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Abstract: The analysis of the state of the literature in the field of methods of perception and control of
the movement of autonomous vehicles shows the possibilities of improving them by using an artificial
neural network to generate domains of prohibited maneuvers of passing objects, contributing to in-
creasing the safety of autonomous driving in various real conditions of the surrounding environment.
This article concerns radar perception, which involves receiving information about the movement
of many autonomous objects, then identifying and assigning them a collision risk and preparing a
maneuvering response. In the identification process, each object is assigned a domain generated by a
previously trained neural network. The size of the domain is proportional to the risk of collisions
and distance changes during autonomous driving. Then, an optimal trajectory is determined from
among the possible safe paths, ensuring control in a minimum of time. The presented solution to
the radar perception task was illustrated with a computer simulation of autonomous driving in a
situation of passing many objects. The main achievements presented in this article are the synthesis of
a radar perception algorithm mapping the neural domains of autonomous objects characterizing their
collision risk and the assessment of the degree of radar perception on the example of multi-object
autonomous driving simulation.
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1. Introduction

One of the most important issues in autonomous driving is the use of the detection
and tracking of other objects and the surrounding environment, which constitute radar
perception, in order to ensure the safety of the autonomous vehicle, both in an Advanced
Driver Assistance System (ADAS) and in a fully Autonomous Driving System (ADS). To
achieve this, it is necessary to faithfully reproduce the subjectivity of the assessment of
a multi-object situation subject to the influence of various environmental disturbances.
This can be achieved by using a previously trained artificial neural network or a game
control model. The article concerns the first proposal for the synthesis of a safe autonomous
driving algorithm with the radar perception of individual passing objects by assigning
them forbidden approach domains corresponding to the collision risk value.

1.1. State of Knowledge

The literature review will cover, first, ADAS systems, and then ADS systems, in the
field of Radar, Lidar and Video perception and methods of safe autonomous driving.

An analysis of the development of automated vehicles and intelligent driver assistance
in the Advanced Driver Assistance System (ADAS) is presented by Aufrere et al. in [1]. The
basis of these systems is close-range sensing, ensuring safe autonomous driving. To achieve
this, a video sensor, laser rangefinders, a rangefinder with light strips, sensor information
processing software, a map-based fusion system and an event probability prediction model
are used.
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Marcano et al. in [2] propose improving the Advanced Driver Assistance System
(ADAS) by using real, complex traffic scenarios to ensure safe autonomous driving in
all conditions. For this purpose, simulation platforms were used in three techniques
for longitudinal control of an autonomous vehicle at low speed. A classic PID controller,
adaptive network fuzzy inference system and model predictive control were used to control
an autonomous vehicle.

Manghat, in [3], analyzes the perception of the surroundings of an autonomous
vehicle using devices such as radar, lidar, sonar, GPS, odometry and inertial. The following
technological solutions were used for driver assistance in the field of safety: adaptive cruise
control, forward collision warning and collision mitigation by breaking.

Sligar, in [4], presents a radar perception algorithm based on machine learning for
detecting objects and then creating high-dimensional virtual datasets used in training and
testing of advanced driver assistance system (ADAS).

In terms of various detection and tracking perception techniques in an Autonomous
Driving System (ADS), the following works can be mentioned in the last few years.

Manjunath et al. in [5] deal with radar perception in terms of object grouping and
tracking in the most common multi-object scenarios and testing typical driving maneuvers.

Hussain et al. in [6] present the application of deep learning algorithms to de-
tect and track objects in perception using video, lidar and radar devices in difficult
weather conditions.

Yang et al. in [7], to enhance radar and lidar perception capabilities, used voxel-based
early fusion and attention-based late fusion, which learn from the input data.

Kramer, in [8], presents radar perception in the millimeter wave range, which enables
the implementation of radar–inertial assessment of the state in smoke and fog, estimation
of the relative change in the radar position and detection of moving obstacles along the
path of an autonomous vehicle.

Scheiner et al. in [9], paid particular attention to the quality of input data to the radar
perception process and the use of deeper and more complex neural network structures. For
sparsity, high-resolution processing or the use of low-level data layers and polarimetric
radars are used.

