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Abstract: In this paper, a mathematical model for obtaining energy consumption of IMC architectures
is constructed. This model provides energy estimation based on the distribution of a specific dataset.
In addition, the estimation reduces the required simulation time to create an energy consumption
model of SRAM-based IMC architectures. To validate our model with realistic data, the energy
consumption of IMC is compared by using NeuroSim V3.0 for the CIFAR-10 and MNIST-like datasets.
Furthermore, an application is created with our model to select highest performing quantization
mapping based upon the parameters of energy consumption and accuracy.

Keywords: in-memory computing; benchmarking; energy consumption; mathematical model

1. Introduction

The use of machine learning ushered in a new era for a wide variety of fields from speech
recognition to image classification. Among these fields, a large amount of work is dedicated
to keyword or key image search algorithms and systems. Such tasks are found to be well
suited for Deep Neural Network (DNN)-based machine learning implementations. When
these are used as sub-units and employed in larger systems, they can act as a trigger for
more complex functions. As such, they allow for power reduction by keeping the complex
functions powered down unless they are triggered by the lower-power keyword or key image
search sub-unit. Such applications can also be referred to as “key-data” detection. Therefore,
power consumption of such trigger sub-units, which continuously search for simple trigger
data, is critical, and such units need to be carefully designed to reduce system level power
consumption. Power optimizations often involve architectural decisions and need to allow
designers to estimate power as early as possible during the design cycle. As a result, many
studies in the literature have proposed various system architectures to reduce overall
energy consumption [1–4].

To satisfy the requirements during the implementation of machine learning-based
“key-data” search algorithms, in-memory-computing (IMC) techniques are often used. This
architecture eliminates excessive data transfers between memory and processing units by
introducing arithmetic functionality within each memory cell. Additionally, the weight
data of DNNs or fully connected layers (FCLs) are also stored in the memory. Thus, using
the data and the arithmetic functionality in each memory cell, the output is computed in
parallel. Here, each storage element implements single-bit multiplication, which is a part
of a larger operation [5]. By employing different types of arithmetic units in memory cells,
various types of IMC architectures were developed in [5–23]. These works aim to improve
energy consumption, speed, and accuracy. Additionally, inputs with different resolutions,
ranging from single-bit precision in [5,6,19] to multi-bit precision, were used [7–12] to
satisfy the accuracy criteria of various types of neural networks [7]. In addition to these,
there are studies carried out at the device level to realize lower-power IMC architectures
based on different types of memory cells [24,25].
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Regarding speed and accuracy of key-data search algorithms, the wake-up delay of
such systems can be in the order of 100 ms, or even as high as 1 s, which is a relatively long
duration for microelectronic systems. Last but not least, due to the need for detecting a
smaller set of words, images, etc., the system has a relaxed accuracy specification. Hence, a
smaller dataset would be enough to train a low-power Deep Neural Network (DNN)-based
system that remains always on, searches for keywords, and generates a trigger within
100 ms−1 s of detection. Therefore, it is necessary to enable designers to estimate the energy
consumption of such low power AI systems, as early as possible, preferably starting during
the architectural exploration phase.

To allow architects to estimate the power consumption of such designs, different types
of benchmarking software were proposed to simulate the power consumption and latency
of the IMC architecture [14,15]. Best known among these is the NeuroSim benchmark
framework. Other benchmarking software with similar features were proposed in [26–29].
Reported in [14,15], NeuroSim IMC benchmarking software achieves 10.51% power esti-
mation error from results obtained with ASIC power analysis tools using layout parasitic
extracted (LPE) netlists. This result was reported to be consistent across three different
technology nodes.

However, as the complexity of DNN structures increases, simulation times can reach
hours or even days. Moreover, in the case of larger datasets, simulation runtimes will
increase further. To speed up such analyses, semi-analytical models were also introduced in
papers [30–32]. This approach is still based on simulations during which power consump-
tion of a few key blocks is analytically computed and the simulation load is somewhat
reduced. However, simulation times can still reach many hours.

In this paper, we propose a mathematical model to predict power consumption for a
given dataset within seconds. Our approach stems from the observation that the power of
an always-active DNN array would reduce when its switching activity reduces. Combining
pre-computed power consumption of always-active circuits and switching activity from
different datasets, we can estimate power consumption in mere seconds. We were able to
show that the switching activity comes from the logic-1 bits in the pixels of the training
dataset. Using the ratio of the number of these bits to the size of the training data gave us
the switching factor we needed. Our fully active power numbers are based on a NeuroSim
simulation of the DNN. We verified our method, using different types of datasets. The key
contributions of our paper are summarized as follows:

(1) A fully analytical model is proposed to estimate the power and switching activity
factor of IMC-based architectures. Using our model, designers can pre-estimate overall
power consumption in seconds with an accuracy close to NeuroSim.

