ground terminals in federated learning
become a top priority. When designing incentives, the interests of all participants, as well
as the overall performance of the system, need to be taken into account. A well-designed
incentive scheme can promote the sustainable development of the federated learning
system and ensure that all participants can benefit from it, so that they can better cope with
the challenges of federated learning. At the same time, not all UAVs and ground terminals
participating in federated learning are honest and reliable, and the presence of malicious
clients can have an impact on the performance of the model. Therefore, malicious clients
need to be detected and recognised when setting up incentives to ensure the security of
the system.

To address the above challenges, this paper proposes a federated learning incentive
mechanism with malicious defence. The mechanism identifies and rejects malicious clients
by detecting clients participating in federated learning. Different weights are set for the
costs of UAVs and ground terminals due to their different data transmission capabilities and
computational capabilities. In order to compensate the computational and communication
costs of UAVs and ground terminals, the central server determines the incentive allocation
strategy through hierarchical reinforcement learning. The upper level reinforcement learn-
ing incentive coordinates the total amount of incentives and allocates the incentives for each
round. Lower-level reinforcement learning subdivides the total incentive for each round to
regulate the frequency of client training and minimise the federated learning latency.

The main contributions of this paper are as follows:

• The central server utilises hierarchical reinforcement learning for federated learning
incentive allocation, and this incentive allocation mechanism balances the accuracy
and latency of federated learning. It aims to enhance the performance of federated
learning and reduce incentive expenditure.

• We set up a malicious client detection mechanism to prevent malicious clients from
participating in federated learning and ensure the security of federated learning.
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• The algorithm is tested using the F-MNIST dataset and the experimental results reflect
the advantages of the algorithm in terms of federated learning accuracy and reliability.

The rest of the paper is organised as follows: Section 2 summarises the related work
and Section 3 includes the scenario and problem description. We formulate the problem and
present the objective of the incentives in Section 4, and Section 5 proposes the algorithm, i.e.,
Federated Learning Hierarchical Incentives. Section 6 describes the experimental setup, and
the next section discusses the experimental results and effectiveness evaluation. The last
section concludes the paper.

2. Related Work

With the popularity and development of mobile communication and IIoT technologies,
various applications have increasingly high requirements for network capacity and cover-
age, and it is impossible to provide wireless access services with high data rates and high
reliability anywhere on the earth by relying only on terrestrial communication systems,
especially in environmentally hostile areas such as oceans and mountains [18]. To fill this
gap and take advantage of the complementary strengths of different network segments [19],
UAV-assisted space–terrestrial integrated networks have emerged.

2.1. Federated Learning in UAVs

The space–terrestrial integrated network (STIN) is in full swing, and in Ref. [20],
caching and allocation strategies for satellite-terrestrial cooperation are investigated to
reduce cache redundancy and improve cache hit rate and network throughput. The key
features and challenges of adaptive interference-based approaches to prevent degradation
of wireless link performance due to excessive interference in the space–terrestrial inte-
grated network (STIN) are comprehensively investigated in Ref. [21]. However, satellite-
dependent Internet users face a wide range of Internet access disruptions, and UAVs can be
used to temporarily provide alternative links to ensure continuous underlying connectivity
in the event of link disruptions between satellites and terrestrial components [22]. At the
same time, UAVs and ground terminals complement each other to provide ubiquitous
connectivity to a variety of underserved areas [23].

UAVs and ground terminals collaborate with each other through federated learning,
which protects the data privacy of both and also improves the training performance of the
model. Reinforcement learning and federated learning are combined in Ref. [24] to greatly
improve the positioning accuracy of ground users by relying on RSS technology with
the UAV as the base station. A UAV-assisted hierarchical federated learning is proposed
in Ref. [25] to minimise the time required for federated learning to achieve the target
learning accuracy by finding the optimal UAV location, user UAV association, channel
assignment, and user selection. A synchronous federation learning (SFL) architecture for
multiple UAVs is constructed in Ref. [26] and a comparative analysis of asynchronous
federation learning (AFL) and synchronous federation learning (SFL) is performed.