Gupta et al. in [10], provided an up-to-date review of the applications of deep learning
in object detection and scene perception in autonomous vehicles. The implemented image
perception while driving ensures safe driving without human intervention.

Yao et al. in [11], proposed combining radar perception and signal processing of radar
measurements through deep learning. The essence of their considerations is to generate
the following five radar representations, ADC signal, radar tensor, point cloud, grid map
and a micro-Doppler signature, to which data sets are assigned.

Tu et al. in [12], analyze the concept of multi-sensor detection by placing an adversary
object on the host vehicle. To obtain more reliable multimodal perception, adversarial
training with feature denoising is used. which increases resistance to such attacks.

Hoss et al. in [13], to take into account the uncertain perception of the environment,
propose the use of verification and validation at the interface of perception and planning
from the point of view of test criteria and metrics, test scenarios and reference data.

Gao, in [14], synthesizes various radar perception algorithms using a multi-perspective
radar convolutional neural network model that extracts location and class information
of an autonomous object from a sequence of range, velocity and angle heatmaps. The
developed an autonomous vehicle anti-collision support algorithm consisting of pre-
processed backscattered received radar signal to generate four-dimensional point clouds,
three-dimensional radar ego-motion estimation and a notch filter.

Li et al. in [15], emphasize that radar perception is robust in all weather conditions,
but radar signals are characterized by low angular resolution and precision in recognizing
surrounding objects. To improve this, the authors use temporal information from successive
egocentric bird’s-eye radar image frames to recognize radar objects. Then, the consistency
of the object’s existence and attributes, size and orientation (size, orientation, etc.), is
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exploited and a temporal relational layer is proposed to model the relationships between
objects in subsequent radar images.

Zhou et al. in [16], compare three main challenges in realizing deep radar perception,
multipath effects, uncertainty problems and adverse weather effects, and then propose
methods to solve them.

Huang, in [17], used cooperative perception with vehicle-to-everything technology to
take into account physical occlusion and the limited field of view of the sensor.

Zhang et al. [18] presented modern deep learning algorithms and methods for improv-
ing the radar perception of autonomous vehicles, taking into account the type and state of
weather and the type of remote sensing technique.

Gragnaniello et al. in [19], conducted a comparative evaluation of twenty-two multi-
object detection and tracking algorithms using metrics that highlight the contributions
and limitations of each of their modules. The result of this analysis is the indication of the
combination of ConvNext and QDTrack algorithms as the best perception method.

Pandharipande et al. in [20], studied the efficiency of the perception process and the
movement safety of an autonomous vehicle for various types of sensors in the form of
camera, radar and lidar and with related data processing techniques.

Barbosa and Osorio, in [21], study radar-based perception and radar-camera fusion, as
applied to the navigation of an autonomous vehicle moving in unfavorable lighting and
weather conditions.

Sun et al. in [22], developed a frontal collision warning algorithm for an autonomous
vehicle, which consists of vision and radar tracking algorithms, which uses a memory index
based on the information entropy of the adaptive Kalman filter.

A very important issue in the operation of autonomous vehicles is the synthesis
of appropriate algorithms for controlling their safe movement in real conditions of the
surrounding environment.

Gebregziabher, in [23], presents a developed algorithm for predictive collision preven-
tion of an autonomous vehicle based on lidar perception and prediction of its speed and
future positions. In order to increase the efficiency of the collision prevention process, a
modification of the dynamic windowing algorithm was used.

Snider, in [24], performs a comparative analysis of synthesis methods of safe control
of an autonomous vehicle in real conditions of the surrounding environment.

Lombard et al. [25] present an algorithm for controlling the steering angle of an
autonomous vehicle with adaptation of its speed, in order to ensure operation on straights,
sections and curves, using only the GNSS positioning system.

Lee et al. [26] present a developed machine learning model integrating multi-task
convolutional neural networks and an algorithm controlling the stable driving of an au-
tonomous vehicle. In particular, programmable logic controller algorithms are proposed to
prevent collisions of autonomous vehicles in real time.

Muzahid et al. [27] perform a comparative analysis of various methods of planning the
movement of an autonomous vehicle to prevent rear-end collisions, leading to collisions of
many vehicles, by taking into account possible strategies of cooperation of many vehicles.

