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Abstract: A robust explicit model predictive control (EMPC)-based frequency-adaptive grid voltage
sensorless control is developed for a grid-connected inverter (GCI) via a linear matrix inequality (LMI)
approach under the model parametric uncertainties as well as distorted and imbalanced grid voltages.
In order to ensure the quality of grid currents injected into the utility grid even when the system
model parameters vary, the proposed control scheme is accomplished by an enhanced prediction
model rather than the conventional prediction model obtained by fixed parameters. Furthermore, an
LMI-based observer is integrated with the disturbance observer to improve the reference tracking
performance and to reject disturbances. The proposed observer is employed for the grid frequency-
adaptive control without the need for grid voltage sensors. The proposed current controller and
observer employ the LMI scheme to maintain a stable and robust operation of the GCI. The discrete-
time frequency response and pole-zero map analyses are utilized to examine the system performance
including the stability and robustness against parametric uncertainties. Comprehensive simulation
and experimental tests as well as theoretical analyses clearly validate the robustness of the proposed
control scheme under various harsh test conditions with non-ideal and unexpected grid and system
parametric uncertainties.

Keywords: disturbance observer; explicit model predictive control (EMPC); grid-connected inverters
(GCIs); linear matrix inequality (LMI); uncertainties; voltage sensorless control

1. Introduction

Nowadays, grid-connected inverters (GCIs) are being increasingly developed to facili-
tate renewable energy generation systems, microgrid or smart grids [1,2]. The GCI systems
should operate to effectively transfer the direct current (DC) power from distributed genera-
tors to alternative current (AC) power to inject it into the grid even under harsh unexpected
grid conditions [3,4]. In particular, reducing the total harmonic distortion (THD) in the
GCI current output is one of the most important challenges. In most grid interconnection
standards, the harmonic content of the output current should be less than 5% even under a
non-ideal grid environment [3].

Commonly, to maximize the inverter power transfer efficiency, the pulse width mod-
ulation (PWM) inverters are utilized. To reduce the distortion of the injection currents
into the utility grid and to meet the power quality standard [5], low pass filters are an
essential component between the GCI and the utility grid. Among these filter types, the
inductor-capacitor–inductor (LCL) filter offers superior harmonic suppression capability
with reduced filter inductor size compared to others. Nevertheless, the stability of the whole
system is easily harmed by the resonance peak of the LCL filter. Therefore, the current
control design should be accomplished not only to ensure a good quality of grid-injected
currents under several disturbance sources, but also to stabilize the system by damping the
resonance phenomenon [6,7].
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In addition, the current control method of the GCIs should also consider the distur-
bance sources which come from both external and internal factors [8]. In particular, the
values of LCL filter components may be drifted from the known nominal values due to the
manufacturing tolerance, aging effects, or weak grid conditions, which can be considered as
internal uncertainties. The external disturbances primarily arise from the severe distortion
or unbalanced behavior of the grid voltages [9,10].

Since power conversion systems should be operated with high efficiency as well as
improved flexibility and profitability, many authors have a tendency to focus on robust
algorithm, adaptive algorithm or learning algorithm to obtain the stabilization of the
entire system even in the presence of harsh conditions of the utility grid [6,11–16]. The
linear quadratic regulators (LQR) were proposed as a method to determine the optimal
controller gains by means of a cost function minimization [17,18]. Compared to the pole
placement method [9], the LQR method offers the advantage of achieving an optimal
feedback gain set by choosing appropriate weighting factors. However, the LQR controllers
commonly require the user’s experience and knowledge in choosing proper weighting
factors. Other approaches in [6,11] present the linear matrix inequality (LMI) method to
optimally generate the control gains, in which the Lyapunov stability condition is employed
to guarantee robust stability and good performance despite the model inaccuracy. Even
though these studies provide satisfactory performance under parametric uncertainties,
several external disturbances such as grid voltage imbalance degrade the current controller
operations. Another approach [12] employs H∞ control to cope with the additional grid
impedance caused by the weak grid. The robust performance of H∞ control is guaranteed
even under parametric uncertainties. However, this study did not consider the grid voltage
imbalances and frequency fluctuations of the real grid.

As a method to consider the system constraints effectively and to yield a fast output
response, model predictive control (MPC) has been studied. If all the parameters in the
system are well-known, the MPC generally provides an excellent controller performance as
well as an accurate output tracking [1,10,13–15]. However, the performance of the MPC
depends on computationally intensive and accurate system models and parameters. In
addition, the system stability of the MPC-based GCI is affected by parametric uncertainties
and the weak grid. The LMI-based MPC method was also proposed in [6,16] to solve
the problem of the conventional MPC. Although several non-ideal grid conditions were
addressed, the control scheme in [6] does not consider grid voltage sensorless control.
Moreover, it does not consider severe parametric uncertainty conditions. In [16], the closed-
loop system analyses were represented to verify the robust stability. However, severe grid
disturbance such as grid harmonics and imbalanced grid voltages was not addressed.

