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Abstract: This work uses Memgraph, an open-source graph data platform, to analyze, visualize, and
apply graph machine learning techniques to detect cybersecurity attack tactics in a newly created Zeek
Conn log dataset, UWF-ZeekData22, generated in The University of West Florida’s cyber simulation
environment. The dataset is transformed to a representative graph, and the graph’s properties studied
in this paper are PageRank, degree, bridge, weakly connected components, node and edge cardinality,
and path length. Node classification is used to predict the connection between IP addresses and
ports as a form of attack tactic or non-attack tactic in the MITRE framework, implemented using
Memgraph’s graph neural networks. Multi-classification is performed using the attack tactics, and
three different graph neural network models are compared. Using only three graph features, in-
degree, out-degree, and PageRank, Memgraph’s GATJK model performs the best, with source node
classification accuracy of 98.51% and destination node classification accuracy of 97.85%.

Keywords: graph data platform; graph database; Memgraph; graph machine learning; graph neural
networks; node classification; MITRE ATT&CK framework

1. Introduction

Addressing cybersecurity attacks in corporate networks is crucial, particularly con-
sidering the limitations of corporate resources in terms of manpower and budgetary con-
straints. Many organizations, especially smaller ones, may not have dedicated cybersecurity
teams or the financial means to invest in robust security systems. A cyberattack occurs
every 39 s [1], and in 2021, 43% of the attacks impacted small businesses [1], demonstrating
the critical need for efficient methods to help resource constrained organizations. Machine
learning, specifically graph-based machine learning, is a powerful tool for identifying
potential attacks. However, many organizations lack the needed machine learning skills.

The uniqueness of this work lies in its using of Memgraph [2], an open-source graph
database, to analyze, visualize, and detect cybersecurity attack tactics in a newly created
dataset, UWF-ZeekData22. This dataset, composed of network logs, i.e., Zeek Conn logs,
was generated in The University of West Florida’s cyber simulation environment [3,4].
Graph characterization of this dataset was studied using PageRank, degree, bridge, weakly
connected components, node and edge cardinality, and path length. Finally, node classifi-
cation was performed on UWF-ZeekData22 using Memgraphs’s graph neural networks
(GNN). Node classification was used to predict the connection between IP addresses and
ports as a form of attack or non-attack in the MITRE framework. Multi-classification was
performed using three different graph neural networks models: GATJK, GraphSAGE,
and GATV2. Results were compared and finally, three graph features were identified as
attaining high source node and destination node classification accuracy.

Memgraph 2.8.0 is a freely available graph analytics software used to characterize
and visualize graphs and perform graph machine learning through its various imported
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libraries [2]. Memgraph is very similar in function to Neo4j [5,6], with a key difference
being that Neo4j is written in Java and stores data on-disk, whereas Memgraph is written
in C/C++ and stores data in-memory. This makes Memgraph more performant but limits
the size of data loaded to the amount of available RAM on the local machine. Both software
have built-in data science libraries, GDS for Neo4j, and MAGE for Memgraph. This research
uses MAGE’s built-in algorithms to create GNNs implemented in Torch and the Deep Graph
Library (DGL) to classify network attack tactics, create visualizations of connections, and
query the graph for supplemental information.

The rest of this paper is organized as follows. Section 2 presents the related works;
Section 3 presents the data; Section 4 explains the data preprocessing; Section 5 explains
Memgraph; Section 6 presents graph characterization or properties of UWF-ZeekData22;
Section 7 presents graph visualizations of UWF-ZeekData22; Section 8 presents node
classification results using graph neural networks; Section 9 presents the conclusions; and
finally, Section 10 outlines future works.

2. Related Works

Javorník et al. [7] introduce the concepts of multi-step and multi-target attacks through
Complex Privilege-Exploit Attack Graphs and Bayesian Privilege Attack Graphs. These
structures model causal relationships among trust levels and guide decision-making. The
system calculates the resilience of mission configurations using Bayesian networks, con-
sidering the distribution of critical privileges and the attacker’s position. A case study
of a medical information system demonstrates the use of the decision support system,
highlighting the challenges of decision-making when most resilient configurations conflict
with user demands.

Jacob et al. [8] discuss the problem of cyber security and the increasing need for im-
proved detection of cyber-attacks on software applications using microservice architectures.
The authors propose a graph-based anomaly detection approach to identify irregular mi-
croservice traffic caused by cyber-attacks. They use a graph convolutional neural network
to capture spatial and temporal dynamics within the application’s tracing data, which
consists of the sequence of API calls between microservices. The authors also introduce a
diffusion convolutional recurrent neural network for traffic forecasting and the detection of
anomalies in microservice traffic.

Wei et al. [9] approach the problem of cyber threats by way of “proposed DeepHunter”,
a GNN-based approach that can match provenance data against known attack behaviors in
a robust way. This approach aims to actively search for attack behavior in an organization’s
information system, using indicators of compromise (IOC). The DeepHunter GNN is able
to capture the relationship between IOCs to provide better detection of advanced persistent
threats for attack behaviors different from previously known attacks. This solution is
determined to perform better than the comparable Poirot.

Hagheshenas et al. [10] frame the problem for application in smart grids, using a
“Temporal graph neural network framework” for the detection and localization of false
data injection and ramp attacks on the system state in smart grids. These forms of attack
both manipulate sensor data to disrupt a grid’s functionality. Examples of such data could
be “voltage, current, power injections. . . status information of breakers and switches”. Re-
searchers have found promising results in classifying these forms of attack in a TGNN that
models both the topological structure of the smart grids, and the “temporal measurements
at each bus of the system”.

