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Abstract: Radiation source signal sorting in complex environments is currently a hot issue in the field
of electronic countermeasures. The pulse repetition interval (PRI) can provide stable and obvious
parametric features in radiation source identification, which is an important parameter relying on
the signal sorting problem. To solve the problem linked to the difficulties in sorting the PRI in
complex environments using the traditional method, a signal sorting method based on a parallel
denoising autoencoder is proposed. This method implements the binarized preprocessing of known
time-of-arrival (TOA) sequences and then constructs multiple parallel denoising autoencoder models
using fully connected layers to achieve the simultaneous sorting of multiple signal types in the
overlapping signals. The experimental results show that this method maintains high precision in
scenarios prone to large error and can efficiently filter out noise and highlight the original features
of the signal. In addition, the present model maintains its performance and some robustness in the
sorting of different signal types. Compared with the traditional algorithm, this method improves the
precision of sorting. The algorithm presented in this study still maintains above 90% precision when
the pulse loss rate reaches 50%.

Keywords: autoencoder; noise reduction; PRI; signal binning

1. Introduction

With the extensive use of radar signals in recent years, various types of interference
and signal parameter spatial overlap phenomena have increased, creating a complex
electromagnetic environment around the radar signal [1]. Signals in a complex environment
are specifically characterized by certain measurement errors, more lost pulses, and false
pulses, and these characteristics greatly interfere with the signals [2]. Therefore, radar
radiation source sorting in complex environments has become a hot issue in the field of
electronic countermeasures and other fields [3].

The traditional five-dimensional parameter method utilizes the pulse description word
(PDW) of the signal, i.e., the five parameters of carrier frequency (RF), pulse amplitude
(PA), pulse width (PW), direction-of-arrival (DOA), and time-of-arrival (TOA), for signal
sorting and identification [4], and the errors generated in a complex environment cause
the five-dimensional parameter method to be prone to parameter ambiguity and signal
misjudgment, which greatly affects the sorting of the signal.

Among the five parameters of the pulse descriptor, the most stable is the TOA, and its
first-level difference is called the pulse repetition interval (PRI), also known as re-frequency.
The PRI parameter has a more obvious pattern [5]; so, it is a practical method with which
to analyze the TOA parameter. Traditional signal sorting methods based on PRI include the
difference histogram algorithm (CDIF) [6], the sequence difference histogram algorithm
(SDIF) [7], the PRI transformation method, and its improved algorithm [8,9], etc. A common
problem with these methods is that the accuracy of the algorithms is greatly reduced in the
face of complex PRI pattern signals, as well as in scenarios with high false pulse rate or lost
pulse rate, which cannot be sorted correctly.

Electronics 2024, 13, 1029. https://doi.org/10.3390/electronics13061029 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061029
https://doi.org/10.3390/electronics13061029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13061029
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061029?type=check_update&version=1


Electronics 2024, 13, 1029 2 of 13

For noise interference caused by a complex environment, the current main denoising
processing methods include wavelet transform [10], singular value decomposition [11],
and so on. However, due to the impulse representation of radar signals in the form of pulse
description words, such traditional denoising methods cannot be used.

Aiming at the problem of there being more false pulses, lost pulses, and measurement
errors that can interfere with the sorting task in real scenarios, as well as more signal
overlapping, this paper proposes a parallel denoising autoencoder-based target sorting
method, which can be used for multi-target parallel sorting tasks in complex environments.

The algorithm studied in this paper solves the problem presented by the currently
used algorithms, which are generally sensitive to noise in the task of sorting key targets of
radiation sources with known parameters; in fact, it can accurately and rapidly distinguish
targets and has important applications in the fields of security, aviation, and so on. In
the context of electronic countermeasures, the proposed algorithm can improve target
identification accuracy, identify key signals to optimize electronic jamming strategies, and
sort and summarize signal data to enhance electromagnetic situational awareness. Through
these features, the proposed algorithm can improve the defense capability of electronic
countermeasure systems.