In order to achieve robust stability, low computational burden, high efficiency, and
good tracking performance despite model inaccuracies as well as external disturbances,
this study investigates a robust explicit MPC (EMPC)-based frequency-adaptive current
controller of a GCI system without the grid voltage sensors. Because the proposed con-
trol scheme does not require additional sensing devices for realizing the active damping
method, integral term, and second-order harmonic compensation term, the computational
burden to implement the proposed scheme can be reduced, while maintaining a good
tracking performance.

The proposed study is improved in two aspects. First, the LMI-based MPC algorithm
is employed by an LQR-based prediction model in order to improve the stability of the
GCI system under parametric uncertainties and to reduce the computational burden in
comparison to the conventional MPC algorithm in [6]. In the proposed scheme, an LQR-
based prediction model is obtained with state and control input at time step k to predict the
overall prediction horizon. Second, to realize a current controller without the grid voltage
sensors, the proposed controller deploys an LMI-based resonant extended state observer
with the grid frequency adaptation to guarantee high estimation accuracy for grid voltages
and system state variables with various grid conditions. In particular, the proposed LMI-
based observer also integrates a disturbance observer to ensure a good performance of the
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resonant extended state observer by rejecting the influence of disturbances. Comprehensive
simulation and experimental results as well as analyses effectively validate the robustness
of the proposed controller under several harsh conditions such as internal parametric
uncertainties as well as unexpected grid distortion and an imbalanced grid.

2. System of a GCI
2.1. Model of a GCI with LCL Filter

Figure 1 depicts the power circuit of a three-phase LCL-filtered GCI controlled by
the proposed scheme which employs only the measurement of dc-link voltage and the
grid-side currents. In Figure 1, L1 and L2 are the filter inductances in inverter-side and
grid-side, respectively, R1 and R2 are the filter resistances in inverter-side and grid-side,
respectively, Lg is the grid inductance, and Cf is the filter capacitance. In this figure, i1 is
the inverter-side currents, vc is the filter capacitor voltages, i2 is the grid-side currents, u is
the inverter voltages, e is the utility grid voltages, d is the disturbance, and the symbol ‘ˆ’
denotes the estimated quantity. The voltage vPCC denotes the point of common coupling
(PCC) voltages which are the same with the utility grid voltages e if the grid impedance
does not exist. Variable

∼
ω is the grid angular frequency of the moving average filter (MAF)

that is deployed to remove the frequency fluctuation obtained from the conventional phase
lock loop (PLL) under grid voltage distortion. The superscripts ‘qd’ represent the qd-axis
variables in the synchronous reference frame (SRF), ‘αβ’ represents the variables in the
stationary frame, and ‘abc’ represents the phase variables. To apply the reference voltages
to GCI, the space vector pulse width modulation (SVPWM) scheme is employed in the
proposed scheme.
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Figure 1. Power circuit of LCL-filtered GCI with the proposed control scheme.

In a state-space matrix form, the GCI system can be presented in the SRF by the
continuous-time model as follows [6]:

.
x(t) = A x(t) + B u (t) + D e (t) + d (t) (1)

y(t) = C x(t) (2)
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where x = [iq
2, id

2 , iq
1, id

1 , vq
c , vd

c ]
T

is the state, u = [vq
i , vd

i ]
T

is the control input, e = [eq, ed]
T

is
the grid voltage vector, and d = [d1, d2, d3, d4, d5, d6]

T is the disturbance vector, and

A =



−R2/L2 − ω 0 0 1/L2 0
ω −R2/L2 0 0 0 1/L2
0 0 −R1/L1 − ω −1/L1 0
0 0 ω −R1/L1 0 −1/L1

−1/C f 0 1/C f 0 0 − ω
0 −1/C f 0 1/C f ω 0

 (3)

B =



0 0
0 0

1/L1 0
0 1/L1
0 0
0 0

, D =



−1/L2 0
0 −1/L2
0 0
0 0
0 0
0 0

, C =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
(4)

ω is the angular frequency of the grid.

2.2. System Modeling under Parametric Uncertainties

Because of manufacturing tolerance in real filter parameters, the parameter values are
greater than or less than the nominal values. In addition, the weak grid causes the grid
impedance value to fluctuate. In this work, the LCL filter parameters are assumed to have
uncertainties within certain ranges defined as follows:

L2,min ≤ L2 ≤ L2,max = L2/δ1 ≤ L2 ≤ L2δ1 (5)

L1,min ≤ L1 ≤ L1,max = L1/δ2 ≤ L1 ≤ L1δ2 (6)

C f ,min ≤ C f ≤ C f ,max = C f /δ2 ≤ C f ≤ C f δ2 (7)

where δ1 and δ2 are the uncertainty coefficients of the LCL filter (δ1 > 1, δ2 > 1). Those
ranges are expressed as a convex combination of eight vertices as follows:

κ =

{
23

∑
k=1
ψk(Ak, Bk, Ck)|

23

∑
k=1

ψk = 1,ψk ≥ 0

}
. (8)

The polytopic uncertainty set κ contains the uncertain system matrices which are
obtained by considering a combination of eight extreme values.