Other works on graph databases have been conducted by [11–14]. Ref. [11] looked at
how anomalies could be detected in node-labeled directed weighted graphs. Ref. [12] looked
at the graph similarity model using the minimum description length principle. Ref. [13] pre-
sented the graph database analysis using Neo4j. Ref. [14] looked at attack graph analysis
using temporal factors associated with vulnerabilities.

Although different forms of graph architectures have been used in the past, the
uniqueness of our work lies in the use of, Memgraph characterizations, visualizations, and
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node classification using multi-class graph neural networks. Moreover, this work uses Zeek
Conn logs from the newly created UWF-ZeekData22 dataset.

3. The Data

The dataset used in this work, UWF-ZeekData22 [3], was generated in the cyber simu-
lation environment at The University of West Florida (UWF). The Zeek Conn log dataset
is labeled using the MITRE Adversarial Tactics, Techniques, and Common knowledge
(ATT&CK) framework [15]. The MITRE ATT&CK framework, based on a foundation of
threat models that determine adversary tactics, contains 14 tactics to date, and several
techniques and sub-techniques. UWF-ZeekData22 contains 10 tactics, as shown in Table 1,
with a total of 9,280,869 attack tactic records and 9,281,599 benign records [4]. A breakdown
of this dataset’s tactics is also presented in [3]. This research, however, focuses on the
top three tactics by count: Reconnaissance (TA0043) [16], Discovery (TA0007) [17], and
Credential Access (TA0006) [18].

Table 1. Count by Tactic: UWF-ZeekData22.

Tactic UWF-ZeekData22 Count

None 9,281,599
Reconnaissance 9,278,722

Discovery 2086
Credential Access 31

Privilege Escalation 13
Exfiltration 7

Lateral Movement 4
Resource Development 3

Persistence, Initial Access, Defense Evasion 1
Execution 0

Command and Control 0
Defense Evasion 0

Initial Access 0
Initial Access, Persistence 0

Adversaries using Reconnaissance are actively and passively looking for ways to
gather information about the system as a whole so that they can plan attacks. Adversaries
performing Discovery tactics are gathering information about the internals of the system
and environment so that they can plan their attacks. Adversaries using Credential Access
tactics are looking for ways to steal credentials like user IDs and passwords.

4. Data Preprocessing

To create this graph network in Memgraph, the dataset was preprocessed. This
preprocessing flow is presented in Figure 1. The goal of the preprocessing was to transform
log data to representative graph nodes and edges CSV files which could be ingested
into Memgraph.

The first preprocessing step was to remove the tactics that had very few occurrences.
There is too little data in these low frequency tactics to do any meaningful graph analysis.
Only the Reconnaissance, Discovery, and Credential Access tactics were kept from the
UWF-ZeekData22 dataset.

The second preprocessing step was to combine the four source/destination IP ad-
dress/port columns into two address columns. The address value would become the node
labels formatted as IP address–port. The ports should not be nodes because port 80 associ-
ated with an IP address is not the same port 80 associated with a different IP address.
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Figure 1. Preprocessing flow chart.

Once the IP addresses were in the proper format, distinct addresses were collected
and joined on the address to the edges. The tactics_src and tactics_dest column values were
parsed from the edges and added as labels to the nodes CSV file.

The source dataset contained 24 columns. Since we are concerned with the structure
and pattern of connections made to identify tactics of attacks under the MITRE ATT&CK
framework, we removed all columns except the addresses and labels of tactics which define
the graph structure. Therefore, only the datetime, source address, destination address, and
tactic columns were kept. This significantly reduced the size of the dataset to be processed.
The resulting dataset was written to the edges CSV, and the nodes and edges CSV files
were ready to be ingested into Memgraph.

The columns in the original dataset and the nodes and edges datasets are presented in
Figure 2. Note the presence of address ID columns in the nodes and edges dataset. This
creates a relational dataset which Memgraph uses to define the edges between the source
and destination nodes.
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5. Memgraph

Memgraph is a high-performance, in-memory graph data platform designed for
ingesting, querying, and visualizing large-scale graph data. Memgraph efficiently processes
graph queries and traverses’ large networks of nodes and edges using the cypher query
language [2]. It is freely available and can be run inside a docker container, thus making
setup easy.

Ingestion into Memgraph

The first step is to create the graph database. This is accomplished using the code
below. The code does the following:

1. Loads the nodes dataset from disk (Figure 3).
2. For each row in the dataset, a Memgraph node is created. The node contains an

address attribute.
3. An index is created on the address attribute. This speeds up edge creation and creates

an edges dataset.
4. Load the edges dataset from disk.
5. For each row in the edges dataset:

a. Obtain the source and destination address nodes using the MATCH clause.
b. Create an edge between the two nodes.
c. Set the tactic attribute on the edge.
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Once the nodes and edges have been created (Figure 3), the networks can be created
by variations shown in Figure 4. The query, Figure 4, uses two useful functions:

1. A WHERE clause for filtering by tactic.
2. A LIMIT clause for returning a subset of nodes. Since the Reconnaissance tactic has

many nodes, obtaining a full result set not only takes time but also does not offer any
additional insights into the structure. Experimentation showed that setting the limit
to about 5000 nodes gave an adequate representation of the graph’s structure.
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6. Graph Characterization

Graphs are complex structures whose topology can vary depending on the number
of nodes, edges, and whether they are directed or not. Mathematically, a graph is a
representation of a set of objects (nodes) connected by links (edges). In the context of
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this work, a node represents an individual IP address. An edge represents the connection
between two nodes, a source IP address, and destination IP address. The edge is the attack
tactic that is used. In other words, the graph represents an attack modality from a source
computer (the attack initiator) to the target computer (the attack victim). Having a source
and target node implies direction; hence, the edge is “directed”, and the graph is a “directed
graph”. The degree of a node in a graph refers to the number of edges that are incident
to that node. In a directed graph, the degree can be split into two separate measures: the
in-degree (number of incoming edges) and the out-degree (number of outgoing edges).