(2) The switching activity factors for MNIST-like datasets as well as the CIFAR-10 dataset are
computed. Designers can use these activity factors to improve their power estimations.

(3) An optimization for lowering the switching activity while maintaining high resolution
is proposed. It is shown that this optimization can be completed in orders of magnitude
shorter time compared to other simulation methods.

The rest of the paper is organized as follows. Section 2 discusses previous work
that is relevant to the subject of IMC modeling. Section 3 describes the theoretical back-
ground behind Artificial Neural Networks (ANNs) and the execution of multiply and
accumulate (MAC) operations on SRAM-based IMC structures and the power consump-
tion characteristics of these structures. Section 4 proposes an analytical model to predict
power consumption and introduces the activity factor. Section 5 compares predictions
of the proposed model against equivalent results from NeuroSim, which validates our
model. Switching activity factor lists for various CIFAR-10 and MNIST-like datasets are
also included. Lastly, an optimization example that lowers switching activity by various
quantizations of the dataset is included. Section 6 concludes the work and discusses the
possible future work from this study.
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2. Related Works

Recently, modeling the power consumption of IMC structures, in addition to the
performance of the DNNs they realize, has been a popular topic. In order to extract several
parameters of IMC structures, a wide range of methods are presented in various works.
Among these methods, some prior works [27–29] have introduced simulation software
to estimate the mentioned parameters. These simulators primarily focus on the correct
estimation of the DNN performance rather than simulation runtime. To reduce this, several
optimization methods are proposed. First among these is emulating the overall IMC
structure in a Field Programmable Gate Array (FPGA) [30], while others use analytical
models [31,32] to accelerate the simulation speed.

2.1. Software Simulation for Estimation of IMC Performance

In [27], a novel circuit-level macro model that estimates the performance of several
types of IMC structures such as analog or digital erasable nonvolatile memory (e-NVM)
is introduced. This simulator, aka NeuroSim, can estimate circuit performance based on
the various process technology information and device properties. So accordingly, this
simulator provides designers with the ability to perform a wide range of space explo-
ration. Similarly, Eva-CIM [28] is another system-level evaluation framework that targets
to correctly estimate the performance and energy consumption of IMC-based systems.

In [29], a Python -based framework is introduced to correctly estimate the accuracy of
a DNN structure. It is mentioned that the model can predict this by considering several
design parameters such as an activated row, partial sum quantization configurations, and
non-idealities of several blocks in IMC. Similar work in [32] proposed techniques such as
using behavioral models. These simulators are primarily designed to enable the designer to
estimate the accuracy of a DNN rather than the energy consumption of the IMC structure
that implements the DNN.

2.2. Emulation in FPGA for Estimation of IMC

In [30], an emulator is designed to implement IMC in FPGA devices. With the aid of
the FPGA device, this work aims for quick and correct estimates of the energy consumption
of the hardware and the accuracy of the DNN. However, creating a mimic IMC in an FPGA
requires a detailed implementation of the system, and it is difficult to achieve coverage
during architectural explorations. This could result in a new challenge to the designer for
accelerating the design process.

2.3. Analytical Model for Estimation of IMC

In [31], a uniform modeling framework is introduced to estimate the energy consump-
tion using analytical models rather than architecture-level simulations. In that paper , it is
stated that all layers of the DNN structure should be analyzed to estimate activity for each
layer. By gathering technology and architecture parameters from the user, the model in [31]
estimates the energy by using energy consumption per activity. Although the paper claims
to reduce simulation time, it is not clear how fast the proposed rather complex algorithm
can be completed. Furthermore, the algorithm introduced in [31] estimates energy for each
DNN layer, which can increase the simulation time.

In contrast to these prior works, in this paper, we implemented a fully analytical
model for estimating dynamic energy consumption in IMC structures. Our model cre-
ates quick estimations of IMC array energy consumption, which can be useful in early
architectural explorations.

3. Background

An DNN is a multi-net network chain that mimics the human brain neuron system
with a computational model. Similar to the human brain, DNNs involve learning algorithms
such as backpropagation, which is commonly used in many machine learning applications.
In our study, backpropagation is used to train the Fully Connected Layers (FCLs) using the
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MNIST dataset. The backpropagation train algorithm consists of three different calculation
stages: feedforward, error calculation, and weight update [33]. The three stages are
executed in each epoch to train the FCLs. After the training session, in normal operating
mode, only the feedforward stage executes to classify certain datasets. Therefore, in our
model, we focused only on the power consumption of the feedforward calculation part.