2.2. Incentives for Federated Learning

In order to motivate UAVs and ground terminals to participate in federated learning
while minimising the training expenditure for model training, the incentives need to
be set fairly and reasonably. A new federated learning crowdsourcing framework is
presented in Ref. [27]. The framework demonstrates incentive-based interactions between
a crowdsourcing platform and independent strategies of participating clients to train
a global learning model in which each party maximises its own benefits. The authors
in Ref. [28] derive a Nash equilibrium that allows the parameter server to accurately assess
the client’s contribution to the training accuracy. In Ref. [29], a reputation-based reliable
federated learning worker selection scheme is designed, which combines reputation with
contract theory to effectively improve the accuracy of federated learning. Shapley values
are used in Ref. [30] to calculate the importance of grouped features for fair credit allocation.
A blockchain-based value-driven incentive mechanism is proposed in Ref. [31] to force
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participants to behave correctly and provide auditability for the entire training process.
In Ref. [32], a random auction framework is used for incentive mechanism design, where
the base station receives submitted bids and requires an algorithm to select the winning
bidder and determine the corresponding reward to minimise the social cost.

However, most studies on federated learning incentives have focused on improving
the accuracy of federated learning without considering the problem of limited incentive
costs. In addition to this, few incentive mechanisms simultaneously take into account the
security and defence functions. The federated learning incentive mechanism proposed in
this paper, which includes malicious defense, integrates security mechanisms and incentive
mechanisms for federated learning. It enhances the security of federated learning without
introducing additional computational overhead. The goal of the central server when
performing model training is to obtain highly accurate models. For the client, the more
incentives the central server provides, the faster the client’s model training is within the
limit of the client’s training frequency can reach. In the UAV-assisted space–terrestrial
integrated network, model training has a timeliness requirement, so we should minimise
the time delay during model training. With limited incentive cost, we allocate incentives
through hierarchical reinforcement learning, which improves the model training accuracy
and reduces the model training delay.

3. System Model

In this section, we describe the UAV-assisted space–terrestrial integrated network
scenario and the application of federated learning in that scenario.

3.1. Scenario Description

An UAV-assisted space–terrestrial integrated networks refers to the use of UAV tech-
nology to work in concert with ground terminal equipments to form an integrated and
seamless communication and data processing network. Federated learning is a distributed
machine learning technique that has a wide range of applications in UAV-assisted space–
terrestrial integrated networks, for example, in the fields of agricultural monitoring, en-
vironmental protection, traffic monitoring, disaster commentaries, network connectivity,
and so on. These application scenarios fully demonstrate the advantages of UAV-assisted
space–terrestrial integrated networks in terms of improving efficiency, reducing costs, and
enhancing security. With the continuous development of technology, more innovative
applications are expected to emerge.

UAVs as well as ground terminals act as clients for federated learning in UAV-assisted
space–terrestrial integrated networks. UAVs are used to collect data from high altitude
platforms due to their wide coverage and ease of deployment. Ground terminals, such as
vehicle-mounted sensors, and smart devices, such as mobile phones, are used to collect
detailed data on the ground, and the two complement each other. With federated learning,
UAVs and ground terminals do not need to share local data information, but only need to
upload model parameters to the parameter server located at the base station, which protects
data privacy and security. Assuming that there are N1 UAVs participating in federated
learning and their local dataset is {X1, X2, . . . XN1}, and there are N2 ground terminals
participating in federated learning and their local dataset is {X′1, X

′
2, . . . X

′
N2
}. The UAV-

assisted space–terrestrial integration network is shown in Figure 1, where the UAVs are
located in the high altitude platform and can be used for data collection, data processing,
etc. The UAVs serve as an important complement to the ground terminals, expanding their
service coverage in remote areas such as rural areas and in various emergency situations.
Wireless communication infrastructure such as edge servers or cloud servers located at the
base station act as a central server for uniting the UAVs with the ground terminals.



Electronics 2024, 13, 1129 5 of 18

Figure 1. Schematic diagram of a UAV-assisted space–terrestrial integration network.

3.2. A Federated Learning Model Based on UAVs and Ground Terminals

In federated learning, a central server located at the base station or cloud server is
responsible for sending learning tasks, aggregation of parameters, and incentive issuance.
Pedestrian users, self-driving cars, and other ground terminals, together with UAVs, act
as clients and are responsible for training with their own data and uploading the training
parameters to the central server for aggregation. The specific federated learning process is
shown below.