The main contributions of this paper are as follows: (i) the incorporation of prepro-
cessing operations in the form of binary encoding. The intercepted raw TOA data are
preprocessed into binary sequences and then fed into the parallel denoising autoencoder
network model for training. This operation facilitates the extraction and recognition of
the data by the network model, highlights data features, and further improves the model
recognition efficiency; (ii) the construction of a parallel denoising autoencoder network
model. The described model contains multiple denoising autoencoders that can work in
parallel, adapt to the strong noise environment, and realize the effective recognition and
sorting of multi-target overlapping signals. The method described in this paper can realize
the synchronous sorting of overlapping signals under the joint interference of lost pulse,
false pulse, and measurement error, and the precision of sorting is improved compared
with that of traditional algorithms.

2. Data Preprocessing

TOA (time-of-arrival) refers to the arrival time of a pulse, usually defined as the time
at which the pulse front is received. In a single radiation source environment, the first-order
difference of the TOA parameter is defined as the pulse repetitive interval (PRI), i.e., the
re-frequency, which is the interval between two neighboring pulses [5]. According to the
regular differences exhibited by the re-frequency characteristics, the inter-pulse modulation
of radar signals can be classified into various types [12]. The most typical types include
fixed re-frequency, periodic modulation re-frequency, and so on [13].

TOA data are a one-dimensional time series that can grow continuously, and the TOA
sequence of a radar signal is usually expressed as

T = {t1, t2, · · · , tn}, (1)

where n is the total number of data contained in the sequence.
When dealing with large-scale samples, there is a situation in which the value domain

range of TOA sequences is too large, and the PRI range is relatively small, resulting in PRI
data being difficult to capture and learn. The fitness of such data for neural networks is
low. To address this problem, this work involved carrying out preprocessing operations
on the acquired TOA sequences and input them into the network after transforming them
into a data form suitable for machine model learning. The preprocessed data had a clear
regularity, a simple format, and high adaptability to the neural network, allowing the
effective recognition of the modulation type.

The preprocessing method in this paper is binary coding. It encodes the TOA sequence
data into binary sequence data consisting of zeros and ones.
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Typically, the arrival time of the first pulse of the signal is designated as zero. Accord-
ing to Equation (1), the timeframe of the entire TOA sequence can be determined as [0, tn].
Introducing the variable tdelta as the unit time, this timeframe is segmented into equal
intervals based on the unit time duration, with the number of segments represented by

N =
tn

tdelta
. (2)

The mathematical model of binary coding adopted in this paper is:

cj =

{
1, (j − 1)·tdelta < ti ≤ j·tdelta
0, otherwise

, j = 1, 2, · · · , N; i = 1, 2, · · · , n. (3)

As shown in Equation (2), time segment j is denoted as [(j − 1)·tdelta, j·tdelta]. If the
acquired TOA data point ti falls within time segment j, it is encoded as one, otherwise, it is
encoded as zero. The resultant encoded TOA sequence is transformed into a fresh binary
sequence denoted by

C = {c1, c2, · · · , cN}. (4)

With an array of re-frequency values within a cycle, each type of re-frequency value
cycles through according to the array. Assuming tdelta = 20 µs, an example is given to
illustrate the coding logic of the TOA sequence and represent the coding sequences for the
four modulation types.

As shown in Table 1, complex types of re-frequency features such as slip change are
difficult to quickly and clearly extract from TOA sequences. However, upon conversion to
binary sequences, the PRI laws become more apparent, as machines are better equipped
to handle binary sequences than decimal numbers. Furthermore, employing the unit
time for encoding initially helps mitigate certain measurement errors. This preprocessing
step effectively accentuates the modulation law, enhances computational efficiency, and
diminishes measurement errors in the TOA data, thereby facilitating subsequent training
and sorting tasks.

Table 1. Representation of coding sequences for the four modulation types.