Hence, when analyzing a graph, the following characteristics or properties are of
interest: (i) PageRank; (ii) degree; (iii) bridges; (iv) weakly connected components; (v) node
and edge cardinality; (vi) path Length. These characteristics, obtained using Cypher queries,
are discussed next.

6.1. PageRank
6.1.1. PageRank

Google created the PageRank algorithm to distinguish recognizable and relevant web
pages from lesser known pages. The algorithm uses the web’s link structure to calculate
PageRank scores for each document on the web [19,20]. The algorithm incorporates the
concept of a “random user” in the following fashion:

1. The random web surfer starts on a random web page. This surfer follows the links on
the page and clicks randomly on one of the links.

2. After clicking a link, the surfer is now on the new page and repeats the process by
randomly clicking on one of the links on that page.

3. This process continues indefinitely, with the random surfer randomly clicking on links
and moving from page to page.

The PageRank algorithm calculates the probabilities of the random surfer being on a
specific page at any given time. These probabilities are represented as the PageRank scores
for each page. Pages that are frequently visited or are linked to by other important pages
tend to have higher probabilities and therefore higher PageRank scores.

The random surfer concept can be extended to model the behavior of a cyber attacker
targeting machines on a network. Using the PageRank algorithm, one can calculate the
probability that a random cyber attacker will attack a particular machine by randomly
choosing machines on the network. The graph data are a historical record of attacks. The
PageRank score evaluates the likelihood of another attack using past attacks.

Memgraph natively implements PageRank using a straightforward calculation. The
iterative nature of the algorithm allows Memgraph to parallelize the score computation
across multiple processor cores [20]. The execution times of running PageRank for the
benign data (None), Reconnaissance, and Discovery using Memgraph are presented in
Table 2.

Table 2. PageRank execution time.

Tactic Row Count Execution Time (ms)

None 9,281,599 13,554
Reconnaissance 9,278,722 13,198

Discovery 2086 47
Tactic Row Count Execution time (ms)
None 9,281,599 13,554

The cypher query, Figure 5, was used to generate the PageRank scores for the tactics
of interest shown in subsequent sections.



Electronics 2024, 13, 1015 7 of 28

Electronics 2024, 13, x FOR PEER REVIEW 7 of 30 
 

 

1. The random web surfer starts on a random web page. This surfer follows the links 
on the page and clicks randomly on one of the links. 

2. After clicking a link, the surfer is now on the new page and repeats the process by 
randomly clicking on one of the links on that page. 

3. This process continues indefinitely, with the random surfer randomly clicking on 
links and moving from page to page. 
The PageRank algorithm calculates the probabilities of the random surfer being on a 

specific page at any given time. These probabilities are represented as the PageRank scores 
for each page. Pages that are frequently visited or are linked to by other important pages 
tend to have higher probabilities and therefore higher PageRank scores. 

The random surfer concept can be extended to model the behavior of a cyber attacker 
targeting machines on a network. Using the PageRank algorithm, one can calculate the 
probability that a random cyber attacker will attack a particular machine by randomly 
choosing machines on the network. The graph data are a historical record of attacks. The 
PageRank score evaluates the likelihood of another attack using past attacks. 

Memgraph natively implements PageRank using a straightforward calculation. The 
iterative nature of the algorithm allows Memgraph to parallelize the score computation 
across multiple processor cores [20]. The execution times of running PageRank for the 
benign data (None), Reconnaissance, and Discovery using Memgraph are presented in 
Table 2. 

Table 2. PageRank execution time. 

Tactic Row Count Execution Time (ms) 
None 9,281,599 13,554 

Reconnaissance 9,278,722 13,198 
Discovery 2086 47 

Tactic Row Count Execution time (ms) 
None 9,281,599 13,554 

The cypher query, Figure 5, was used to generate the PageRank scores for the tactics 
of interest shown in subsequent sections. 

 
Figure 5. Cypher query: generating the PageRank scores. 

6.1.2. PageRank Scores for the Reconnaissance Tactic 
Table 3 presents the PageRank scores for the top 10 IP addresses for the Reconnais-

sance tactic. As per Table 3, the IP address 143.88.5.1:53 in UWF-ZeekData22 is the most 
likely to be attacked using the Reconnaissance tactic. Based on these results, more re-
sources should be allocated to protecting 143.88.5.1:53. 

  

Figure 5. Cypher query: generating the PageRank scores.

6.1.2. PageRank Scores for the Reconnaissance Tactic

Table 3 presents the PageRank scores for the top 10 IP addresses for the Reconnaissance
tactic. As per Table 3, the IP address 143.88.5.1:53 in UWF-ZeekData22 is the most likely to
be attacked using the Reconnaissance tactic. Based on these results, more resources should
be allocated to protecting 143.88.5.1:53.

Table 3. Reconnaissance: top 10 PageRank scores.

Address PageRank Score

143.88.5.1:53 0.036933
143.88.7.1:443 0.002461

143.88.7.12:8080 0.001996
143.88.7.11:631 0.001677
143.88.7.15:135 0.001384
143.88.2.10:80 0.000762
143.88.7.12:22 0.000697

143.88.2.10:443 0.000673
143.88.7.12:80 0.000621
143.88.7.11:21 0.000617

6.1.3. PageRank Scores for the Discovery Tactic

Table 4 shows that IP address 143.88.2.12:22 in UWF-ZeekData22 is the most likely to
be attacked using the Discovery tactic. Based on these results, more resources should be
allocated to protecting 143.88.2.12:22.

Table 4. Discovery: top 10 PageRank scores.