The central server receives the model training task and distributes the initialised model
parameters to the UAVs and ground terminals. The UAVs and ground terminals train the
local models using the local datasets {X1, X2, . . . XN1} and {X′1, X

′
2, . . . X

′
N2
} and upload

the trained local model parameters to the server for aggregation to generate new global
model parameters. In this process, a loss function needs to be defined, which is minimised
for learning purposes by using the clients’ datasets. A total of N1 + N2 clients of UAVs
and ground terminals participate in the federated training. fi(ω) denotes the loss function,
where 0 ≤ i ≤ N1 + N2 − 1, the dataset owned by client i is Di, and the number of this
dataset is denoted by |Di|. Then, the loss function of this client is:

Fi(ω) =
1
|Di| ∑

j∈Di

fi(ω) (1)

The global loss function F(ω) can be expressed as:

F(ω) =
∑N1+N2

i=1 |Di|Fi(ω)

∑N1+N2
i=1 |Di|

(2)

The optimal ω is obtained through the global loss function, and we use the federated
averaging algorithm to approximate the optimal ω. The central server aggregates the
average gradient of the local model and uses it for updating:

ωi,k+1 ← ωi,k − η∆ f (ωi,k) (3)

where ωi,k denotes the training parameters of the k-th iteration of the i-th server, η denotes
the learning rate, ∆ f (ωi,k) is the gradient of the loss function, and finally, the cloud server
performs a global aggregation of the client’s training parameters.
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4. Setting of Federated Learning Incentives

In order to design a reasonable incentive algorithm, we first need to specify the cost
required for the client to participate in federated learning, so as to obtain the utility of the
client’s participation in federated learning. The optimisation goal of both the client and the
server is to maximise their own utility.

4.1. Cost of UAVs and Ground Terminals

When participating in federated learning, the client needs to consume its own arith-
metic and communication resources. Therefore, to design the incentive mechanism for
federated learning, we need to specify the cost of UAVs and ground terminals when they
participate in federated learning. We assume that the cost for UAVs to participate in fed-
erated learning is EUAV

i,k , and the cost for ground terminals is EGT
i,k . The cost of the clients

involved in federated learning, whether UAVs or ground terminals, mainly consists of
two aspects: computation cost and communication cost. The computational cost of clients
participating in federated learning is mainly related to their computational power, and the
CPU computational cost Ecmp

i,k ( fi) for the kth local update of client i is expressed similar
to Ref. [16]. We propose the Hierarchical deep learning (HRL) algorithm to solve the p2
optimisation problem. We describe the HRL algorithm in three parts: client contribution
measurement, malicious client detection mechanism, and practical deployment of the
hierarchical incentive algorithm.

Ecmp
i,k ( fi) = ζiciDi f 2

i,k (4)

where ζi denotes the effective capacitance factor of the computational chipset of client i, ci
denotes the number of CPU cycles used by client i to perform the computation of one bit of
data samples, and the total number of data that client i participates in training is Di.

After training with local data, clients need to upload the trained model parameters
to the central server for aggregation. The communication cost required for uploading the
model parameters is related to the time, power, and number of parameters required for
uploading the parameters, and the communication cost Ecom

i,k can be expressed as:

Ecom
i,k = piTcom

i,k = pi
bi
Ri

(5)

where pi denotes the transmission power of client i, bi is the magnitude of the number of
uploaded model parameters, this magnitude being the same for each client, and Rj

i is the
uplink data rate achievable by client i in subchannel j, which can be expressed as the data
transmission rate of the j-th subchannel of client i according to Shannon’s formula:

Rj
i = W log

(
1 +

(Ai − 1)pih
j
i

WN0

)
(6)

where the bandwidth of the subchannel is W, pi is the transmission power of client i, hj
i is

the j-th subchannel power gain between the client and the server, N0 is the power spectral
density of the additive Gaussian white noise during wireless transmission, and Ai is the
number of antennas assigned to client i. Therefore, the total uplink rate when client i
participates in federated learning is the sum of all subchannel data transmission rates:

Ri =
Ji

∑
j=0

Rj
i (7)

where Ji is the total number of subchannels used by client i for model updating.
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The training cost of client i is the sum of the computational and communication costs:

Ei,k = αEcmp
i,k ( fi) + βEcom

i,k (8)

where α and β are the adjustment coefficients of computational cost and communication
cost. The UAV has good communication performance but limited arithmetic power, and
the ground terminal has high communication cost but stronger arithmetic power, so in the
setting of parameters, αUAV > αGT , βUAV < βGT .