2.3. Model Discretization

To discretize uncertain systems in the continuous-time, the zero-order hold approach
is used in the proposed controller with the sampling period Ts for all vertices given in (1)
and (8) as

x(k + 1) = Adix(k) + Bdiu(k) + Ddie(k) + dd (9)

y(k) = Cdix(k) (10)

where

Adi = eAiTs = I +
AiTs

1!
+

A2
i T2

s
2!

+ . . . (11)

Bdi =

(∫ Ts

0
eAiTs dτ

)
Bi = A−1

i (Adi − I)Bi (12)

Ddi =

(∫ Ts

0
eAiTs dτ

)
Di = A−1

i (Adi − I)Di (13)

Cdi = C (14)
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for i = 1, 2, 3, · · · , 8.

3. Proposed Current Control Design with LMI-Based MPC

The MPC is known to be an optimal control strategy that derives control inputs
using predicted future states and feedback information. Nevertheless, the optimization
procedure must be repeated using new measurement values in each sampling period; thus,
the online implementation causes a heavy burden of computation on the digital signal
processor (DSP). Moreover, since the performance of the conventional MPC technique
mainly depends on the accuracy of the plant model, this scheme is weak under unexpected
uncertainties or disturbance [1,13–15]. To address such limitations, the proposed EMPC is
combined with the LMI tool in this paper to reduce computational burden as well as to
ensure satisfied output performance and robustness against both parametric uncertainties
and grid disturbances.

3.1. Converional Prediction Model

In the conventional scheme, the inverter model is used to calculate the prediction of
future states with the MPC. Using the system state (9), the prediction model from the time
step (k + 1) to (k + N) is given as:

x(k + 1)
x(k + 2)
x(k + 3)
...

 =


Ad,6×6
A2

d,6×6
A3

d,6×6
...




x(k)
x(k)
x(k)
...

+


Bd,6×6 0 0 . . .
Ad,6×6Bd,6×6 Bd,6×6 0 . . .
A2

d,6×6Bd,6×6 Ad,6×6Bd,6×6 Bd,6×6 . . .
...

...
...

. . .




u(k)
u(k + 1)
u(k + 2)
...



+


Dd,6×6 0 0 . . .
Ad,6×6Dd,6×6 Dd,6×6 0 . . .
A2

d,6×6Dd,6×6 Ad,6×6Dd,6×6 Dd,6×6 . . .
...

...
...

. . .




e(k)
e(k + 1)
e(k + 2)
...


(15)

or
xp(k + N) = Apxp(k) + Bpup(k + N) + Dpep(k + N) (16)

up(k) = −

KL . . . 0
...

. . .
...

0 . . . KL

x(k) (17)

where xp is the future prediction states, up is the control inputs, ep is the grid voltages, N is
the prediction horizon length, and KL is the prediction model gain.

3.2. LQR-Based Prediction Model

The conventional prediction model does not take into account the model parameter
variations and uncertainties. The performance of the conventional MPC may be rapidly
degraded under both internal and external disturbances affecting the system in practical
applications. To address these effects, an LQR-based prediction model is presented to
reduce the dependence on parameter values of the prediction model. Also, the proposed
prediction model has the advantage of requiring only a system state at the current time k.

The LQR-based prediction model provides an optimal prediction model gain KL in
(17) by means of the minimization of the quadratic cost function as

Jp = ∑∞
l=0 xT

p (k + l) Qpxp(k + l) + uT
p (k + l)Rpup(k + l) (18)
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where Qp and Rp denote positive definite and semidefinite matrices, respectively. To
generate the up in (17) in closed-loop form, the discrete-time algebraic Riccati equation
(ARE) can be determined as follows:

Pp = Qp + AT
p PpAp − AT

p PpBp

(
Rp + BT

p PpBp

)−1
BT

p PpAp (19)

where Pp denotes the solution of the discrete-time ARE. The LQR can easily reach optimal
control with minimal control effort. The closed-loop form Acl = Ad −KLBd can be obtained
using the control input (17). The LQR-based prediction model from time step (k + 1) to
(k + N) which constitutes the enhanced prediction model is determined as

x(k + 1)
x(k + 2)
x(k + 3)

...
x(k + N)

 =


Acl
A2

cl
A3

cl
...

AN
cl




x(k)
x(k)
x(k)

...
x(k)

+


Dd 0 0 · · ·

AclDd Dd 0 · · ·
A2

clDd AclDd Dd · · ·
...

...
...

. . .
AN−1

cl Dd AN−2
cl Dd AN−3

cl Dd . . .




e(k)
e(k)
e(k)

...
e(k)

 (20)

The LQR-based prediction model generation removes the requirement for future
inputs unlike the conventional prediction model (15) and greatly simplifies computational
process. The unknown grid voltage in (9) can be considered to be constant as follow [16]:

e(k) = e(k + 1). (21)

The proposed LQR-based prediction model is developed to enhance the robustness
against the parametric uncertainties without requiring self-tuning processes.