Modulation Types Repetition Value (µs) TOA Fragment (µs) Coding Sequence

Fixed [60] [60, 120, 180, 240] [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
Sliding [40, 60, 80] [40, 100, 180, 220] [0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1]
Group [50, 50, 70, 70] [50, 100, 170, 240] [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1]
Cyclic [27, 84, 69] [27, 111, 180, 207] [0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1]

3. Methods
3.1. Model Introduction

Autoencoder (AE) [14] is an unsupervised learning neural network model that auto-
matically learns the intrinsic laws within data without requiring pre-labeling. It is defined
by its ability to reconstruct the input data as faithfully as possible in the output. The
autoencoder consists of two components—encoder and decoder—each for two distinct
phases—encoding and decoding. During encoding, the input data are compressed, while
decoding entails the precise reconstruction of the data. Currently, the autoencoders pri-
marily serve the purposes of data compression and feature extraction. By retaining the
essential features and reducing data dimensionality, they effectively accentuate data pat-
terns, thereby enhancing operational efficiency. Consequently, autoencoders are widely
applied to anomaly detection and denoising tasks.

The denoising autoencoder (DAE) [15] represents a special category within the au-
toencoder family. While the fundamental structure of the denoising autoencoder remains
largely unchanged compared to the basic autoencoder, it introduces artificial contamination
to the input data. The deliberate addition of noise disrupts some regularities within the
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original data, compelling the model to acquire more robust denoising features. As a result,
denoising autoencoders excel in preserving data information while effectively mitigating
the impact of noise interference.

Due to the output characteristics of autoencoders, a single autoencoder model can only
accommodate one type of signal. In practical scenarios, intercepted signals often comprise
multiple distinct signals requiring classification. Repeatedly employing individual autoen-
coder networks or sequentially calling multiple autoencoder networks for training and
sorting proves to be not only inefficient but also vulnerable to errors, and lacks robustness.
To address these challenges, this paper introduces a parallel denoising autoencoder model
aimed at enabling the simultaneous training and sorting of multiple modulation types of
signals, leading to the concurrent acquisition of diverse binning results.

The workflow of the parallel denoising autoencoder is illustrated in Figure 1. Initially,
the various TOA sequence data intended for training undergo preprocessing to encode them
into corresponding binary sequences. During the pre-training phase, noise is added to the
training binary sequences, followed by synchronous operation of denoising autoencoders to
generate N network model files tailored to distinct modulation types. Subsequently, in the
binning phase, the TOA sequences containing assorted radar signals are preprocessed into
binary coded sequences. These binary sequences are then simultaneously inputted into the
parallel denoising autoencoder network, utilizing the trained model files to yield multiple
corresponding outputs. As noise presence may corrupt the PRI law of the signal and lead
to errors in the output sequence during signal recovery, resulting in misclassification of
radar signals, the model confirms the sorted types. Any instances of identical output types
prompt further meticulous comparisons for precise identification. Ultimately, the network
yields all the finalized binning results.
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When conducting the sorting task, the parallel denoising autoencoder model syn-
chronously activates multiple autoencoders to process the input aliased signals, generating
multiple outputs simultaneously. This process incorporates specific error-correction mecha-
nisms, thereby enhancing the efficiency and accuracy of signal sorting.

3.2. Architecture Design of the Model

The overall structure of the parallel denoising autoencoder model outlined in this
paper is shown in Figure 2. In the coding sequence, solid circles represent the positions of
signal pulses, with different colors denoting various signal types. Hollow circles signify the
zeros within the coding sequence, while other circles mark the locations of assorted noise
types. The model receives the aliased signals through a designated input port, and the
signal sorting task is based on several relatively independent denoising autoencoder models
operating in parallel. Each autoencoder network is responsible for sorting a specific signal
type and is tasked with isolating the desired focal signal type from the binary encoded
noisy aliased TOA sequence while removing the contained noise.
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To ensure the generalizability of the entire model for various radar signal sorting tasks
and the stability of the model itself, consistent structural design is maintained across all
units. For clarity, use one unit as an example to elaborate on the network’s structural design.