Feedforward calculation is expressed in (1). The calculation involves multiply and
accumulate (MAC) operations, since input vector Ak

n is multiplied by the weight matrix
wn and the products are added. (As a side note, index k represents the specific layer in the
NN chain). After that, the sum is passed through the activity function φ. For our purpose,
the sigmoid function is assumed as the activity function.

Ak+1
m = φ [ ∑

n
( Ak

n . wn,m ) ] (1)

In order to model the energy consumption of the IMC structure faithfully, it is essential
to understand the operations during the binary multiplication phase and accumulation
phase [33].

3.1. Binary Multiplication Phase

As it is depicted in Figure 1, MAC operations start by loading the input data (Ak
n) to

the word line driver. As it is shown in (2), each row of the SRAM array is activated serially
according to the binary value of each bit in Ak

n[j]. In (2), the additional j parameter denotes
the index of each bit in Ak

n. Next, each 8T-SRAM block in the activated row starts to draw
current from bit lines according to their stored wn,m[j] binary weight data, implementing
the multiplication. This product current is sensed via a trans-impedance amplifier (TIA) to
digitize the product for the accumulation phase.

g(x) =

{
nth row active if Ak

n[j] = 1
nth row inactive if Ak

n[j] = 0
(2)

Figure 1. Simplified architecture of SRAM-based IMC architecture.

3.2. Accumulation Phase

Products from the TIA are accumulated by the adder and register. Here, rows of the
product matrix are added one by one resulting in a single row, as shown in (3). MAC
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calculations are repeated according to the bit-length of input activation data for input bit
lengths, in the range of j ∈ [1 . . . N] where N denotes the activation data bit length.

Ak+1
m = ∑

j
∑
n
( Ak

n[j] · wn,m[1 : N] ) · 2j (3)

4. Mathematical Model

This section describes the mathematical concept behind the energy model for IMC
architectures. In light of the information given in the previous section, a useful estimate
for energy consumption can be based on switching activity factors for different types of
applications. Next, the switching activity factor needs to be formally defined.

4.1. Switching Activity Factor

AF(%) =
Amount o f operation

Maximum level o f operation
· 100 (4)

In (4), the generalized switching expression of activity factor (AF) is described. Ac-
cordingly, the AF parameter demonstrates the percentage usage of the chip in computation
mode. Likewise, energy consumption is also directly proportional to the AF since the active
period of the chip is increased with the number of operations.

AF(%) =
∑m( Number o f active rows )
∑n( Number o f total rows )

· 100 (5)

In (5), the expression that defines the switching activity factor (AF) for the IMC SRAM
arrays is described. As expressed in (2), in the MAC operations, rows of SRAM array
are activated according to the Ak

n[j] activation bit value. For the case of inactivation of a
specific SRAM row, all structures such as TIA, registers, and adders remain inactive and
these structures are assumed to consume merely negligible static power. For the active
SRAM row, the phenomenon is vice-versa.

Hence, it can be deduced that the amount of Ak
n[j] = 1 in the total activation data

Ak
n directly influences the activity factor of the chip as well as its energy consumption. In

compliance with the result, the activity factor (AF) is described as

AF(%) =
∑( Amount o f Ak

n[j] = 1)
∑( Total size o f Ak

n)
· 100 (6)

In other words, the switching factor is defined as the ratio of the “number of logic-1
bits in the training data” to the “size of the training data”.

4.2. Quantization and Histogram of Activation Data

The histogram of certain activation data ρ(x) has a significant role in modeling energy
consumption since it carries information regarding the distribution of Ak

n multi-bit values in
the complete dataset. This allows us to create energy models for different datasets and quan-
tization configurations by obtaining their histograms. This procedure is explained below.

Activation data Ak
n is a multi-bit data structure. In order to reduce the dataset to

multi-bit activation data, the analog values in the specified dataset need to be quantized.
The quantization scheme is illustrated for q = [7, 0] in Figure 2.