3.3. Explicit Model Predictive Control

By substituting the grid-side current references iq∗
2 , id∗

2 and the estimated values of
grid voltages êq, êd in (9), the reference state and control are obtained in a steady state as

vq∗
c = R2iq∗

2 + L2ω̃id∗
2 + êq (22)

vd∗
c = R2id∗

2 − L2ω̃iq∗
2 + êd (23)

iq∗
1 = iq∗

2 + C f ω̃vd∗
c (24)

id∗
1 = id∗

2 − C f ω̃vq∗
c (25)

uq∗ = R1iq∗
1 + L1ω̃id∗

1 + vq∗
c (26)

ud∗ = R1id∗
1 − L1ω̃iq∗

1 + vd∗
c (27)

where iq∗
1 and id∗

1 are the references of inverter-side currents, and vq∗
c and vd∗

c are the
references of capacitance voltages.

To design the MPC, a cost function JMP is constructed as follows:

JMP = ∑N
j=1 [ex(k + j)] TQMP[ex(k + j)]+[eu(k + j)] TRMP[eu(k + j)] (28)

where ex(k) = x̂(k) − x∗(k), eu(k) = u(k) − u∗(k), x∗ = [iq∗
2 , id∗

2 , iq∗
1 , id∗

1 , vq∗
c , vd∗

c ]
T

repre-

sents the reference of state, u∗ = [uq∗, ud∗]
T

is the reference of the control input, QMP and
RMP are a symmetric positive-definite and semidefinite weighting matrices, respectively.
To obtain the MPC input u(k), the first derivative of JMP(k) is considered as

∂JMP(x(k), u(k))
∂u(k)

= 0 (29)
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The MPC control input is derived from (28) as

u(k) =

BT
M

QMP · · · 0
...

. . .
...

0 · · · QMP


AM

BT
M

QMP · · · 0
...

. . .
...

0 · · · QMP

BM + RMP


−1

ex + u∗(k) (30)

or
u(k) = KMPex(k) + u∗(k) (31)

where AM =


Acl
A2

cl
A3

cl
...

AN
cl

, BM =


Dd 0 0 · · ·

AclDd Dd 0 · · ·
A2

clDd AclDd Dd · · ·
...

...
...

. . .
AN−1

cl Dd AN−2
cl Dd AN−3

cl Dd . . .

.

At each time step k, the EMPC selects the best MPC input signal to minimize the cost
function as in (29). As a result, the errors between system states and references values ex(k)
are also minimized, and the excellent reference tracking performance is achieved.

3.4. LMI-Based Parameter Derivation

To achieve the reference tracking objective of zero steady-state error, the cost function
in (28) is minimized. In the conventional full-state feedback controller described in [19],
additional integral control terms and resonant control terms tuned at the 2nd order har-
monic are included in the GCI model to guarantee a zero-output tracking error even in
the presence of the grid voltage imbalances. Evidently, this approach increases the com-
putation burden due to the augmentation of multiple control terms. On the contrary, the
proposed method ensures a good performance of reference tracking regardless of balanced
or imbalanced utility grid voltage by means of the control input in (30) without using any
additional augmentation of control components.

One of the challenging parts in the MPC design is to choose the proper weighting ma-
trices in (28), and to maintain a stability for a parametric uncertain system. To address this
concern, the LMI method is incorporated into the MPC design, which ensures robustness
under parametric uncertainty boundaries. Moreover, it is also easier to systematically find
a weighting matrix QMP in (28). To design the LMI-based MPC, the Lyapunov function is
formed as

V(k) = ex(k)
TQMPex(k) (32)

Minimizing the cost function (28) is difficult when the polytopic uncertainties are
included in system model. To overcome this limitation, the LQR-LMI method in [7] is
deployed for the purpose of ensuring the robust stability of the system. In particular, the
LMI approach ensures system stability and robust performance if, and only if

V(k + 1)− V(k) ≤ −
[
ex(k)

TQLex(k) + eu(k)
TRLeu(k)

]
. (33)

From (33), the LMI is derived as follows:

(Adi + BdiΦ)TQMP(Adi + BdiΦ)− QMP < −QL − ΦTRLΦ (34)

where QL and RL denote the weighting matrices for the LQR-LMI method, Φ is the gain
determined in order that the Lyapunov function monotonically decreases. Multiplying the
definite matrix Y

(
Y = Q−1

MP

)
on both sides of (34) yields

YT − YTQLY − (ΦY)TRLΦY − (AdiY + BdiΦY)TQMP(AdiY + BdiΦY) ≥ 0 (35)
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Utilizing the Schur complement to (35) yields

Z =


Y (ΦY)T TT

i YT

ΦY R−1
L 0 0

0 0 Y 0
Y 0 0 Q−1

L

 ≥ 0 (36)

where Ti = AdiY + BdiΦY for i = 1, 2, 3, · · · , 8. Lastly, the LMI problem in the sense of
Lyapunov theory over the infinite horizon is stable if, and only if

∑∞
k=0[V(k + 1)− V(k)] = V(∞)− V(0) ≤ ∑∞

k=0 −
[
ex(k)