4.2. Setting of Incentives

Clients participate in federated learning by consuming their own resource costs, such
as arithmetic, energy, time, and traffic. Clients will only participate in federated learning if
the central server provides a certain incentive to do so. Based on the incentives provided
by the central server, clients determine the optimal computation frequency for training
their local neural network models, so as to maximise the benefits of their participation
in federation learning. The client maximises its own benefit within its own achievable
frequency range, and the optimisation problem can be expressed as:

P1 : max
fi,k

incomec
i,k

s.t.
{

incomei,k ≥ 0
fi,k ∈ [ f min

i,k , f max
i,k ]

(9)

The utility incomec
i,k of client i when participating in the k-th training round of feder-

ated learning is the difference between the incentives gained by the client from participating
in federated learning and the cost consumed by participating in learning, which can be
expressed as:

incomec
i,k = payi,kζi,k − Ei,k (10)

where payi,k denotes the incentive payoff per CPU cycle frequency given to client i by the
server in the k-th round of training; the form of incentive payoff is decided by the server in
the actual deployment, which can be money, information resources, access to models and
other forms of resources. Moreover, ζi,k denotes the frequency of CPU cycles used by client
i when it participates in local local model training in k rounds of training.

The client, in order to determine its own optimal training frequency, calculates the
first order derivative of incomec

i,k with respect to ζi,k as:

∂incomec
i,k

∂ζi,k
= payi,k−2ζiciDi fi (11)

After the second order derivation of incomec
i,k on ζi,k, it can be seen that incomec

i,k
is a convex function of ζi,k, so for a given incomec

i,k, the local can be calculated when
∂incomec

i,k
∂ζi,k

= 0. The client’s unique optimal training frequency value is:

ζBest
i,k =

payi,k

2ζiciDi
(12)

The client, in order to maximise its revenue, defaults to the best local training frequency
ζBest

i,k after receiving the offer from the server.
The goal of the central server is to achieve higher training accuracy using as little incen-

tive as possible. Thus, for the central server, the goal of incentive design is to achieve higher
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training accuracy within a limited budget through a reasonable incentive allocation method.
Therefore, the goal of the central server is defined as the optimisation problem of P2:

P2 : max
payi,k

incomes = λA(ω)−
K−1
∑

k=0

N−1
∑

i=0
payi,k fi,k

s.t.
K−1
∑

k=0

N−1
∑

i=0
payi,k fi,k ≤ Bsever

(13)

The central server requires reasonable incentive settings in order to achieve the P2
optimisation problem, and the central server incentive setting algorithm is described in
Section 5 below.

5. Hierarchical Incentives for Federated Learning

We propose the HRL algorithm to solve the p2 optimisation problem. We describe the
HRL algorithm in three parts: client contribution measurement, malicious client detection
mechanism, and practical deployment of the hierarchical incentive algorithm.

5.1. Client Contribution Measurement

Since the individual clients are cooperating with each other in the game, certain
benefits are generated through cooperation. The Shapley value is used to determine the
contribution made by each participant in the cooperation and assign them a reasonable
share of the benefits. The core idea of the Shapley value is that the contribution of a
participant should be measured by their marginal contribution in all possible coalitions.
Marginal contribution is the change in value to the whole coalition when a participant joins
or leaves a coalition.The Shapley value provides a better measure of the client’s contribution
in multidimensional and complex situations. The Shapley value measures the value of the
client’s contribution as:

Sk
i (F) = ∑

S⊆F,i/∈S

|S|!(|F| − |S| − 1)!
|F|! {v(S ∪ i)− v(S)} (14)

We denote the data federation as F =< Users, v >, where Users denotes all clients,
v is the model test accuracy, and S is the subset that does not contain client i. Using
|S|!(|F|−|S|−1)!

|F|! denotes the probability of client i appearing in each cooperation order, and
{v(S ∪ i)− v(S)} denotes the marginal contribution of client i, i.e., the difference between
the model test accuracy when the subset containing client i participates in training and the
model test accuracy when the subset not containing client i participates in training.