As depicted in Figure 2, for each analog value, a 3-bit digital value is assigned. After
this process, the occurrence of each of n-bit codeword (for 3-bit cases ranging from 000
to 111), is determined. With this information, the frequency of the codewords is defined
as function a ρ(x). Using this information, the number of 1’s, i.e., Ak

n[j] = 1, in the total
activation data can be easily computed with the aid of Hamming weight function H(x).
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Analog Values

Binary Representation

0 0.25 0.5 0.75 1
000
001
010
011
100
101
110
111

Figure 2. Quantization scheme example for 3-bit q = [7, 0].

4.3. Energy Modeling

The energy model can be constructed using the histogram data and the Hamming
weight function. In the first step, Hamming weights H(x) of each n-bit codewords are
considered. (Hamming weight of an integer equals the number of non-zero bits in its binary
representation; for example, H(3) = 2).

As the Hamming weights of all n-bit codewords are calculated, these data can be used
along with the frequency of each n-bit codeword. This frequency is given by function ρ(x).
Combining these two pieces of information, the ratio of ones Ak

n[j] = 1 in the dataset can
be calculated using the expression described in (7).

Γp = ∑(H(x) ∗ ρ(x)) x = 1, 2, 3, · · · , 2n (7)

In (7), Γp denotes the total number of ones in the dataset. This formula allows us to
model both AF and energy consumption using the expression of (6). The complete model
for AF and energy consumption can be seen in (8) and (9), respectively. For simplicity, Γt is
used to define the total number of bits in the dataset Ak

n.

AF(%) = Γp/Γn · 100 (8)

E = A1 ∗ AF(%)/100 + A2 (9)

As it is depicted in (9), energy consumption is modeled as a linear function of AF(%).
In this expression, A1 coefficient, which is the always-active energy consumption, and A2
coefficient, which is the static energy consumption, are combined with AF(%) to estimate
the energy consumption. To illustrate the whole model, the extended version of (9) can be
seen in (10).

E = A1
∑(H(x) ∗ ρ(x))

∑(n ∗ ρ(x))
+ A2 x = 1, 2, 3, · · · , 2n (10)

In order to obtain A1 and A2 coefficents, NeuroSim simulations are performed with
two sets of training data. One where the input data are completely logic-1 bits, and another
where all the input data are logic-0 bits. A more intuitive way of explaining A1 and A2
coefficients related to the device parameters is shown in (11) and (12).

A1 = Maximum Energy − Minimum Energy (11)

A2 = Minimum Energy (12)

It can be interpreted that the designer will be able to predict energy consumption with
(9) for various datasets. We should also highlight that to estimate power consumption
using energy consumption data, the latency characteristics reported by NeuroSim can be
utilized. By combining the latency with the energy consumption estimates from our model,
a power consumption estimate can be obtained.
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4.4. Framework of Our Energy Estimation Model

In Figure 3, a framework of our model is described. According to Figure 3, estimation
starts by taking the histogram of the dataset. The histogram output of the dataset is an
n-sized array where n denotes the bit width of quantization. A histogram array is applied
to the input to generate %AF as shown in the highlighted portion of the block diagram.
Eventually, maximum and minimum power consumption of the IMC architecture are
also determined. Our proposed analytical model uses exactly these three parameters to
estimate energy.

Figure 3. Visualization of our model as a framework.

5. Results

Before examining the results, we would like to point out that, when compared to
power consumption results obtained from ASIC power analysis tools, NeuroSim IMC
benchmarking software power estimates show an error smaller than 10.51%. This result
was reported across three different technology nodes [27]. We also would like repeat that, to
obtain power consumption from the energy consumption data, the latency characteristics of
the specific IMC architecture reported by NeuroSim can be used. By combining the latency
with the energy consumption estimates from our model, power estimates can be calculated.

In this section, we will first compare the energy estimates from NeuroSim to the energy
estimates from the proposed analytical model. Next, we will determine the activity factors
for a number of datasets; lastly, we will use the proposed analytical model to optimize
power for different quantizations of the datasets and show that the proposed method can
perform such optimizations much faster than other methods.

5.1. Comparison of Proposed Analytical Model against NeuroSim

NeuroSim simulations were executed by using the DNN structure sized as
400 × 100 × 10 with 6-bit data words. The energy estimated by the analytıcal model
and energy simulated by NeuroSim are compared. In order to expand the comparison,
space variants of the input data are generated via a set of quantization maps q = [a, b].

In our case, 8× 17 variants of the quantization maps are used. In (13), an overall matrix,
which describes all different quantization maps used in our simulation, is shown below.

Q =


[63, 32] [63, 31] . . . [63, 16]
[61, 30] [61, 28] . . . [61, 14]

...
...

. . .
...