Sana et al. in [28], reviewed methods for accurate and perfect perception as well as
methods for planning and implementing safe vehicle movement at the fifth level of its
autonomy, based on graphs and machine learning.

Abdallaoui et al. in [29] presented a synthetic analysis of navigation and control meth-
ods for autonomous vehicles using maneuvering rules, machine learning, deep learning,
probabilistic and hybrid approaches. This takes into account the measurement uncer-
tainty of sensors, modeling of a dynamic environment, real-time response speed and safe
interactions with other road users.

He and Liu, in [30], compared four integrated hierarchical satellite and inertial naviga-
tion algorithms for motion control and positioning of autonomous vehicles.
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Ibrahim et al. in [31], show a technological solution using the integration of satellite
and inertial systems in combination with an extended filter, which ensures greater reliability
and accuracy of autonomous driving.

Liu et al. in [32], analyze the state of control technology for both autonomous vehicles
and connected and automated vehicles in the field of vehicle state estimation and trajectory
tracking control.

A method that incorporates scenario understanding into the motion prediction task
of an autonomous vehicle to improve adaptability and avoid motion prediction errors is
proposed by Karle et al. in [33]. To do this, they use an a priori evaluation of the scenario
based on semantic information, and the evaluation adaptively selects the most accurate
prediction model, but also recognizes if no model can accurately predict this scenario.

Yang et al. in [34] proposed a dataset in the cooperative perception of ships, in the
form of three typical ship navigation scenarios, covering ports, islands and open waters,
for typical ship classes such as container ships, bulk carriers and cruise ships. This allows
the performance of the main vehicle cooperative perception models to be assessed when
transferred to ship cooperative perception scenes.

A method for training an autonomous car in simulated urban traffic scenarios to be
able to independently assess road conditions before crossing an unsignalized intersection is
presented by Tsai et al. in [35]. To identify traffic behavior at an intersection, an autonomous
car simulator was used, which builds the intersection environment and simulates the
traffic management process. Observational images from a semantic segmentation camera
installed in an autonomous car and the vehicle’s speed are used to train models based on
the convolutional neural network architecture.

Cai et al. in [36], describe the use of roadside perception infrastructure to collabora-
tively perceive vehicles and infrastructure, through edge computing to extract intermediate
features in real time and networks to transmit these features to vehicles. Here, a multi-
agent reinforcement learning-based service scheduling method is proposed for vehicle-
infrastructure cooperative perception migration, using a discrete time-varying graph to
model the relationship between service nodes and edge server nodes.

Wang et al. in [37], solve the autonomous vehicle routing problem using a multi-
objective vehicle routing optimization algorithm based on preference adaptation. For this
purpose, they used a weight adjustment as a sequential decision-making method that is
able to adapt to different approximate Pareto fronts and find better quality solutions.

The above analysis of the state of the literature in the field of methods of perception
and control of the movement of autonomous vehicles shows the possibilities of improving
them by using an artificial neural network to generate domains of prohibited maneuvers of
passing objects, contributing to increasing the safety of autonomous driving in various real
conditions of the surrounding environment.

1.2. Study Objectives

The main achievements presented in this article are as follows:

• Synthesis of a radar perception algorithm mapping the neural domains of autonomous
objects characterizing their collision risk;

• Assessment of the degree of radar perception on the example of multi-object au-
tonomous driving simulation.

1.3. Article Content

First, the process of autonomous driving of multiple objects was characterized, pre-
senting its functional diagram, which consists of the radar perception of detecting and
tracking objects, identification of their collision risk using an artificial neural network, and
then a multi-stage dynamic programming algorithm for making maneuvering decisions.
The next section describes the details of radar perception of collision risk based on the
three-layer structure of an artificial neural network. Then, the synthesis of the algorithm
for safe control of an autonomous vehicle and its pseudocode is described. To confirm
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the objectives of the paper adopted at the beginning of the paper, simulation tests of the
safe autonomous driving algorithm were carried out in the situation of passing ten other
autonomous vehicles.