Address PageRank Score

143.88.2.12:22 0.003656
143.88.2.12:1 0.001554

143.88.2.12:443 0.000954
143.88.2.12:80 0.000954
143.88.7.10:3 0.000909

143.88.2.12:1999 0.000654
143.88.2.12:5907 0.000654
143.88.2.12:8443 0.000654
143.88.2.12:3945 0.000654
143.88.2.12:8001 0.000654

6.2. Degree

Degree is the second category of interest when analyzing the graph. We analyze the
degree centrality, degree distribution as well as the degree averages [21,22].
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6.2.1. Degree Centrality

Degree centrality measures the number of edges connected to a node, normalized by
the number of nodes in the graph, such that degree centrality = degree/(number of nodes
−1). This measure is useful to view the connectedness of nodes based on the tactic being
used. For directed graphs, the user specifies the “in” or “out” parameter for the type of
degree, or the method defaults to “undirected.” In-degree centrality is the degree centrality
calculated value, where degree is the number of incoming edges. Likewise, out-degree
centrality is the degree centrality calculated value where degree is the number of outgoing
edges. Figure 6 sets the in and out degrees as a property of each node.
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Figure 6. Cypher query: setting in- and out-degree.

In-degree centrality and out-degree centrality are shown for the Reconnaissance tactics.
Table 5 shows that for UWF-ZeekData22, there is no significant difference in the in-degree
values between the Reconnaissance and None (benign data) tactics. They appear to be
extremely similar in distribution.

Table 5. In-degree centrality as tactics subgraphs.

Reconnaissance Reconnaissance None None

Address–Port In-Degree Address–Port In-Degree

143.88.5.1:53 27.50483817 10.0.10.1:53 27.6587867
143.88.7.15:135 3.174730286 143.88.11.1:53 2.40422696
143.88.7.1:443 1.936158381 8.8.8.8:53 1.87328573

143.88.7.12:8080 1.665665666 8.8.4.4:53 1.86731302
143.88.7.11:631 1.352463575 143.88.1.1:53 1.65291272
143.88.7.12:22 0.654877099 ff02::1:2:547 0.27426719
143.88.7.15:1 0.654877099 143.88.255.10:53 0.22335524
143.88.7.11:80 0.512512513 143.88.0.41:53 0.10713022
143.88.7.11:21 0.498276054 172.28.128.255:138 0.08518095
143.88.7.12:80 0.441330219 172.28.128.255:137 0.06999827

Table 6 shows the out-degree centrality for the Reconnaissance and None (benign)
nodes. These results show that the connectedness of the Reconnaissance nodes are sig-
nificantly greater than the normal “none” tactic nodes, even though the number of edges
are similarly in the millions. This outlier may be a strong indicator of an attack using the
Reconnaissance tactic.

6.2.2. Degree Averages

Degree averages show the differences between tactics and their connectedness. These
values are highly correlated with the degree centrality and provide more raw data but do
not divide by the number of nodes. Table 7 shows the out-degree averages for each of the
tactics—Reconnaissance, Credential Access, Discovery—as well as for benign data.
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Table 6. Out-degree centrality as tactics subgraphs.

Reconnaissance Reconnaissance None None

Address–Port Out-Degree Address–Port Out-Degree

143.88.2.10:53565 14.69202536 fe80::250:56ff:fe9e:5457:546 0.17432725
143.88.2.10:41562 14.46424202 172.28.128.3:138 0.08518095
143.88.2.10:58517 14.40729619 172.28.128.3:137 0.06999827
143.88.2.10:51130 14.33611389 143.88.11.10:3 0.05328951
143.88.2.10:38774 14.29340452 143.88.1.50:138 0.05276711
143.88.2.10:54736 14.29340452 143.88.11.10:68 0.05139322
143.88.2.10:35962 14.25069514 143.88.11.14:3 0.04899509
143.88.2.10:43921 14.23645868 143.88.1.50:137 0.04237246
143.88.2.10:62815 14.23645868 143.88.11.10:50888 0.0398427
143.88.2.10:44715 14.23645868 143.88.11.10:53887 0.03973987

Table 7. Out-degree averages for UWF-ZeekData22.

Tactic Source Out-Degree Average Destination In-Degree Average

Reconnaissance 743.321 1673.07
None (benign) 40.031 814.657

Credential Access 1.292 4.429
Discovery 43.31 2.078

6.3. Bridges

Bridge is the third category of interest when analyzing the graph. A bridge is a single
edge that connects subgraphs together, which when removed, would result in the two
subgraphs losing connection. Looking at bridges can provide additional information about
the structure of our graphs. Figure 7 yields the bridge count, and Table 8 shows the bridge
count by tactic for UWF-ZeekData22.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 30 
 

 

6.2.2 Degree Averages 
Degree averages show the differences between tactics and their connectedness. These 

values are highly correlated with the degree centrality and provide more raw data but do 
not divide by the number of nodes. Table 7 shows the out-degree averages for each of the 
tactics—Reconnaissance, Credential Access, Discovery—as well as for benign data. 

Table 7. Out-degree averages for UWF-ZeekData22. 

Tactic Source Out-Degree Average Destination In-Degree Average 
Reconnaissance 743.321 1673.07 
None (benign) 40.031 814.657 

Credential Access 1.292 4.429 
Discovery 43.31 2.078 

6.3. Bridges 
Bridge is the third category of interest when analyzing the graph. A bridge is a single 

edge that connects subgraphs together, which when removed, would result in the two 
subgraphs losing connection. Looking at bridges can provide additional information 
about the structure of our graphs. Figure 7 yields the bridge count, and Table 8 shows the 
bridge count by tactic for UWF-ZeekData22. 

 
Figure 7. Cypher query for count of bridges. 

Table 8. Bridge counts by tactic. 