TQLex(k) + eu(k)
TRLeu(k)

]
(37)

As presented in [11], V(∞) is converged to zero in a stable controlled system. Thus, it
yields that the cost function of (37) should be less than V(0). If σ denotes an upper bound
of V(0), the LMI holds as

V(0) = ex(0)
TQMPex(0) ≤ σ. (38)

Then, a weighting matrix QMP in (28) is obtained by the solution of the optimization
problem as

MIN σ

Y
subject to

Z 0 0
0 σ eT

x (0)
0 ex(0) Y

 ≥ 0 (39)

where Z denotes the matrix in (36). In (28), QMP = Y−1 is obtained by the LMI optimization
method. The benefit of this scheme is that the solution ensures strong robustness and
stability under system uncertainties.

3.5. Distorted Harmonic Compensation

To eliminate the negative impacts from the distortion in grid voltages and to assure
high-quality sinusoidal currents into the utility grid, the proportional resonance (PR)
controllers with grid frequency-adaptive capability are constructed in parallel with the
proposed EMPC. The grid harmonic voltages in the 5th, 7th, 11th, and 13th orders in the
‘abc’ frame are effectively removed only with light computational burden with two PR
controllers which are designed at the 6th and 12th orders in the SRF. The frequency-adaptive
PR controllers are expressed as [20]:

PRn(k) = LnPR

z2 +

(
2 − (nω̃Ts)

2

2 + (nω̃Ts)
4

24

)
z +

(
1 − (nω̃Ts)

2

2 + (nω̃Ts)
4

24

)
z2 − 2 cos(nω̃Ts)z + 1

(40)

where n = 6, 12 is the order of harmonics, LnPR is the PR gain for 6th and 12th order. In
order to avoid the degradation of harmonic suppression under the utility grid frequency
variation, the filtered grid frequencyω˜ is updated in the PR controllers.

4. Frequency-Adaptive Grid Voltage Sensorless Controller

Figure 2 shows the proposed frequency-adaptive grid voltage sensorless controller, in

which εdq = rdq − ydq denotes the grid current error, rdq = [iq∗
2 , id∗

2 ]
T

, ydq = [iq
2, id

2 ]
T

, and L1
and Lh are the gains of the proposed LMI-based observer.



Electronics 2024, 13, 998 9 of 21

Electronics 2024, 13, x FOR PEER REVIEW 9 of 22 
 

 

4. Frequency-Adaptive Grid Voltage Sensorless Controller 
Figure 2 shows the proposed frequency-adaptive grid voltage sensorless controller, 

in which 𝛆ௗ௤ = 𝐫ௗ௤ − 𝐲ௗ௤ denotes the grid current error, 𝐫ௗ௤ = [𝑖ଶ௤∗, 𝑖ଶௗ∗]், 𝐲ௗ௤ = [𝑖ଶ௤, 𝑖ଶௗ]், 
and 𝐋ଵ and 𝐋௛ are the gains of the proposed LMI-based observer. 

 
Figure 2. Structure of a frequency-adaptive grid voltage sensorless controller. 

4.1. LMI-Based Observer with Disturbance Observer for Sensorless Control 
In this section, an LMI-based observer which mitigates the influence of the paramet-

ric uncertainties, is deployed to estimate the grid voltages as well as entire system states. 
From the grid voltage estimate, the phase angle and angular frequency of the utility grid 
are extracted. Finally, the estimated angular frequency information is used to adjust the 
LMI-based observer model. In addition, the extracted grid frequency is also updated in 
the controller and harmonic compensator to prevent performance degradation under fre-
quency fluctuations. Because the proposed LMI-based observer is designed in the station-
ary frame, the system model is discretized easily irrespective of frequency variation. For 
the LMI-based observer algorithm, the resonant model is adopted, which is represented 
in z-domain transfer function as follows [21]: 

( )
( )

2

2

cos
2cos 1

s
m

s

z m T z
G

z m T z
− ω

=
− ω +


  (41)

where m is the harmonic order for m = 1, 5, 7, 11, 13. In state-space, the transfer function 
in (41) is written as follows: 

( )ˆ ˆ cos( )( 1) ( )2cos 1
( 1) ( 1)

ˆ ˆ1 0( 1) ( )
h sm ms

di di
hm m

L m Th k h km T
k k

Lh k h k

αα α
αβ αβ αβ

ββ β

     ω+  ω     = +  + − +   −     −+       
y C x


 (42)

where 𝐿௛ is the resonant observer gain. The estimate of the utility grid voltage is con-
structed by adding the fundamental component with individual harmonic components as 
follows: 
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Figure 2. Structure of a frequency-adaptive grid voltage sensorless controller.