The central server determines client incentives based on the client’s contribution value
Sk

i (F). The larger the contribution value Sk
i (F) of client i is, the more the client contributes

to the global training, and we provide more incentives for such a client.

5.2. Malicious Client Detection Mechanism

The Shapley value is used to measure the contribution of the client and there are
differences in the calculated Shapley value for different clients. The more positive the
contribution of the client to the system model, the larger the Shapley value. Thus, we can
use the Shapley value for noisy data detection and toxic data detection to improve the
robustness of the system. Based on the client’s contribution value, we can identify the
malicious clients in the system, provide 0 incentive to the malicious clients, and prevent the
malicious clients from participating in the aggregation. Meanwhile, the malicious records
of the clients are saved in the central server, and the clients with too many malicious records
will no longer be selected in the subsequent tasks. We set the coefficient θ(Sk

i (F), γ) to
distinguish honest clients from malicious clients. In the case where a client has malicious
behaviours such as flip-tag attack and adversely affects the global model training accu-
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racy, the Shapley value of that client is less than zero, so we generally set γ = 0 in our
experiments.

θ(Sk
i (F), γ) =

{
1, Sk

i (F) > γ

0, Sk
i (F) < γ

(15)

Subject to the malicious client detection parameter θ(Sk
i (F), γ), the incentive payoff

returned by the server for client i’s participation in the model training at round k can be
expressed as:

payi,k = αi,kθ(Sk
i (F), γ)Sk

i (F) (16)

where αi,k is a tuning parameter, and the central server dynamically adjusts the value
ofαi,k by using a proximal policy optimisation (PPO) algorithm. Moreover, αi,k controls the
incentive to client i to adjust the training frequency of client i, thus equalising the learning
time of different clients to minimise the training time for each round and enhance the time
utilisation.

5.3. Hierarchical Incentive Setting

UAVs and ground terminals cotrain machine learning models through federated learn-
ing, which are often complex, and their accuracy gains are difficult to obtain through simple
mathematical reasoning. At the same time, due to the privacy protection of the clients by
federated learning, it is difficult to obtain information about its private information and
training capability. In the incentive setting, we have to satisfy both the need to reduce
the incentive cost and the need to minimise the latency. Satisfying these two needs at
the same time, is not possible with only a single layer of constraints. In order to ensure
better global model training performance, this paper adopts a deep reinforcement learning
approach based on PPO to design an optimal hierarchical incentive strategy. This strategy
not only saves the incentive cost, but also ensures the security of the training process and
reduces the training latency to a certain extent. The PPO algorithm allows servers and
clients to dynamically adjust their training strategies to optimise their benefits without
prior knowledge of each other’s behavioural norms.

The steps for the implementation of this hierarchical incentive mechanism are shown
below: the upper state of the k-th round consists of two main aspects: the historical
information of the previous k− 1 rounds (including the server’s historical pricing policy,
the client’s training time, etc.) and the current state (the remaining budget).

Upper-level actions are used to allocate the total incentive for each round. From the
upper-layer actions, the lower-layer states, i.e., the total incentives for each round, can be
obtained. Since the iteration time of each round of federation learning depends on the time
max Tk

i
i∈N

used by the client with the largest training time, the lower layer action is used to

distribute the total incentive of the round among the clients to minimise the iteration time
of each round of federated learning. Here, Tk

i denotes the local model training time of client
i when it participates in the k-th round of federated learning.

The upper level reward Rup is to maximise the benefit to the server, which is expressed
as the difference between the accuracy gain λA(ωk) and the incentive paid to the client:

max Rup = λA(ωk)−∑
i∈F

αi,kθ(Sk
i (F), γ)Sk

i (F)ζi,k (17)

where λ denotes a tuning parameter for the accuracy gain, which is used to adjust the
accuracy gain to the same order of magnitude as the incentive payoff that the server pays
to the clients, and A(ωk) is the test accuracy of the global model after the k-th round of
training or is some other model performance metric.