The network model of the denoising autoencoder unit is shown in Figure 3. In the
coding sequence, solid circles denote the positions of signal pulses, hollow circles indicate
zeros, and other circles illustrate the locations of various types of noise. After preprocessing
the TOA data, noise is added to the resulting binary sequence as input to the denoising
autoencoder. The noise addition process is represented as

y = h(x), (5)

where x represents the encoded binary sequence, and h(·) denotes the noise addition
function. When recognizing a specific focal signal type, other types are considered as noise.

The model comprises an encoder and a decoder, both consisting of multiple fully
connected layers. A single fully connected layer is mathematically represented as

f (x) = g(Wx + b), (6)
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where x is the input, W denotes the layer’s weight, b is the offset value, and g(·) represents
the activation function. Since neural networks themselves are linear transformations, a
linear model can only solve a limited set of problems. To introduce nonlinearity and
enhance the model’s effectiveness, activation functions are generally used. In this paper,
all fully connected layers, except for the last one, employ the rectified linear unit (ReLU)
activation function defined as:

gReLU(x) = max{0, x}. (7)

The ReLU function outputs the greater value between zero and the input. It helps
prevent the gradient vanishing problem and accelerates convergence during gradient
descent. The last fully connected layer uses the Sigmoid function, which maps all output
data to the range of zero to one:

gS(x) =
1

1 + e−x . (8)

Given that the final model output should be a binary sequence, a threshold ξ is set
after the Sigmoid function. Numbers greater than or equal to ξ are assigned one, while
numbers less than ξ are assigned zero. In this model, ξ is set to 0.5.

As seen in Figure 3, the encoding phase involves the noise-added data entering the
input layer of the model and being mapped to multiple fully-connected hidden layers
denoted as:

z = f (L1)(y) = f (· · · f (y))︸ ︷︷ ︸
L1

, (9)

where L1 represents the number of layers in the fully connected layer within the encoder,
and y is the output of Equation (4), i.e., the binary sequence after adding various types
of noise, which is substituted as an input variable into Equation (5) and mapped. The
output z of the encoder typically has a much lower dimension than the input y, which
aligns with its function of reducing data dimensionality. This compressed data z retains
important features, facilitating effective network learning, reducing the risk of overfitting,
and minimizing error data.

The processed data z are then fed into the decoder for reconstruction of the original
data, denoted as

x′ = f ′(L2)(z) = f ′
(
· · · f ′(z)

)︸ ︷︷ ︸
L2

, (10)

where L2 denotes the number of fully connected layer layers within the decoder. The y
in Equation (8) is the same class of signals containing different errors. Ideally, the only
solution obtained by fitting y can only be the original binary sequence without noise, x.
Based on this, the output of the decoder in Equation (9), x′, is the sequence fitted to x, rather
than reconstructing the noisy sequence, y. x′ is kept in the same dimensionality as x, and is
fitted as closely as possible to the eigenstructure of x.

The trained loss function measures the difference between the predicted result and
the true value, and minimizing the loss function can make the output sequence of the
autoencoder closer to the actual sequence. In this paper, where the input x and output
x′ are binary sequences, the binary cross-entropy function is chosen as the loss function,
expressed mathematically, the model is presented in Equations (11) and (12):

L
(
x, x′

)
= {l1, · · · , ln}T , (11)

li = −wi
[
xi·log x′ i + (1 − xi)·log

(
1 − x′ i

)]
, (12)

where n denotes the number of training batches, xi and x′ i represent the raw data and model
output data corresponding to batch i, respectively, and wi denotes the weights. The training
begins with the initialization of weights W and the offset value b as random decimals



Electronics 2024, 13, 1029 7 of 13

between zero and one. The model is then trained in multiple batches, and the network
parameters are adjusted using the error back propagation (BP) algorithm to minimize loss:

Wall , ball = argminL
(

x, x′
)
, (13)

W ′ = W − µ
∂li
∂W

(14)

b′ = b − µ
∂li
∂b

, (15)

where W ′ and b′ denote the updated weights and offset values, respectively, and µ is the
learning rate set for the model.