Tactic Bridge Count 
Reconnaissance 2 
None (Benign) 5742 

Credential Access 18 
Discovery 1866 

The number of bridges in None compared to Reconnaissance supports the idea that 
the Reconnaissance tactic is heavily connected between nodes. 

6.4. Weakly Connected Components 
Weakly connected components is the fourth category of interest when analyzing the 

graph. Given a directed graph, a weakly connected component (WCC) is a subgraph of 
the original graph where all vertices are connected to each other by some path, ignoring 
the direction of edges [23]. These values give an idea of how many disparate subgraphs 
exist by tactic. It shows that the Reconnaissance tactic has many disparate components, 
whereas None (the benign data) has very few disparate components, even though both 
have a similar number of connections in the millions (Table 9). 

  

Figure 7. Cypher query for count of bridges.

Table 8. Bridge counts by tactic.

Tactic Bridge Count

Reconnaissance 2
None (Benign) 5742

Credential Access 18
Discovery 1866

The number of bridges in None compared to Reconnaissance supports the idea that
the Reconnaissance tactic is heavily connected between nodes.

6.4. Weakly Connected Components

Weakly connected components is the fourth category of interest when analyzing the
graph. Given a directed graph, a weakly connected component (WCC) is a subgraph of
the original graph where all vertices are connected to each other by some path, ignoring
the direction of edges [23]. These values give an idea of how many disparate subgraphs
exist by tactic. It shows that the Reconnaissance tactic has many disparate components,
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whereas None (the benign data) has very few disparate components, even though both
have a similar number of connections in the millions (Table 9).

Table 9. Weakly connected components.

Tactic Components Count

Reconnaissance 930
None (Benign) 34

Credential Access 7
Discovery 4

6.5. Node and Edge Cardinality

Node and edge cardinality is the fifth category of interest when analyzing the graph.
Figure 8 shows the code snippet of the cypher queries returning the number of nodes and
edges, respectively. The data for UWF-ZeekData22 resulted in a graph with 262,963 nodes
and 18,562,438 directed edges (edges from the source to target address). Table 10 shows the
node and edge cardinality for the tactics of interest as given by Figure 9.
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Table 10. Path length.

Tactic Edges

None (Benign) 9,281,599
Reconnaissance 9,278,722

Discovery 2086
Credential Access 31

Resource Development 0
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6.6. Path Length

Path length is the sixth category of interest when analyzing the graph. It is valuable to
know if there are nodes that are more than one hop away from a source node. The query
in Figure 10 returns paths that are of length 2 to 5 edges away from source to destination,
where the source is a source of the Reconnaissance tactic, limited to 1000 paths.
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Figure 11 shows a source node of the Reconnaissance tactic, with address “143.88.2.10:41562”
that connects to intermediate address “143.88.7.12:3”, then to address “143.88.2.10:3”, and then
to many destination addresses.
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Figure 13 shows a source node of the Discovery tactic with address “143.88.7.10:55262”
that connects to intermediate address “143.88.2.10:3” and then to many destination ad-
dresses for dataset UWF-ZeekData22.
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Figure 13. Nodes of the Discovery tactic to destination addresses.

The paths shown in Figures 11–13 are the result of running the query in Figure 10
and represent the way that different tactic types connect to addresses, with a focus on
connections that pass through an intermediate IP address/port number before connecting
to their destination nodes. The source nodes of Credential Access do not have any paths of
length greater than 1 for dataset UWF-ZeekData22; hence, they have not been displayed.

7. Graph Visualizations

Figure 14 presents graphs representing the whole graph or sub-graphs of the three
major attack tactics as well as benign data from the UWF-ZeekData22 dataset. The graphs
help visualize the way different tactics connect between nodes. For instance, the graph
with connections using the tactic “Discovery” shows a central node connecting to most
other nodes, and some nodes connecting over an intermediate node in the path. Looking at
the “none” data, connections show a node connected to thousands of other nodes, with a
low degree of connections. In contrast, the nodes for the Reconnaissance tactic show a very
high degree of interconnectedness. The degree of connections for Reconnaissance appears
to be a strong indicator that the node belongs to that tactic.
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The code snippet of Figure 15 was used to create Figure 16, showing 10,000 node
connections. The graph shows a large collection of nodes that connect among a set of central
nodes. These central nodes appear to connect either directly or through intermediate nodes,
with a low degree of connection from the central nodes to the outer nodes.
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Figure 17 is a close up of Figure 16, offering a view of the connections at node address
“199.7.91.13:53”. The node is connected to many other nodes, with one or two edges for
most connections.
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8. Node Classification Using Graph Neural Networks

In this work, node classification, performed using graph neural networks (GNNs),
is used to predict the connection between IP addresses and ports as a form of attack or
non-attack in the MITRE framework of UWF-ZeekData22; that is, node classification is
used to classify a node as a source or a destination of an attack tactic and is used to identify
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the IP address–port combination that is the source of an attack for the different attack tactics
(hence, multi-classification). In Memgraph, since node classification is conducted using
GNNs, there are three different main layer types available for selection [24]:

1. Graph attention networks jumping knowledge (GATJK).
2. Graph attention networks (GAT, GATv2).
3. “GraphSAGE” (inductive representation learning on large graphs).

The following parameters are provided to train the models: the hidden features
layers, layer type, learning rate, number of epochs, training testing split ratio, and weight
decay. In this work, node classification is performed using the torch open-source machine
learning library.

The layer type defines the type of layers in GNN, such as GATJK, GAT, GraphSAGE,
etc. The learning rate defines the amount that the GNN will adjust during learning to
correct its weights and minimize loss. The number of epochs defines the number of times
that a model passes through the training dataset; that is, if the number of epochs equals
five, the model will pass the whole dataset five times. Split ratio defines the ratio between
training and testing data. Weight decay defines an additional loss to weights that grow too
big, such that a single weight does not monopolize the result. Table 11 presents an example
of node classification training parameters.