4.1. LMI-Based Observer with Disturbance Observer for Sensorless Control

In this section, an LMI-based observer which mitigates the influence of the parametric
uncertainties, is deployed to estimate the grid voltages as well as entire system states.
From the grid voltage estimate, the phase angle and angular frequency of the utility grid
are extracted. Finally, the estimated angular frequency information is used to adjust the
LMI-based observer model. In addition, the extracted grid frequency is also updated in the
controller and harmonic compensator to prevent performance degradation under frequency
fluctuations. Because the proposed LMI-based observer is designed in the stationary frame,
the system model is discretized easily irrespective of frequency variation. For the LMI-
based observer algorithm, the resonant model is adopted, which is represented in z-domain
transfer function as follows [21]:

Gm =
z2 − cos(m ω̃Ts)z

z2 − 2 cos(m ω̃Ts)z + 1
(41)

where m is the harmonic order for m = 1, 5, 7, 11, 13. In state-space, the transfer function in
(41) is written as follows:[

ĥ α
m(k + 1)

ĥ β
m(k + 1)

]
=

[
2 cos(m ω̃Ts) 1

−1 0

][
ĥ α

m(k)
ĥ β

m(k)

]
+

[
L α

h cos(m ω̃Ts)

−L β
h

][
yαβ(k + 1)− Cαβ

di
¯
x
αβ

di (k + 1)
]

(42)

where Lh is the resonant observer gain. The estimate of the utility grid voltage is constructed
by adding the fundamental component with individual harmonic components as follows:

êαβ(k) = ∑m ĥ αβ
m (k), for m= 1, 5, 7, 11, 13. (43)

The proposed LMI-based observer is augmented into the GCI state model in the
stationary frame as follows:

¯
N

αβ

z (k + 1) = Aαβ
zi N̂αβ

z (k) + Bαβ
zi u(k) + Dαβ

zi ê(k) + d̂
αβ
z (k). (44)

N̂αβ
z (k + 1) =

¯
N

αβ

z (k + 1) + Lz

[
yαβ(k + 1)− Cαβ

z
¯
N

αβ

z (k + 1)

]
(45)

where Nz = [xαβT , hαβT
1 , hαβT

5 , hαβT
7 , hαβT

11 , hαβT
13 ]

T
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Aαβ
zi =


Aαβ

di Dαβ
di Dαβ

di Dαβ
di Dαβ

di Dαβ
di

0 eh1 0 0 0 0
0 0 eh5 0 0 0
0 0 0 eh7 0 0
0 0 0 0 eh11 0
0 0 0 0 0 eh13

, Lz =

[
Le
L1
Lh

]
, Bαβ

zi =

[
Bαβ

di
0

]
, Dαβ

zi =

[
Dαβ

di
0

]
, dαβ

z =

[
dαβ

0

]
, Cαβ

z = [Cαβ
d 0]

for i = 1, 2, · · · , 8, ehm =

[
2 cos(mω̃Ts) 1

−1 0

]
, Lz denotes the LMI-based observer gain and

Le denotes state observer gain. The estimation state N̂αβ
zi is obtained by yαβ and first

estimated state
¯
N

αβ

zi at the step (k + 1)Ts.
The disturbance observer is also designed for the purpose of improving the estimation

performance of LMI-based observers as follows:

d̂
αβ
z (k + 1) = d̂

αβ
z (k) + Ld

[
d∗αβ

z (k)− d̂
αβ
z (k)

]
(46)

d∗αβ
z (k) = N∗αβ

z (k)− N̂αβ
z (k) (47)

where N∗αβ
z = [x∗αβT

d , ĥ
αβT
1 , ĥ

αβT
5 , ĥ

αβT
7 , ĥ

αβT
11 , ĥ

αβT
13 ]

T
and Ld denotes a gain of the

disturbance observer. An error is derived by subtracting the LMI-based observer in (44)
and (45) and a disturbance observer in (46) and (47) from the system model in (9) to yield[

Nαβ
z (k + 1)− N̂αβ

z (k + 1)

dαβ
z (k + 1)− d̂

αβ
z (k + 1)

]
=

[
Aαβ

zi − LzCαβ
z Aαβ

zi I − LzCαβ
z

−Ld I − Ld

][
Nαβ

z (k)− N̂αβ
z (k)

dαβ
z (k)− d̂

αβ
z (k)

]
(48)

or
ze(k + 1) = η ze(k). (49)

The Lyapunov function ν(k) is defined to obtain the observer gain set as

υ(k) = zT
e (k)W ze(k) (50)

where W =

[
W1 0
0 W2

]
is the weighting matrix. To ensure the stable observer, (50) should

monotonically decrease, i.e., υ(k + 1) < υ(k). It leads the LMI as below [16]

ηTW η < W < ζ2W = W0 (51)

or
W0 − ηT(WW−1)W η > 0 (52)

where the convergence rate ζ (0 < ζ < 1) minimizes the Lyapunov function to determine the
optimal observer gains. Applying the Schur complement yields

MIN ζ
W0, W

subject to
[

W0 γ−1

γ W

]
≥ 0 (53)

where γ =

[
W1Aαβ

zi − YzCαβ
z Aαβ

zi W1 − YzCαβ
z

−Yd W2 − Yd

]
.