The training process continues until the model converges, reaching a state of stability.
At this point, the model’s parameters remain constant and can be further tested.
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4. Experiment
4.1. Experimental Data Simulation
4.1.1. Sample Simulation

For the sake of objectivity, this experiment selected four representative modulation
types as experimental samples: fixed re-frequency, sliding re-frequency, pulse group re-
frequency, and periodic modulation re-frequency. The original TOA sequences correspond-
ing to these four types were generated using Matlab, with simulation parameters detailed
in Table 2.

Table 2. The setting of sample data parameters.

Modulation Type Cyclic Re-Frequency Value (µs)

Fixed Re-Frequency [250]
Sliding Re-Frequency [40, 70, 130, 160]

Pulse Group Re-Frequency [90 × 4, 170 × 4, 240 × 4]
Periodic Modulation Re-Frequency [p = 50sin

(
π
25 t

)
+ 100]

Each TOA data sequence was set to a length of 10 ms, and 2000 TOA sequences were
generated as training samples for each type of modulation. During the preprocessing stage,
the unit time tdelta was defined as 10 µs for this experiment. After encoding, the length of
each binary data sequence was standardized to 1000.
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4.1.2. Error Simulation

In order to simulate a realistic environment, this experiment introduces various types
of errors into the data. After analysis and categorization, the errors impacting the radar
signal were classified into three main categories: measurement errors, lost pulses, and
fake pulses.

Due to the signal or the machine itself, a small deviation in the detected actual arrival
time compared to the ideal arrival time of the signal, attributed to either the signal itself or
the detection system, is referred to as a measurement error. Typically, following a Gaussian
distribution, measurement errors were simulated in this experiment based on an ideal PRI
sequence using the equation:

Erj =
Pj − µ

σ
, (16)

where Pj denotes the value at index j in the sequence, Erj corresponds to the measurement
error, µ is the mean value of the sequence, and σ denotes the standard deviation. The TOA
sequence is derived from the PRI sequence and can be expressed as:

T′ =
{

t1, t2
′, · · · , tj+1

′, · · · , tK
′}, (17)

tj+1
′ = t1 +

j

∑
1

(
Pj + Erj

)
, (18)

where t1 is the initial value of the original TOA sequence, tj+1
′ represents the value at

index j + 1 in the noisy TOA sequence, and K signifies the total number of data points in
the sequence.

Incomplete signal fragments that are not fully received or partial pulses with similar
reception times that are mistakenly interpreted as a single TOA value can result in lost
pulses. Signal disturbances caused by interference and pulse aliasing from other signals
contribute to the occurrence of fake pulses. By considering the specified rates of lost pulses
pl and fake pulses p f , the number of lost pulses is determined by:

Nl = K·pl , (19)

and the number of fake pulses is expressed as

N f = K·p f . (20)

The final simulated noisy TOA sequence, incorporating all three types of errors,
involves updating Nl ones to zeros and N f zeros to ones in the binary sequence derived
from the preprocessing of T′.

In this experiment, the measurement error rate pe is within the [0, 10%] of the re-
frequency value, the lost pulse rate pl is between [0, 50%], and the fake pulse rate p f is
within [0, 70%]. During the training phase, these three parameters are randomly assigned
values within specified ranges to generate diverse training data.

4.2. Network Parameter Setting

According to the sample setup of this experiment, a network model comprising four
autoencoder units is established, with the parameter configurations of the unit model
depicted in Figure 4.

The encoder within the unit model is structured with three fully connected layers
containing 128, 64, and 32 neurons sequentially. Following each layer, the ReLU function is
applied. Conversely, the decoder is composed of three fully connected layers with 32, 64,
and 128 neurons sequentially. In this case, the ReLU function is used after the initial two
layers, while the Sigmoid function is employed after the final layer.
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Figure 4. The parameter diagram of the autoencoder unit model.

The Pytorch framework is utilized in this experiment with a batch size of 128, a learning
rate set at 0.0001, and a weight decay of 1 × 10−5. Experimental results demonstrate that
the model efficiently converges to a more optimal state within 20 cycles.