The lower incentive mechanism is used to minimise the training time of each round of
federated learning; the server can adjust the size of payi,k by changing the value of αi,k so as
to control the training time of the client’s local model. Therefore, the lower layer reward is:



Electronics 2024, 13, 1129 10 of 18

max Rlow = −max Tk
i

i∈N
(18)

where Tk
i denotes the local model training time of client i when it participates in the k-th

round of federated learning.
The local model training time Tk

i of client i while participating in the k-th round of fed-
erated learning consists of two parts: communication elapsed time Tcom

i,K and computation
elapsed time Tk

i,cmp:

Tk
i = Tcmp

i,k + Tcom
i,k

=
ciDi
fi,k

+
bi

∑Ji
j=0 W log

(
1 + (Ai−1)pih

j
i

WN0

) (19)

where ci denotes the number of CPU cycles for client i to execute one bit of training data
and bi is the size of the model parameters uploaded by client i. During the iteration process,
the upper and lower layers gradually explore the optimal policies for their respective goals
to maximise the reward Rup and Rlow of the upper and lower layers. With each iteration of
federated learning, the incentive strategy of the server is dynamically adjusted accordingly
to approach the optimal gradually, and the iteration is stopped when the server’s budget
is exhausted or the federated learning model reaches convergence. The implementation
of the algorithm is shown in Algorithm 1, and the flowchart of the algorithm is shown in
Figure 2.

Figure 2. Schematic of hierarchical incentives for federated learning.
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Algorithm 1: Hierarchical incentive algorithms for federated learning.
Require: Precision correction factor λ, number of clients C, higher-level policy

π−H
(

aup
k , sup

k

)
, lower-level policy π_L

(
alow

k , slow
k
)
, learning rate η;

1: Initialisation ω0:
2: if k = 0 then
3: Broadcast initialisation ω0 to all clients.
4: Broadcast initialisation lower-level policy π_Ł pricing policy.
5: for i ∈ S do
6: Selection of optimal training frequency values based on pricing strategy.
7: Return gradient ∇g(1)0 training time Tk

0 to central server.
8: end for
9: Central server side:

10: Average the gradient and update ωi,1 ← ωi,0 − η∆ f (ωi,0).
11: Measuring client contributions for attack identification and contribution

allocation.
12: Assign the upper round incentive payi,0 and update the upper state sup

1
13: end if
14: if k = 1, 2, ..., K− 1 then
15: The upper level strategy aup

k is determined by max target up based on
the upper level state sup

k .
16: aup

k →slow
k

17: for i ∈ S do
18: Broadcast the global model ωk and pricing policy payi,k−1 to all clients.
19: Client selects the most frequent training frequency to train.
20: Return gradient ∇g(t)k training time Tk

i to central server.
21: end for
22: Central server side:
23: if Target accuracy not met or budget not exhausted then
24: Average gradient, update ωi,k+1 ← ωi,k − η∆ f (ωi,k) and update

the upper state sup
(k+1).

25: Measuring client contributions for attack identification and contribution
allocation.

26: Adjust αi,k by determining the lower level strategy alow
k from max

max target low based on the lower level state slow
k .

27: Make single round incentive allocations Payi,k = αi,kθ(Sk
i (F)Sk

i (F)
28: end if
29: end if

6. Experimental Results

In this section, we design experiments to compare the performance of the proposed
HRL algorithm with other algorithms and analyse the experimental results.

6.1. Experimental Setup

In recent years, UAVs working in conjunction with ground terminals have a wide range
of applications in environmental monitoring, disaster response, military fields, etc. CNN
and RNN models provide more advanced and sophisticated combinatorial mechanisms to
learn representations from machine data. Therefore, we choose the CNN model for our
simulation experiments. We use PyTorch to implement HRL and run the experiments with
a GeForce MX 450.

Fmnist is a lightweight image classification dataset containing grey scale images of
various garments. Compared with the traditional MNIST dataset, Fmnist is closer to the
real scene and has better generalisation ability. The Fmnist dataset contains 10 categories of
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clothing images covering a wide range of different objects and textures, which can better
reflect the diversity of data in the real scene. In UAV-assisted space–terrestrial integrated
networks, image classification tasks may be widely used, such as identifying features and
detecting targets. Therefore, using the Fmnist dataset can simulate such image classification
tasks and verify the effectiveness of federated learning in this scenario.