[49, 18] [49, 17] . . . [49, 2]


8×17

(13)
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As a reminder, for q = [a, b] mapping, the multi-bit values in the dataset are quantized
into the integers between a and b. Afterwards, the energy estimation model matrix E(Q) is
created for each quantization map by substituting each Qi,j into (10). Finally, energy estimated
by the model (E(Q)) and energy simulated by NeuroSim (Sim(Q)) are compared.

Next, an error matrix is created by calculating the error with respect to NeuroSim
results (14). Results plotted for comparison and error functions can be seen in Figure 4 and
Figure 5, respectively.

%Err(Q) =
E(Q)− Sim(Q)

Sim(Q)
· 100 (14)

In Figure 4, a comparison between analytical energy estimates and NeuroSim energy
estimates for MNIST dataset is plotted. As it is seen in Figure 4, our model estimates the
energy very close to the NeuroSim results. Similarly, the Err(Q) error function is plotted in
Figure 5. According to this plot, the maximum error does not exceed 2% while the average
error is 0.5% for various q = [a, b] quantization maps.

0
20

50556065

0.4

0.6

0.8

a
b

m
J

Fitted Data vs Simulation Data for k = [a,b]

Figure 4. A comparison between analytical energy estimates (3D surface plot) and NeuroSim energy
estimates (shown in red dots) for MNIST dataset.

0
20

50556065
0

2

a
b

%
er

ro
r

Error function, Average Relative Error = 0.47101%

Figure 5. Err(Q) Error function for MNIST dataset.

To evaluate the energy estimation accuracy of our analytical model, other MNIST-like
datasets (Fashion-MNIST, Sign-MNIST, Handwritten-MNIST, and Noisy-MNIST) and the
CIFAR-10 dataset are used when comparing the proposed analytical model against Neu-
roSim energy estimates. Furthermore, for each dataset, a double comparison is performed
to investigate the accuracy of the analytical model for row-by-row and parallel MAC op-
erations. The results of these evaluations and overall performances are summarized in
Figure 6. Here, it can be seen that the average errors of the proposed analytical model do
not exceed 1.5% for the whole group of datasets.
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Figure 6. Average estimation error of our model.

5.2. Switching Activity Factor List

In this part, we introduce a list that includes the switching activity of IMC-based
structures for frequently used quantization configurations. In most cases, for n-bit quanti-
zation, q = [2n − 1, 0] mapping is used for the maximum signal-to-quantization-noise ratio
(SQNR). Therefore, this mapping is used when obtaining the switching activity factors
listed in Table 1.

Table 1. Average switching activity list for MNIST-like datasets and CIFAR-10 dataset.

Dataset/Quantization-bits 6-bit 5-bit 4-bit 3-bit 2-bit

MNIST 24.31% 23.9% 24.78% 24.35% 24.35%
Fashion-MNIST 25.81% 25.61% 26.48% 26.14% 28.81%

Sign-MNIST 54.08% 53.97% 55.79% 55.73% 61.3%
Handwritten-MNIST 15.57% 15.61% 15.64% 15.73% 15.09%

MNIST-w/AWGN 45.89% 44.62% 43.77% 40.56% 37.98%
CIFAR-10 50.10% 49.18% 49.71% 48.13% 30.35%

5.3. Example of Fast Optimization Using the Analytical Model: Reducing Activity by Optimizing
Input Quantization

As opposed to the frequently used mapping q = [2n − 1, 0], during our simulations,
we have also observed that better quantization mappings can be found to optimize energy
consumption while maintaining DNN accuracy. In order to select such optimal quantization
maps q = [a, b], a figure of merit FOM parameter is proposed in (15).

FOM =
Quant. Range

Switch. Activity
=

(a − b)
AF(%)

q = [a, b] (15)

Using the evaluation criteria in (15) and our analytical model to estimate power con-
sumption, an optimization for quantization mappings was executed. Resulting mappings
as well as switching activity (and hence power) reductions are given in Tables 2 and 3.
Thanks to the quick estimation properties of our model, the improvements are found out
in a much quicker way. For each bit-width, the optimal quantization mapping is listed
in Table 2. Moreover, Table 3 includes the achieved power savings. As can be seen from
Table 2, using the standard q = [2n − 1, 0] mapping will not always yield the highest
savings. For example, in the MNIST dataset with 6-bit data quantization, it is beneficial
to use q = [48, 0] instead of q = [63, 0] to achieve a reduction in activity factor up to 41.3%
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while preserving DNN accuracy. As it can be seen from Table 3, it is possible to reduce the
energy consumption up to 53% by using different quantization mapping schemes.