Table 11. Example of node classification training parameters.

Aggregator Mean

checkpoint_freq 5
console_log_freq 5

device_type cuda
hidden_features_size [16, 16]

layer_type GATJK
learning_rate 0.1

Metrics [“loss”,“accuracy”,“f1_score”,“precision”,“recall”,
“num_wrong_examples”]

node_id_property id
num_epochs 100

path_to_model /tmp/torch_models/model_GATJK_
split_ratio 0.8

weight_decay 0.0005

GAT and GATJK use the torch geometric library to apply graph attention network
layers in addition to jumping knowledge. GAT creates a matrix of weights embedded
on each node for the neighbors of the node and to itself. These standard weight values
are supplemented by the “attention coefficient.” This attention coefficient characterizes
the importance of the relationship between a node to its neighboring node, or how much
attention to give the neighboring node. This concept is used in language learning models
as well. The attention coefficient, as conducted in [25], is calculated as an additional single-
layer neural network that takes in the weights of two nodes, performs a “LeakyReLU”
activation function, and normalizes them performing “softmax.” The final weights are
then multiplied against the attention coefficient, adjusting the weights for which neighbor-
ing nodes require the most attention per the additional single-layer neural network [26].
These calculations are performed for pairs in parallel, allowing for additional performance
gain [25]. In the context of Memgraph’s “GATJK” model, the torch GAT model is the
given parameter jk (“Jumping Knowledge”) with a string value “max”, which performs a
final linear transformation to transform node embeddings to the expected output feature
dimensionality [27].

Jumping knowledge can be applied on top of GAT, GraphSAGE, and other graph
neural network types. This is a way to be more agnostic with respect to specific graph
structures such that a trained neural network for one graph might work just as well on
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another graph with a different structure via the way jumping knowledge influences the
aggregation of neighbor information for its embeddings [28].

GraphSAGE is another graph neural network model, which focuses on creating a
general inductive framework that leverages node feature information [29]. The general
inductive approach allows for GraphSAGE to be used across different graphs without
losing as much information because instead of training individual embeddings for each
node, we learn a function that generates embeddings by sampling and aggregating features
from a node’s local neighborhood [29].

Node classification required additional preprocessing as well as feature selection,
which are presented next.

8.1. Preprocessing for Node Classification

Additional preprocessing was required for node classification on the UWF-ZeekData22
dataset. First, an attack tactic label was required for each node in the graph. The labeling
was separated between two classifications: source and destination. This was undertaken to
classify a node as a source of an attack or a destination of an attack based on its features, as
predicted by the trained model.

Table 12 shows the tactic labels that were assigned to each node for both the src_class
(source) and dest_class (destination) node properties, converting categorical strings to
integer values for the node classification algorithm. “None” is a benign connection, whereas
“no_conn” means there is no connection for this node. Hence, a node that is a source
of a connection but has no incoming connection will have dest_class = 7 as it is not a
destination of any connections. A node can be a source or destination of multiple tactics,
and labels 5 and 6 denote such values.

Table 12. Tactic label values.

Tactic Label

None 1
Reconnaissance 2

Discovery 3
Credential Access 4

Discovery, Reconnaissance 5
Reconnaissance, none 6

no_conn 7

Table 12’s labels would be considered “multi-class” labels. In addition to this, binary
labels were created for each tactic for both source and destination. Table 13 shows the
node properties.

8.2. Feature Selection for Node Classification

As per the earlier analysis and visualizations that show the differences in degree and
centrality of the various nodes by tactic, in-degree, out-degree, and PageRank were selected
as graph features for node classification. The benefit of choosing these three features is that
these values model the structure and layout of the graph without requiring highly specific
network log data, while providing information about the amount of traffic and unique
connections being made from each node. Node classification is performed purely based
on the connectivity characteristics of the nodes to determine the underlying intention. In-
degree is most relevant to nodes that receive network traffic (destination nodes), out-degree
is most relevant to nodes that send traffic (source nodes), and PageRank provides data by
scoring nodes that are most relevant and central to the graph. These graph features were
strongly correlated to the classification of a node. Figure 18 presents the code snippet used
for feature selection.
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Table 13. Node property descriptions.

Node Property Description Example Value

address Concatenation of IP address and port 143.88.7.10:54124
dest_class Numeric label of node as a destination of a tactic 7

dest_credential_access Binary label of node as destination of Credential
Access tactic 0

dest_discovery Binary label of node as destination of Discovery tactic 0
dest_no_conn Binary label of node as destination of no connections 1

dest_none Binary label of node as destination of None tactic (benign,
normal connection) 0

dest_reconnaissance Binary label of node as destination of Reconnaissance tactic 0
features Array of feature values {in-degree, out-degree, PageRank} Array [3]

Discovery, Reconnaissance 5 [0,
Reconnaissance, none 6 0.0009735246917805615,

no_conn 7 0.000002120804881073081]
in_degree In-degree of node 0

out_degree Out-degree of node 0.000973525
rank PageRank of node 2.1208 × 106

src_class Numeric label of node as a source of a tactic 2
src_credential_access Binary label of node as a source of Credential Access tactic 0

src_discovery Binary label of node as a source of Discovery tactic 0
src_no_conn Binary label of node as a source of no connections 0

src_none Binary label of node as a source of None tactic (benign,
normal connection) 0
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Figure 18. Cypher query for feature selection.

8.3. Node Classification Results and Discussion

Node classification was performed for the different layer types: GATJK, GraphSAGE,
and GATv2. GATJK was initially performed using the default parameters. Then, exper-
imentation with different learning rates as well as different epochs produced a set of
optimal parameters that were used to then run the other two layer types: GraphSAGE and
GATv2. Eventually the three models were compared using the optimal parameters. Being
a multi-class model, the results presented reflect all classes; that is, classes 1–7 of Table 12.