The Fmnist dataset uses a CNN model for the classification task. The model consists
of two convolutional layers. The first convolutional layer has 10 output channels and
a convolutional kernel size of 5. The second convolutional layer has 10 input channels,
20 output channels, and a convolutional kernel size of 5. The first fully connected layer has
an input size of 320 and an output size of 50. The second fully connected layer has an input
size of 50 and an output size of 10, because Fmnist has 10 numerical categories. A Dropout
layer is also set up for random neuron dropping during training to prevent overfitting. The
size of the input layer is determined by the feature dimension of the data. The image size
in the Fashion-MNIST dataset is 28 × 28, and it is a grey scale image, so the dimension is 1.
The number of input layers is determined by the number of output channels, i.e., 10. In the
forward propagation method, the features undergo convolution, pooling, spreading, and
other operations for final classification output.

We keep the total amount of data constant at 60,000 and distribute the data unevenly
to 6, 10, 20, 30, 40, and 50 clients using the HRL algorithm for incentive allocation, and the
experimental results are shown in Figure 3. We can see from the figure that the training
effect is best when the number of clients is set to 6, so we set the number of clients to 6 in
the subsequent experiments.

Figure 3. Histogram of accuracy with a different number of clients.

The experiment uses a federated learning framework which consists of a server and
six clients. Three of the clients are set up as UAVs and three are set up as ground terminals.
The UAVs have better communication capabilities, but weaker arithmetic power compared
to the ground terminals. Therefore, the number of CPU cycles ci used by the UAV to
perform the calculation of one data sample is set to 15 cycles/bit, the ground terminal is
set to ci = 30 cycles/bit, the communication time of the UAV is randomly distributed in
the range of 10∼15 s, and the communication time of the ground terminal is randomly
distributed in the range of 15∼20 s. We set αUAV = 2, αGT = 1, βUAV = 1, βGT = 2, and the
effective capacitance factor is 2× 10−28. In practice, the amount of data owned by each
UAV and ground terminal is also different, so six clients are set up in the experiments that
are not independently and identically distributed and have datasets of different sizes. The
Fmnist dataset is used for the experiments. We set up different clients with different data
distributions, and the model needs to have the ability to handle data heterogeneity in order
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to adapt to the data characteristics in different environments. At the same time, we set
different clients with different amount of data in our experiments. This can help evaluate
the generalisation ability of the model in the face of sparse data or uneven data volume.
By performing federated learning on data from different clients, the model’s ability to adapt
in different environments can be evaluated. This is crucial for the deployment of the model
in real scenarios, as data distributions in the real world are often non-independently and
identically distributed.

We abbreviate the hierarchical reinforcement learning motivation algorithm proposed
in this paper as HRL. We compare the proposed algorithm with the greedy algorithm,
the baseline algorithm, and the Monte Carlo (MC) algorithm, and the remaining three
algorithms are set up as shown below.

Greedy Algorithm [33]: the greedy algorithm selects an initial solution from all possible
solutions to the problem, the algorithm makes locally optimal choices at each stage and
expects to reach the global optimum through these locally optimal choices.

Baseline Algorithm [28]: a single-level DRL algorithm is designed to constrain both
reward and time, i.e., to set the single-level reward to R = −(αTgloble + ∑

i∈F
Sk

i (F)ζi,k), while

the PPO algorithm is used to dynamically adjust the incentives between rounds.
Monte Carlo algorithm [34]: alternating iterations of Monte Carlo sampling and

proximal policy optimisation. In each iteration, Monte Carlo sampling is performed to
obtain new samples and then the proximal policy optimisation algorithm is used to adjust
the parameters. Such an iterative process can help the algorithm gradually converge to the
global optimal solution or the local optimal solution.

6.2. Experimental Results and Analyses

Under different incentive budgets of 40, 80, 120, 160, and 200, the experiments compare
the number of training rounds, the time consumed per round, and the training accuracy
and loss function of the Fmnist dataset under four incentive allocation mechanisms: Greedy,
Baseline, MC, and HRL. Since the number of datasets owned by the UAV good ground
terminal is not the same, we set the ratio of the number of datasets owned by each user as
5:6:7:4:8:3. The experimental results are described below.