2. Autonomous Driving of Multiple Objects

The most advanced technological solution of an autonomous vehicle should, in addi-
tion to implementing measurement functions, detecting and tracking objects and obstacles
within radar perception, include an appropriate safe control algorithm [33–37].

The functional structure of such a multi-object safe autonomous driving system is
shown in Figure 1.
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Figure 1. Functional diagram of the autonomous driving system for many objects: D is the movement
data vector of k object; vk is speed of the k object; αk is course of the k object; xk and yk are coordinates
of the k object position; rk is the collision risk of the k object; and popt is the optimal path of the
autonomous vehicle.

The motion of our k = 0 autonomous vehicle as a kinematic object can be described by
appropriate equations in discrete form, which are also used in the process of predicting the
motion of autonomous objects [38]:

x0,t+1 = x0,t +
v0
.
∝0

[
sin

(
∝0 +

.
∝0∆t

)
− sin ∝0

]
(1)

y0,t+1 = y0,t +
v0
.
∝0

[
cos ∝0 − cos

(
∝0 +

.
∝0∆t

)]
(2)

∝0,t+1=∝0,t +
.
∝0∆t (3)

However, the passing autonomous vehicles k = 1, 2, . . ., K limit the movement of our
autonomous vehicle:

Lk(xk, yk, vk, ∝k, t) ≥ 0 (4)

These restrictions take the form of moving prohibited areas assigned to individual
passing autonomous vehicles and other environmental obstacles.

Stationary autonomous vehicles and other fixed objects are assigned a circular limita-
tion with a radius equal to the safe passing distance ds in given environmental conditions:

Lc,k(xk, yk) = x2
k + y2

k − d2
s ≥ 0 (5)

However, moving autonomous vehicles are assigned a limitation in the form of ellipses
with a fixed size proportional to the value of the safe passing distance ds or a variable size
corresponding to the collision threat from other autonomous objects and the environment,
shaped by a previously trained artificial neural network:

Le,k(xk, yk, vk, ∝k, t) = (xk sin ∝k +yk cos ∝k − fk)
2w2

k + (xk cos ∝k +yk sin ∝k − fk)
2l2

k − l2
k w2

k ≥ 0 (6)

where lk and wk are the length and width of the k autonomous vehicle, and fk is the focal
distance of the ellipse.
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3. Radar Perception of Collision Risk

The task of the artificial neural network, in each subsequent step of prediction, the
motion k of an autonomous object is to assess the risk of collision rk with it by adequately
mapping the size of the domain in the shape of an ellipse (Figure 2).
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Figure 2. Generating the neural domain of the k-th object’s collision risk rk during autonomous driving.

The size of the domains was adjusted to the degree of safety of vehicle movement,
assessed by the risk of collision. The following five levels of safety of the passed k vehicle
were adopted, to which the collision risk value rk was arbitrarily assigned:

• “Safe” where rk = 0;
• “Attention” where rk = 0.3;
• “Possible Risk” where rk = 0.5;
• “Dangerous” where rk = 0.7;
• “Collision” where rk = 1.

An artificial neural network model was used to assess the safety level of the situation
and assign collision risk values. A three-layer neural network model was used, with four
input quantities measured by the radar device and one output quantity in the form of
collision risk. Nonlinear activation functions were assumed in the first and second layers
and a sigmoidal activation function in the third output layer. At each stage and node of
the calculation, the algorithm asked the neural network about the collision risk value and
generated the appropriate size of the vehicle domain.

The synthesis of this neural network was carried out in the Neural Network Toolbox
of MATLAB version 2024a. An error propagation algorithm with adaptive learning rate
and dynamics was used to train it.

Ten road scenarios were used to train the neural network, taking into account both
parallel vehicle traffic and various types of intersections. A total of 300 drivers participated
in the entire network training process, which lasted several months. In a given road
situation scenario, the driver assessed it subjectively in terms of safety, assessing the risk of
collision on a scale from zero to one. The neural network trained in this way represents the
average experience of a larger group of drivers.