8.3.1. GATJK

GATJK was performed using the default model. Based on the results of the default
model, the learning rates and epochs were adjusted in order to obtain the best results.

Default Model

The initial set of parameters for creating the model for source node classification were
as follows: {hidden features: [16, 16]; layer type: “GATJK”; learning rate: 0.1; weight decay
0.0005; split ratio: 0.8; epochs: 100}. The results are shown in Figure 19.
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As can be seen from Figure 19, the validation accuracy, F1 score, precision, and recall
have a similar trajectory. Of note, the accuracy values are very close to recall; hence, they
are difficult to see. For source node classification, throughout the epochs, the accuracy rises
steadily until it plummets and cycles through this process when the learning rate is at 0.1.
The chart visualizes how the accuracy, F1 score, and recall fall dramatically in very select
training epochs, although generally, the performance is very high. This may be a sign that
the learning rate is too high. It also might be because there are multiple attack tactics (since
this is being run as a multi-classifier), and the distribution of the attack tactics is not even.
The performance of the model continues to rise until the 25th epoch, after which, it drops
and rises dramatically.

Figure 20 shows the GATJK default source node classification loss. The objective of
the model is to minimize loss. The training loss was low and more or less stable with the
default parameters; however, the validation loss was not very consistent and pretty high in
many cases. Next, experimentation was conducted with the learning rate.
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Varying the Learning Rates

In the source and destination classification models, the learning rate was reduced to
0.001, and the layers were adjusted to [8, 8]. The following parameters were used: {hidden
features: [8, 8]; layer type: “GATJK”; learning rate: 0.001; weight decay 0.0005; split ratio:
0.8; epochs: 100}. This is shown in Figure 21.
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Figure 21. GATJK learning rate source node classification metric.

As noted from Figure 21, the range of performance is much reduced such that the
peak stays high and the lows only fall to greater than 0.945 for any measured value as
opposed to approaching 0.2 in our previous attempt. By lowering the learning rate, we can
lower losses by an order of magnitude and maintain high metrics across all measures. The
performance stops improving at around 10 epochs, so that is likely the optimum epoch to
avoid overfitting the model to our dataset.

Figure 22 shows that training loss is lowered to the 0.05–0.06 range. The validation
loss fluctuates between 0.04 and 0.12.
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Figure 23 presents a lower learning rate of 0.001. There is significant improvement in
loss over epochs with a lower learning rate of 0.001. Interestingly, the dips in metrics occur
at approximately the same points, i.e., 30 to 35 epochs and 45 to 50 epochs, as shown in
Figures 22 and 23.
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Figure 23. GATJK source classification learning rate comparison.

Varying Epochs

The training parameters were adjusted to the following: {hidden features: [8, 8];
layer type: “GATJK”; learning rate: 0.001; weight decay 0.0005; split ratio: 0.8; epochs: 5}.
Reducing the epochs from 100 to 5 stops the oscillation around the optimum metrics, and
this stops once the metrics have arrived or are close to the local maximum. This avoids
overfitting the model to the data. This is reflected in the loss charts, which continually drop
and flatten out, no longer rising again.

Figure 24 shows the results for the following source node classification metrics: ac-
curacy, F1 score, precision, and recall. The initial epoch produces a high starting correct
classification for all metrics. As epochs continue, the metrics flatten out to a plateau between
0.98 and 0.99.
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Figure 25 shows the loss from source node classification using GATJK. The loss from
training data continually slopes down, approaching 0.05. Validation loss also follows the
same trend and shows that five epochs is at, or close to, the optimal local minimum of loss.
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Figure 26 shows accuracy, precision, recall, and F1 score for destination node classifica-
tion. All metrics hit a local maximum at epoch 3, before slowly falling again. This contrasts
with the source classification, which continued to improve beyond epoch 3. In terms of
performance, destination node classification performed quite close to the source node
classification, with both values ranging between 0.98 and 0.99 at their highest metric values.

Figure 27 shows the training and validation loss for destination node classification.
Once again, loss is hitting a plateau at epoch 5, showing that at that point, we approach the
local minimum. The loss is slightly higher compared to the source classification losses, but
are comparably low, both being less than 0.1.

Table 14 summarizes the best results of accuracy, F1, precision, and recall for the source
node classification as well as destination node classification using GATJK by adjusting
learning rates and epochs for the respective nodes.
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Table 14. Best GATJK results.

Source Node Classification Destination Node Classification

Accuracy 0.9851 0.9785
F1 Score 0.9834 0.9775
Precision 0.984 0.978

Recall 0.9851 0.9785

8.3.2. GraphSAGE

GraphSAGE was performed with the optimal parameters obtained from the GATJK
model. The GraphSAGE model used the following parameters: {hidden features: [8, 8];
layer type: “SAGE”; learning rate: 0.0005; weight decay 0.0005; split ratio: 0.8; epochs:
10}. With similar parameters set for GraphSAGE, its performance was very comparable to
GATJK, with metrics all lying within the 0.95 to 0.99 range for both source node classification
and destination node classification, as shown in Figure 28. After epoch 6, the metrics stop
trending higher and oscillates close to 0.96, with the highest metrics across accuracy, F1
score, precision, and recall falling between 0.96 and 0.98.
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Figure 29 shows GraphSAGE source node classification loss. The loss plateaus starting
from epoch 3 until training loss is almost flat at a value close to 0.1. The validation loss
similarly plateaus, starting from epoch 3, and then peaks again at epoch 7. The validation
loss is higher than the training loss, maintaining a value closer to 0.2.
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Figure 30 shows the metrics for GraphSAGE destination node classification. The
values peak at around epoch 7, nearing 0.99, before falling again. The peak performance
appears to be slightly higher than GATJK, which peaked at around 0.985. The changes
between epochs are more unpredictable as compared to source node classification.
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Figure 31 shows GraphSAGE destination classification losses. The training losses
continually trend downwards in the training loss line. The validation loss peaks at epoch
3 and then rises again at epoch 8. The overall loss is slightly higher in destination node
classification loss compared to source node classification loss.
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Table 15 summarizes the best results of accuracy, F1, precision, and recall for the
source node classification as well as the destination node classification using GraphSAGE
by adjusting learning rates and epochs for the respective nodes.