4.3. Description of The Training Process

Prior to testing, the model developed in this paper requires training. The training
dataset is initially constructed by conducting preprocessing operations as detailed in Sec-
tion 4.1, in order to convert the simulation data into binary form. Each of the four types in
the dataset comprises 2000 binary data entries, with each piece of data having a length of
1000 and encompassing the PRI features of its corresponding type, along with randomly
added errors falling within a specified range. Four denoising autoencoder units are estab-
lished based on the parameters outlined in Section 4.2, and they are organized in parallel
to construct the parallel denoising autoencoder model essential for this paper. During
training, the model feeds the data from the training set into the denoising autoencoder units
based on their respective type, with each unit processing data of only one type at a time.
Throughout the training process, each unit autonomously completes the reconstruction
of input data pertaining to its designated type. Employing a batch size of 128, the model
achieves convergence within 20 cycles. Upon completion of training, the model file of the
parallel denoising autoencoder is saved to capture the model structure after all four units
have converged.

4.4. Analysis of Experimental Results

This paper comprehensively evaluates the algorithm’s effectiveness using accuracy,
precision, and recall. As shown in Table 3, the experimental results of the binary classifica-
tion problem are classified into four types. TP represents data with positive predictions that
align with the actual outcome, FP signifies data with positive predictions but contradicting
actual negative outcomes, FN indicates data with negative predictions but actual positive
outcomes, and TN denotes data with negative predictions matching the actual negative
outcomes. Consequently, accuracy is denoted as:

Accuracy =
TP + TN

TP + FP + FN + TN
, (21)

precision is denoted as

Precision =
TP

TP + FP
, (22)

and recall is denoted as
Recall =

TP
TP + FN

. (23)

Table 3. Table of binary classification results.

Actual Positive Samples Actual Negative Samples

Predicting positive samples TP FP
Predicting negative samples FN TN
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4.4.1. Modulation Type Sorting Experiment

The test dataset still retains the modulation type and parameter configurations outlined
in Table 2, with measurement errors within the [0, 10%] range and the random incorporation
of fake pulses within the [0, 70%] range, added at random. The pulse loss rate was
systematically increased from 0 to 50%, resulting in the generation of five distinct data sets.
By overlaying the four types of TOA coding sequences at equivalent loss rates, five sets of
test data comprising aliased signals with varying pulse loss rates were compiled, each set
comprising 2000 binary coding sequences.

This experiment aims to assess the efficacy of the parallel denoising autoencoder model
in categorizing the four types of modulated signals, with the test outcomes illustrated
in Figure 5.
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Figure 5 presents line plots depicting the three classification assessments at varying
pulse loss rates, with (a) denoting the accuracy rate, (b) signifying the precision rate, and
(c) indicating the recall rate. Observably, the model’s overall performance in the classifica-
tion task shows a declining trend as the lost pulse rate increases, attributed to the corruption
of PRI features by lost pulses. The detrimental impact becomes more pronounced with
higher lost pulse rates, and a substantial decrease in the model’s classification performance
is evident after the lost pulse rate exceeds 30% in Figure 5. A comparison of the plots (a),
(b), and (c) reveals that the reduction in accuracy depicted in (a) is notably smaller than
the trends observed in (b) and (c). This is due to the binary nature of the input network
signals, which can be treated as a binary classification problem during assessment. Only
the number 1 in the sequence represents the pulse, but the number 0 in the sequence also
occupies a certain proportion, and the recognition results of both values are calculated into
the accuracy rate, yielding a relatively high accuracy rate. Consequently, in this experiment,
the accuracy rate can only partially reflect the model’s performance and must be considered
alongside the precision and recall rates. Notably, the model’s classification performance
across the four types of modulated signals exhibits a consistent trend, indicating its strong
generalizability. Additionally, the representative nature of the four signal types used un-
derscores the robustness of the parallel denoising autoencoder network model formulated
in this paper, demonstrating its applicability to diverse signal classification tasks. Among
these types, fixed and sliding re-frequencies consistently exhibit high values for all three
criteria, while performing the poorest in the periodic modulated PRI sorting task. This is
attributed to the relatively simple PRI patterns for fixed and sliding re-frequencies, which
consist of repetitions of a single or a small set of digits easily captured and learned by
the network. In contrast, the periodic modulation PRI type is more intricate, featuring
changing PRI values over a period, posing challenges for the model to learn. Nonetheless,
even in the most challenging scenario, the sorting accuracy in this experiment remains
above 90%, with precision and recall rates exceeding 70%, affirming the parallel denoising
autoencoder model’s strong performance in signal sorting tasks.
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4.4.2. Comparison Experiment