4. Control Algorithm

The plane of possible states in the autonomous driving process is treated discreetly,
dividing it into stages s, and each stage into nodes n (Figure 3). Then, the possible movement
paths of the autonomous vehicle are dynamically programmed, eliminating nodes that are
in prohibited areas defined by the neural domains of collision risk. Among all safe paths,
the optimal path is selected, ensuring the shortest autonomous driving time topt.
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The combination of radar perception with the generation of neural domains of collision
risk allowed the synthesis of an algorithm for optimal safe autonomous driving when
passing many other autonomous vehicles, as presented below (Algorithm 1).

Algorithm 1: Autonomous driving with neural domains of collision risk

BEGIN
1. Radar Perception Data: xk, yk, vk, αk
2. Stage: s:=1
3. Autonomous Vehicle: k=1
4. Creating collision risk neural domain with k Autonomous Vehicle

IF not k=K THEN (k:= k+1 and GOTO 4)
ELSE Node: n:=1

5. Dynamic programming of our Autonomous Vehicle safe path
IF not n=N THEN (n:= n+1 and GOTO 6)
ELSE s:= S
IF not s=S THEN (s:= s+1 and GOTO 3)
ELSE Determining optimal path of our Autonomous Vehicle

in relation to passes k Autonomous Vehicles
END

The algorithm consists of the following three calculation procedures:

• Creating collision risk neural domain of our k = 0 Autonomous Vehicle with k other
Autonomous Vehicles;

• Dynamic programming of safe path of our k = 0 Autonomous Vehicle;
• Determining the optimal path our k = 0 Autonomous Vehicle in relation to all k

passes objects.

The autonomous driving algorithm with neural domains of collision risk of passing
autonomous vehicles was implemented in Matlab/Simulink software, version 2024a.

5. Computer Simulation

The developed autonomous driving algorithm was checked and assessed through
computer simulation on the example of a situation where our autonomous vehicle safely
passed ten autonomous objects (Table 1).
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Table 1. Variables of radar perception of autonomous driving of our autonomous vehicle k = 0 in
relation to k = 10 other autonomous objects encountered.

Object
k

Coordinate
xk (m)

Coordinate
yk (m)

Speed
vk (m/s)

Course
αk (deg)

0 0 0 10.8 0
1 340 −10 4.5 45
2 100 −400 3.5 290
3 −430 200 1.5 299
4 −200 200 2.0 0
5 820 210 3.0 89
6 710 600 3.5 199
7 −600 700 2.5 0
8 160 760 8.0 0
9 −450 800 7.5 0
10 360 1000 8.0 181

Figure 4 illustrates this situation in the form of object velocity vectors and the collision
risk domains assigned to them. However, in accordance with road traffic law, objects to
which we are obliged to give way are assigned elliptical domains, while others are assigned
circular domains.
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The elliptical shape of the domain used ensures that our autonomous vehicle avoids
the traffic passing another autonomous vehicle in front of it, causing it to give way. Other
objects with traffic restrictions are obliged to give way to us.

Simulation tests of the safe autonomous vehicle driving algorithm were carried out in
various environmental conditions, characterized by the need to maintain a safe passing
distance ds. The range of the set value of the safe passing distance ds was from 5 m to
200 m, which corresponds to traffic conditions from good and average to poor. After
entering the data describing the situation according to Table 1, the algorithm was run in the
Matlab/Simulink software. After a dozen or so seconds, the results were obtained in the
form of the optimal path popt of the own vehicle and the trajectories of passing k vehicles
with assigned neural domains with variable sizes corresponding to the level of collision
risk rk. Thus, Figure 5 shows the optimal safe path of our autonomous vehicle in good
object movement conditions, when ds = 5 ÷ 20 m.
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Figure 7 presents the optimal safe path of our autonomous vehicle in poor object
movement conditions when ds = 150 ÷ 200 m.

The measure of the optimality of the safe path of an autonomous vehicle is its imple-
mentation time topt, which ranged from 1714 s to 2921 s, with changes in the safe passing
distance ds from 5 m to 200 m.

In difficult conditions of the vehicle traffic environment, as in Figure 7, the domains
of the most dangerous vehicles 8 and 10 were enlarged when approaching our vehicle,
illustrating an increased risk of collision. Then, as it moved away, these domains got
smaller, presenting a lower collision risk.