Table 15. Best GraphSAGE results.

Source Node Classification Destination Node Classification

Accuracy 0.9553 0.9681
F1 Score 0.9541 0.966
Precision 0.9536 0.9662

Recall 0.9553 0.9681

8.3.3. GATv2

GATv2 was also started with the optimal parameters obtained from the GATJK and
GraphSAGE models. Using the same parameters as GATJK and GraphSAGE, the parame-
ters were set to the following values: {hidden features: [8, 8]; layer type: “GATv2”; learning
rate: 0.0005; weight decay 0.0005; split ratio: 0.8; epochs: 10}.

Figure 32 shows the resulting metrics for source node classification using GATv2. The
results are very poor except for precision, which stays in the 0.8 to 0.9 range. Accuracy, F1
score, and recall stay below 0.6 after the first epoch. The results indicate the other GNNs
are better solutions for node classification.
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Figure 33 shows that although the losses trend downwards, the minimum losses are
still much higher than the GATJK and GraphSAGE source node classification losses. The
minimum training loss is still higher than 0.3.
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Figure 34 shows that Gatv2 destination node classification performs relatively well
compared to source node classification. The metrics stay close to 0.9 throughout, with no
drastic changes over epochs.
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Figure 35 shows that GATv2 destination node classification training loss and validation
loss trend towards 0.2. Again, the destination node classification loss minimums are better
than the source node classification losses.

Table 16 summarizes the best results of accuracy, F1, precision, and recall for the source
node classification as well as the destination node classification using GATv2 by adjusting
learning rates and epochs for the respective nodes.
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Table 16. Best GATv2 results.

Source Node Classification Destination Node Classification

Accuracy 0.4297 0.8928
F1 Score 0.5442 0.8992
Precision 0.8399 0.9113

Recall 0.4297 0.8928

8.4. Summary for Node Classification

The GNN models, for the purpose of classifying an IP address–port combination as a
source or destination of an attack or benign connection tactic type based on graph-related
features—in-degree, out-degree, and PageRank—proved to perform well depending on
the selection of the algorithm or the layer type that was chosen. Except for GATv2, the
other GNN models, GraphSAGE and GATJK, attained favorable results for both source and
destination node classification with optimized models’ lowest metrics being greater than
0.95. This supports the idea that the graph structure and graph-related features representing
network connections can indicate the tactic of attacks being conducted as replicated in a
controlled cyber environment.

8.5. Limitations of this Study

A limiting factor in our dataset is that the number of tactics for Reconnaissance far
outweigh the other tactic types. That said, GNNs are a promising candidate for identifying
bad actors in a network based on the results.

9. Conclusions

In this research, the UWF-ZeekData22 dataset, network logs generated by Zeek, a
passive open-source network traffic analyzer, were viewed within a graph framework
to explore and describe the graph structure of different MITRE ATT&CK tactics, and
machine learning was performed using graph neural networks to classify tactics as source
or destination nodes of an attack tactic.

Preprocessing to prepare the data for ingestion into Memgraph was conducted in
Jupyter Notebooks. Unnecessary columns were removed, and additional node labels and
addresses were edited to fit the format of a graph. The connections were set as edges with
concatenated IP addresses and ports as the single address for each node. Both the nodes
and edges were labeled for the attack tactic.

Memgraph generated a graph representation of UWF-ZeekData22, with which several
graph properties were extracted, such as PageRank, degree, bridges, weakly connected
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components, node and edge cardinality, and path length. These properties further described
the graphs that were also visualized for different tactics, providing a different view.

Graph neural network models were generated for the UWF-ZeekData22 dataset to
perform node classification; that is, to label a node as a source or destination node for the
correct tactic under the MITRE ATT&CK framework. Through various means of testing and
tweaking the models, favorable results were obtained with training parameters: {hidden
features: [8, 8]; layer type: “GATJK”; learning rate: 0.001; weight decay 0.0005; split ratio:
0.8; epochs: 5}. Reducing the epochs to 5 stopped the oscillation around the optimum
metrics and this prevented overfitting the model. So, of Memgraph’s three GNN classifiers,
GATJK gave the best results for both source node classification and destination node
classification using only three graph features: in-degree, out-degree, and PageRank. For
GATJK, all metrics, accuracy, F1-score, precision, and recall, produced above 98.3% and
97.7% for source and destination node classification, respectively. There was a significant
improvement in loss over epochs with a lower learning rate of 0.001. The performance of
GATv2 was the weakest of the three models.

Multi-classification had not been conducted on this set of data previously, but these
results are better than some previous results obtained for binary classification using classical
machine learning classifiers like SVM, naïve Bayes, and logistic regression in [30].

10. Future Works

The use of graph neural networks as an AI/ML intrusion detection system using live,
real-time, “temporal” GNNs presents an exciting potential use-case that requires further
research and exploration. As it currently stands, the Zeek logs provide a recording of events
that have already happened and are useful for exploring past incidents. GNNs provide
unique insight by framing connectivity from a graph perspective, and as research in GNNs
is still ongoing, the use of GNNs as a solution for cybersecurity will continue to evolve
and improve.
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