Then, the LMI-based observer gains are obtained as Lz = W−1
1 Yz and the disturbance

observer gains are as Ld = W−1
2 Yd. In this paper, the LMI method is solved by using

MATLAB toolbox SeDuMi version 1.1 [22] and YALMIP version R20180413 [23]. The
proposed LMI-based observer ensures zero estimation error at the steady state even under
frequency fluctuation and grid distortion.
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4.2. Frequency Estimation

From the estimates of the utility grid voltage, the grid frequency and phase angle are
directly extracted by using a MAF-PLL [20] to realize the synchronization process without
the use of grid voltage sensors. In general, the controller and observer performances are
severely influenced by the accuracy of the estimated frequency of the utility grid. To prevent
the performance degradation caused by the grid frequency fluctuation, the estimated grid
frequency is adaptively updated.

By using the MAF, the filtered grid frequency is represented as follows:

ω̃ (k) =
1
M

M−1

∑
i=0

ω̂ (k − i) (54)

where ω̂ is the grid angular frequency estimate by the estimated grid voltages,
∼
ω is the

filtered frequency, and M is the number of samples in window. Also, the phase delay is
compensated by an adaptive delay compensator.

5. Stability Analysis

The stability of the proposed control scheme is investigated under the variation of
the grid impedance and parametric uncertainties. The proposed control achieves excellent
tracking performance as well as strong robustness under weak grid. The eigenvalue
locations and frequency responses are presented in the z-domain. Since the proposed
current controller is designed in the ‘dq’ frame while the LMI-based observer is designed in
the ‘αβ’ frame in the proposed scheme, the eigenvalues are investigated separately.

5.1. Eigenvalue Map

Figure 3a,b show the eigenvalue plots for the proposed EMPC scheme and the pro-
posed LMI-based observer under the filter parametric uncertainties. It is noted that the
grid impedance variation due to weak grid is included in L2 variation. It is confirmed from
these figures that all the eigenvalues maintain inside the stable region despite the changes
in filter parameters. This effectively proves the robustness of the proposed control method.

5.2. Frequency Responses

Figure 4 shows the frequency responses of the proposed EMPC scheme for the ref-
erence tracking performance and disturbance rejection under parametric uncertainties.
Frequency responses are obtained for all vertices of the polytopic system model. Similar to
Figure 3, the effect of grid impedance is considered by the variation of L2. In other words,
L2 is represented as sum of the nominal L2 and Lg under grid impedance. However, the
impact of the proposed LMI-based adaptive observer and PR controller are not taken into
account. It is clearly confirmed by Figure 4 that the proposed EMPC method provides a
superior reference tracking as well as complete disturbance rejection capability.
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6. Simulation Validation

To validate the effectiveness of the proposed scheme, simulations are conducted for a
three-phase GCI prototype. The parameters of the GCI and utility grid are represented in
Table 1. The proposed control method is evaluated under the 5th, 7th, 11th, and 13th grid
voltage harmonic components with 5% of the fundamental grid voltage magnitude.

Table 1. Parameters of the GCI and utility grid.

Parameters Value Units

Filter resistance 0.5 Ω
Filter capacitance 1/4.5/6 µF

Inverter-side inductance 1.7 mH
Grid-side inductance 1.0 mH

Grid voltage 220 V
Grid frequency 50/60 Hz
Grid inductance 4.0 mH

Switching frequency 10 kHz
DC-link voltage 420 V

Figure 5 represents the grid current responses produced by the proposed control
method by the simulation when the utility grid voltages include distortion and frequency
change. The waveform in Figure 5a shows the high-quality grid currents even under harsh
disturbance from the grid. Figure 5b shows the current responses when additional grid
impedance (Lg = 4 mH) is applied in addition to distorted grid voltages and frequency
change from 60 Hz to 50 Hz at 0.6 s. The results of Figure 5 demonstrate that the proposed
current controller ensures strong robustness and good control response under voltage
distortion of the utility grid, grid frequency change, and grid impedance uncertainty.
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Figure 5. Simulation for the proposed method. (a) Grid currents under grid voltage distortion and
frequency change. (b) Grid currents under grid voltage distortion and frequency change with the
grid impedance of Lg = 4 mH.

Reliable inverter operation without using the grid voltage sensors is mainly dependent
on the estimating performance of the utility grid voltages. Figure 6 evaluates the estimating
performance of the proposed LMI-based observer designed in αβ frame by simulation
results by comparing the estimated states with measured states or references. The estimated
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and measured states for the grid currents are presented in Figure 6a, the estimated and
reference inverter currents in Figure 6b, the estimated and reference capacitor voltages in
Figure 6c, and the estimated and measured gird voltages in Figure 6d. It is confirmed that
the proposed LMI-based observer ensures stability and estimating capability.
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Figure 6. Simulation for LMI-based observer under grid voltage distortion in αβ frame. (a) Estimated
and measured grid currents. (b) Estimated and reference inverter currents. (c) Estimated and
reference capacitor voltages. (d) Estimated and measured gird voltages.