Electronics 2024, 13, 1065 10 of 14

Electronics 2024, 13, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 6. Optimal safe autonomous driving path in average environmental conditions: (a) ds = 50 m; 
(b) ds = 100 m. 

Figure 7 presents the optimal safe path of our autonomous vehicle in poor object 
movement conditions when ds = 150 ÷ 200 m. 

 

Figure 7. Optimal safe autonomous driving path in poor environmental conditions: (a) ds = 150 m; 
(b) ds = 200 m; === reducing vehicle speed by 25%. 

The measure of the optimality of the safe path of an autonomous vehicle is its imple-
mentation time topt, which ranged from 1714 s to 2921 s, with changes in the safe passing 
distance ds from 5 m to 200 m. 

In difficult conditions of the vehicle traffic environment, as in Figure 7, the domains 
of the most dangerous vehicles 8 and 10 were enlarged when approaching our vehicle, 
illustrating an increased risk of collision. Then, as it moved away, these domains got 
smaller, presenting a lower collision risk. 
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(b) ds = 200 m; === reducing vehicle speed by 25%.

The method presented in this article, in comparison to previously developed meth-
ods, takes into account the limitations of safe vehicle control resulting from changing
environmental conditions.

To assess the functioning of the developed safe autonomous driving algorithms,
it is very useful to analyze the sensitivity of the optimal control quality index both to
the accuracy of measurement of control process state variables and to the impact of
environmental disturbances.

Sensitivity analysis concerns the assessment of the quality of functioning optimal and
safe systems control of autonomous objects. The sensitivity functions sx of the optimal
and safe control u of the process described by state variables x can be presented as partial
derivatives of the quality control index Q:

sx =
∂I[x(u)]

∂x
(7)

where I is the quality index of time-optimal control topt.
The measure of the sensitivity of optimal stopt driving is the relative change in the

optimal implementation time of the optimal path of an autonomous object caused by a
change in the ith parameter pi of the process model:

stopt =

∣∣∣∣ topt(pi)− topt(pi ± δpi)

topt(pi)

∣∣∣∣100% (8)

Computer simulations of the developed an autonomous driving with neural domains
of the collision risk algorithm allowed us to obtain the sensitivity function stopt to errors
in the measurement of the position coordinates δxy0, speed δv0 and course δα0 of our
autonomous object 0.

The sensitivity characteristics of optimal safe autonomous driving, presented in
Figure 8, were determined at various values of inaccuracy in the perception of motion
parameters δp ranging from −10% to 10%.

The study of the time-optimal sensitivity of autonomous driving showed its greatest
changes being from 4% to 27% for errors in the perception of the speed of an autonomous
object ranging from −10% to +10%.



Electronics 2024, 13, 1065 11 of 14

Electronics 2024, 13, x FOR PEER REVIEW 11 of 14 
 

 

The method presented in this article, in comparison to previously developed meth-
ods, takes into account the limitations of safe vehicle control resulting from changing en-
vironmental conditions. 

To assess the functioning of the developed safe autonomous driving algorithms, it is 
very useful to analyze the sensitivity of the optimal control quality index both to the ac-
curacy of measurement of control process state variables and to the impact of environ-
mental disturbances. 

Sensitivity analysis concerns the assessment of the quality of functioning optimal and 
safe systems control of autonomous objects. The sensitivity functions sx of the optimal and 
safe control u of the process described by state variables x can be presented as partial de-
rivatives of the quality control index Q: 

𝑠 =
𝜕𝐼[𝑥(𝑢)]

𝜕𝑥
 (7)

where I is the quality index of time-optimal control topt. 
The measure of the sensitivity of optimal 𝑠  driving is the relative change in the 

optimal implementation time of the optimal path of an autonomous object caused by a 
change in the ith parameter pi of the process model: 

𝑠 =
𝑡 (𝑝 ) − 𝑡 (𝑝 ± 𝛿𝑝 )

𝑡 (𝑝 )
100% (8)

Computer simulations of the developed an autonomous driving with neural domains 
of the collision risk algorithm allowed us to obtain the sensitivity function 𝑠  to errors 
in the measurement of the position coordinates δxy0, speed δv0 and course δα0 of our au-
tonomous object 0. 