We also observed the optimization results with respect to the histogram of code-words
(ρ(x)) in the training data across different datasets. According to these observations, the
power savings can be larger for bimodally distributed histograms, whereas more uniformly
distributed histograms did not yield significant power reductions.

Table 2. Optimized quantization mappings for MNIST-like datasets and CIFAR-10 dataset.

Dataset/Quantization-bits 6-bit 5-bit 4-bit 3-bit 2-bit

MNIST q = [48 0] q = [24 0] q = [12 0] q = [4 0] q = [2 0]
Fashion-MNIST q = [63 0] q = [30 0] q = [14 0] q = [7 0] q = [2 0]

Sign-MNIST q = [63 0] q = [31 0] q = [15 0] q = [7 0] q = [3 0]
Handwritten-MNIST q = [56 0] q = [24 0] q = [12 0] q = [6 0] q = [2 0]

MNIST-w/AWGN q = [63 0] q = [31 0] q = [15 0] q = [7 0] q = [3 0]
CIFAR-10 q = [63 0] q = [31 0] q = [15 0] q = [7 0] q = [2 0]

Table 3. Reduction in activity factor of in IMC circuitry for MNIST-like datasets and CIFAR-10 dataset.

Dataset/Quantization-bits 6-bit 5-bit 4-bit 3-bit 2-bit

MNIST −41.3% −38.08% −35.27% −52.9% −45.02%
Fashion-MNIST 0% −6.3% −10.2% 0% −38.5%

Sign-MNIST 0% 0% 0% 0% 0%
Handwritten-MNIST −27.60% −36.50% −32.47% −24.3% −40.8%

MNIST-w/AWGN 0% 0% 0% 0% 0%
CIFAR-10 0% 0% 0% 0% −38.6%

Finally, our estimation method reduces the power consumption estimation time signif-
icantly. A comparison of the simulation times for energy estimation using the proposed
analytical model vs. NeuroSim simulator is given in Figure 7 and indicates orders of
magnitude of potential savings. It should also be noted that architectural optimizations
such as searching for optimal mapping is only possible to perform due to the immense
time savings from the proposed analytical model. As such, we believe our method can be
useful, especially during initial architectural explorations.

It should be noted that while our method provides a very efficient way to estimate
power consumption, it does not provide any insight into the DNN accuracy. Even though a
fully connected network is assumed as the intended topology, the estimates that were used
from NeuroSim can be thought of as an upper limit.

Figure 7. Duration of our model compared to NeuroSim.
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6. Conclusions and Future Works

In this paper, an energy estimation model for IMC architectures is proposed. To create
an energy estimation model, we quantified the power reduction due to switching activity.
According to that, we were able to show that the switching activity comes from the 1’s in
the multi-bit input words of the training data. Using the ratio of the total number of these
1’s to the size of the training data gave us the switching factor we needed. It also allowed
us to compute power reductions from the consumption of an always-active circuit.

The proposed model is constructed based on the principle of active and inactive rows
in the SRAM array during the IMC computation process. The energy model is compared
against NeuroSim for aspects such as average energy estimation error and simulation
completion time. According to the comparison, the proposed model is able to model IMC
energy consumption for different quantization mappings with an average error lower than
1.5% for six different datasets. Lastly, our model reduces simulation execution time by
orders of magnitude 1000× compared to the NeuroSim simulator. Accordingly, the speed
of our model offers a great potential during architectural explorations, which can improve
the overall design process of IMC chips.

To recap the major contributions of our work is threefold:

• Introducing a very quick power estimation tool that can be very helpful during
architectural explorations;

• Tabulating switching activity factors for some appropriate datasets, such as MNIST-
like datasets as well as the CIFAR-10 dataset;

• Providing an example use of our algorithm. Here, we proposed an optimization for
lowering the switching activity while maintaining high resolution. We showed that
this optimization can achieve energy reductions up to 53% while completing in orders
of magnitude shorter simulation times compared to other simulation methods.

The possible future improvements of our work are to further expand the context of
the activity factors catalog by introducing additional datasets. Moreover, replicating the
power consumption simulations using ASIC power analysis tools and FPGA emulators
would strengthen the validity of our models. Here, the set of simulations would be reduced
to limit the simulation times required for completion. Additionally, since our work is an
architectural-level exercise we could not sweep operating conditions such as voltage and
temperature. However, if it is really necessary to include the effects of such variations,
they can be implemented as extra factors that are functions of temperature and other
operating conditions.
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