As can be seen from the experimental results of the accuracy under different budgets
for the Fmnist dataset in Figure 4, HRL is able to achieve the highest training accuracy under
the same incentive budget. For example, at an incentive budget of 40, the trained model
using the HRL incentive allocation mechanism already achieves 96.3% accuracy, whereas
the model using the baseline and MC incentive allocation mechanisms only achieves 96%
accuracy at an incentive budget of 80, and the greedy algorithm only achieves 95.7%
accuracy at an incentive of 100.

Similarly, as shown in Figure 5, the loss function value of the model under the HRL
algorithm is always lower than that of the baseline, MC, and greedy algorithms under the
same incentive budget. From Figure 6, it can be seen that the average training time per
round is highest for the greedy algorithm and similar for the baseline and MC algorithms
under different training budgets.The average training time for the HRL algorithm is slightly
higher than baseline and MC algorithms at budgets of 20, 40, 60, and 80, and is lowest
among the four incentive algorithms at an incentive budget of 100.
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Figure 4. Test accuracy for training.

Figure 5. Test loss for training.

Figure 6. Average time per round.
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As shown in Figure 7, by analysing the number of training rounds for various incentive
allocation mechanisms under the same incentive budget, we can see that the HRL algorithm
always has more training rounds compared to the other three compared algorithms under
the same budget. The more the number of training rounds, the higher the accuracy of the
trained model when the model has not reached full convergence. Thus, by using the HRL
incentive allocation mechanism, higher training accuracy and smaller training loss can be
achieved at the cost of a small increase in training time.

Figure 7. Number of training rounds.

Since federated training at UAVs and ground terminals has more flexible scheduling of
task release and data collection, the requirement for latency can be reduced by reasonable
planning and scheduling. However, model training in space–terrestrial integrated networks
mostly requires higher accuracy to ensure the reliability of model training. Therefore,
the HRL model is suitable for UAV-assisted air-ground integrated networks because the
algorithm saves training costs, ensures federated learning security, and improves the
economic efficiency of model training. The HRL incentive mechanism, besides being
applied to UAV-assisted space–terrestrial integrated networks, has a better prospect in
many fields, such as automotive networking [35], smart factories, and schools.

In order to validate the HRL model’s ability to detect malicious users, we partially
inject the flip-flop label attack on the clients participating in federated learning. We still
design a central server and six clients to participate in federated learning, three of which
are UAV clients and three of which are ground terminals. We inject 50% of the flip label
attack to one of the UAV clients and two of the ground terminals, with the remaining clients
left as normal. Figure 8 shows three curves for the Fmnist dataset, under which all six
clients are diligent clients (blue curve), containing three malicious clients but using the
HRL algorithm (red curve), and containing three malicious clients but no malicious client
detection algorithm (green curve).

As can be seen in Figure 8, the accuracy of the HRL algorithm is slightly reduced in the
presence of a flip-flop tag attack. However, compared to the absence of defence mechanism,
HRL not only improves the model accuracy, but also reduces the oscillations and increases
the stability of the model.
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Figure 8. Comparison of accuracy under the Fmnist dataset containing malicious clients.

7. Conclusions

In this paper, we present a federated learning-based model of hierarchical reinforce-
ment learning incentives to protect the data privacy of UAVs and ground terminals.
The model aims to incentivise participants to actively participate in joint training. This in-
centive mechanism is capable of dynamically adjusting the rewards to motivate the parties
to collaborate according to the stated goals while maximising the protection of their local
data. By conducting experiments on the Fmnist dataset, we observe that using our proposed
hierarchical reinforcement learning incentive mechanism slightly increases the training
time. However, for the same budget, our approach achieves higher training accuracy. This
shows that our model is able to improve the model performance under a certain incentive
budget. Meanwhile, we set up a malicious attack identification mechanism to better secure
the model training. This mechanism detects and filters out potential malicious attacks to
ensure that the data and models of the participants are not compromised. By comparing our
model with greedy, baseline, and Monte Carlo algorithms, we demonstrate its advantages
in saving incentive budget, improving training accuracy and guaranteeing model security.
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