The sensitivity characteristics of optimal safe autonomous driving, presented in Fig-
ure 8, were determined at various values of inaccuracy in the perception of motion pa-
rameters δp ranging from −10% to 10%. 

 
Figure 8. Sensitivity characteristics of the time-optimal autonomous driving path to errors of the 
following: xy0 object position coordinates; v0 object speed; α0 object course. 

The study of the time-optimal sensitivity of autonomous driving showed its greatest 
changes being from 4% to 27% for errors in the perception of the speed of an autonomous 
object ranging from −10% to +10%. 

Similarly, large changes in sensitivity from 3% to 22% occurred for errors in the per-
ception of the heading of an autonomous object ranging from −10% to +10%. 

However, object position measurement errors from −10% to +10% caused the least 
sensitivity, ranging from 4% to 9%. 
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following: xy0 object position coordinates; v0 object speed; α0 object course.

Similarly, large changes in sensitivity from 3% to 22% occurred for errors in the
perception of the heading of an autonomous object ranging from −10% to +10%.

However, object position measurement errors from −10% to +10% caused the least
sensitivity, ranging from 4% to 9%.

The sensitivity stopt of the time-optimal autonomous driving path to the radar percep-
tion of the collision risk rk of objects is shown in Figure 9.
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of the degree of collision risk.

A very important factor in time-optimal autonomous driving is its sensitivity to the
state of the surrounding environment, which also affects the possible risk of collision.

In good autonomous driving conditions, when the assessed risk is at the “Attention”
level (Figure 2), the sensitivity of the estimated time-optimal autonomous driving does
not exceed 10%. However, in difficult environmental conditions, rated as “Possible Risk,
Dangerous, Collision” (poor lighting, heavy rainfall, heavy traffic), the sensitivity of time-
optimal autonomous driving increased from 15% to 40%.

This increase in the sensitivity of time-optimal autonomous driving was caused by
taking into account the risk of collisions from passing autonomous vehicles, which were
assigned neural domains of prohibited maneuvering areas of variable size.

6. Conclusions

The synthesis of a radar perception algorithm mapping the neural domains of au-
tonomous objects characterizing their collision risk and the assessment of the degree of
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radar perception on the example of multi-object autonomous driving simulation presented
in the article confirmed the thesis stated at the beginning of the work, that it is possible
to improve methods of perception and control of the movement of autonomous vehicles
by using an artificial neural network to generate domains of prohibited maneuvers of
passing objects, contributing to increasing the safety of autonomous driving in various real
conditions of the surrounding environment.

Simulation tests of the developed autonomous driving with neural domains of col-
lision risk algorithm allow for the assessment of the following factors affecting safe
autonomous driving:

• Greatest changes from 4% to 27% for errors occur in the perception of the speed of an
autonomous object ranging from −10% to +10%;

• Large changes in sensitivity from 3% to 22% occur for errors in the perception of the
heading of an autonomous object ranging from −10% to +10%;

• Object position measurement errors from −10% to +10% cause the least sensitivity
ranging from 4% to 9%;

• The increase in the sensitivity of time-optimal autonomous driving was caused by
taking into account the risk of collisions from passing autonomous vehicles, which
were assigned neural domains of prohibited maneuvering areas of variable size;

• The advantage of the presented method for determining the optimal safe autonomous
driving path is its low sensitivity to the inaccuracy of the input data from the radar device;

• The limitation of the method is the reaction to changes in the direction and speed of
passing vehicles during safe path calculations.

The plan for further research on the perception and optimal safe control of autonomous
vehicles should include:

• Taking into account the properties of the autonomous driving process in situations
where other autonomous vehicles do not respect the right of road;

• Application of a cooperative and non-cooperative positional game model that takes
into account areas of prohibited maneuvers due to the obligation to maintain a safe
distance when passing autonomous objects;

• Using the collision risk matrix game model, cooperative and non-cooperative;
• Optimization of the process of safe autonomous driving based on the selected particle

swarm model, for example using the ant algorithm;
• Simulation of more complex autonomous driving situations, taking into account both

a larger number of objects and various real scenarios of parallel two-way and one-way
driving, with an intersection and a roundabout.
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