The traditional method of signal sorting, predominantly based on PRI, continues
to be widely utilized. This includes enhancements to classical algorithms like SDIF and
CDIF, as well as approaches that incorporate neural networks. Reference [16] proposes
an enhanced SDIF algorithm that integrates the PRI transform method, representing an
advancement over conventional techniques. Similarly, reference [17] presents a CRRNN
algorithm, which leverages RNN networks and incorporates a residual network structure
to achieve higher precision. To demonstrate the effectiveness of the method proposed
in this paper, we conducted a comparative experiment. This experiment involved the
improved SDIF algorithm, the CRRNN algorithm, and the parallel denoising autoencoder
model developed in this study, focusing on the slip-variant PRI type as a case study. The
data for this experiment were specifically configured to include lost pulses, but excluded
fake pulses and measurement errors.

Figure 6 demonstrates the sorting performance of the three algorithms for slip variable
PRI types at different pulse loss rates in terms of the precision rate. As the pulse loss rate
increases, the precision of this paper’s model remains consistently above 90%, showcasing
its stability. In contrast, the precision of the enhanced SDIF algorithm shows a notable
decline, dropping below 50% in the most severe case. This highlights the significant
superiority of the model proposed in this paper over a traditional algorithm. Meanwhile,
although the CRRNN algorithm demonstrates higher precision at a pulse loss rate below
20%, its performance noticeably deteriorates when the pulse loss rate exceeds 30%. This
decline can be attributed to the autoencoder network’s ability to reduce data dimensionality,
which in turn enhances its capability for feature extraction in scenarios characterized by
high error rates.
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The experimental results discussed above convincingly demonstrate that the parallel
denoising autoencoder network model excels in radar radiation source signal sorting,
particularly when it comes to handling multiple signals in complex environments.



Electronics 2024, 13, 1029 12 of 13

5. Conclusions

In this paper, we propose a parallel denoising autoencoder-based method for signal
sorting. This method encodes known TOA sequences with preprocessing to amplify the
PRI features of the signals. It efficiently segregates desired signal types from overlapping
TOA sequences using a parallel denoising autoencoder network.

Comprehensive experimental results show that our algorithm exhibits remarkable
adaptability in high error scenarios, maintaining high precision even as pulse loss rate
increases. This adaptability makes it well-suited for sorting radiation source tasks in
complex environments. In terms of algorithm performance, the algorithm in this paper
demonstrates superior efficacy, maintaining an accuracy rate above 90% and a precision
rate above 70%, even when the pulse loss rate reaches 50%. Regarding the algorithm’s
generalization capability, it exhibits a consistent trend and shows strong generalization
capability, when facing the task of sorting various types of radiation source PRI signals.

Further analysis suggests that the advantage of the algorithm stems partly from
the autoencoder’s enhanced filtering ability, which effectively mitigates noise and other
unfocused signals by reducing data dimensionality, thus proving to be more adaptable
in complex environments. Additionally, the use of multiple repetition architectures, all
built with fully connected layers, simplifies the complexity. This enables rapid sorting of
extensive data and accommodates multiple sorting types.

Overall, the parallel denoising autoencoder model proficiently handles the classifica-
tion of multiple signal types in challenging environments.

However, it is important to note that the algorithm performs optimally when the
PRI features of the radiated source signal are distinct and the training data volume is
adequate. In situations where errors, especially lost pulses, are prevalent, the autoencoder
might extract incomplete PRI features, adversely affecting the sorting process. Future
research will focus on enhancing the PRI features of the radiation source in extremely
complex environments.
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