One of common challenges of a grid voltage sensorless current control scheme is
the smooth start-up performance even under grid voltage distortion and imbalance. To
verify the performance of the proposed scheme from the start-up instant to the steady
state, the simulations are conducted under system uncertainties and grid voltage imbal-
ance/distortion in Figure 7. Figure 7a represents the grid voltages, in which the magnitude
of phase-a voltage drops to 50% of the nominal voltage. Figure 7b shows the current
responses of the proposed grid voltage sensorless current controller at the start-up instant
at 0.05 s, in which the grid impedance with Lg of 4 mH is connected between the GCI
output and the main grid as shown in Figure 1. Evidently, the proposed scheme takes
60 ms to reach the steady state with low overshoot in the grid-injected currents. It is worth
noting that the proposed scheme successfully removes the grid voltage sensors; thus, the
dynamic of the proposed observer to estimate the grid phase angle, and unavoidable PLL
delay also affect the transient performance. However, even when large power is injected
from inverter to the weak grid, the inverter system still maintains stability and the pro-
posed scheme produces the high-quality injected currents. Figure 7c shows the current
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responses of the proposed control scheme at the start-up instant at 0.05 s with the filter
capacitance variation from 4.5 µF to 6 µF. Without severe influence from the negative effect
of weak grid condition, the grid-injected currents stably reach the steady state after only
40 ms and the high-quality current is maintained even under abnormal grid conditions and
internal uncertainty.
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Figure 7. Current responses of the proposed current controller under grid voltage distor-
tion/imbalance and the current reference of 25 A. (a) Grid voltages. (b) Current response at the
start-up instant with grid inductance Lg = 4 mH. (c) Current response at the start-up instant with
filter capacitance Cf = 6 µF.

Figures 8 and 9 show the comparative results between the MPC presented in [6] and the
proposed controller when the grid condition and system parameters are suddenly changed.
For a fair comparison of only the controller with the proposed EMPC method, the conventional
MPC scheme in [6] is constructed with the same proposed LMI-based observer. Figure 8 shows
the grid current responses produced by two control schemes under the grid voltage distortion
and imbalance with uncertain grid impedance. Figure 9 shows the grid current responses
controlled by two control schemes under the grid voltage distortion and imbalance as well
as the filter parametric uncertainty. Accordingly, Figures 8a and 9a show the PCC voltages
and grid voltages used in those test conditions, in which at 0.6 s, phase-a of grid voltage
drops to 50% (drops from 180 V to 90 V). Two control methods exhibit distinct control
performance. As soon as the parametric uncertainty is added to the conventional MPC,
the grid-injected current quality is degraded significantly with high oscillation in phase
currents as shown in Figures 8b and 9b. On the contrary, the proposed scheme effectively
stabilizes the system, yielding sinusoidal currents as in Figures 8c and 9c. The comparison
results clearly demonstrate that the proposed scheme ensures strong robustness against
unexpected grid conditions and system uncertainty.
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Figure 8. Comparison results between the conventional MPC in [6] and the proposed controller
under unexpected grid conditions such as grid impedance (Lg = 4 mH) and grid voltage distor-
tion/imbalance (ea drops to 50% of the nominal value at 0.6 s). (a) PCC voltages. (b) Grid currents of
the conventional MPC. (c) Grid currents of the proposed controller.
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7. Experimental Validation

The proposed control method is executed in the lab-based experimental system to
prove the performance and robustness by experiments. Figure 10 depicts the experimental
test setup, in which the AC programmable power source is employed to realize the distorted
and imbalanced utility grid environment. To implement the proposed EMPC-based grid
voltage sensorless control, the DSP TMS320F28335 (Texas Instruments, Dallas, TX, USA)
is used. To construct the system with the proposed method, DC-link voltage and grid
currents in phase-a and -b are measured. The grid voltages are not only contaminated by
harmonic distortion, but also imbalanced with ea drop to 70.56% from the nominal voltage.
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Figure 11 presents the experimental comparison results for steady-state tracking
performance between the conventional MPC in [6] and the proposed controller under C f
uncertainty. In these figures, the grid phase angle estimates are also shown to verify the
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synchronization performance without grid voltage sensors. The conventional MPC in [6]
and the proposed control show similar results with C f =1 µF as shown in Figure 11a,b. In
contrast, the proposed control exhibits better current quality and less oscillation than the
conventional one with C f = 6 µF as in Figure 11c,d.
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To validate the proposed control robustness under the grid impedance variation
caused by a weak grid, Figure 12 represents comparative experimental results when the
grid impedance with Lg of 4 mH exists under imbalanced and distorted grid voltages. The
phase-a current FFT spectrums for the proposed method are also presented in Figure 12c to
assess the grid current quality. While the proposed method is stable in the presence of such
severe grid disturbances, the conventional scheme becomes rapidly unstable with the same
conditions before the protection algorithm is finally activated. The experimental results of
Figures 11 and 12 match well with the simulation in Figures 8 and 9 in views of the system
stability and the quality of grid currents.

The experimental responses in Figure 13 present the transient performance of the
proposed method when the utility grid frequency rapidly changes from 60 Hz to 50 Hz.
As test conditions, while the grid voltage is distorted in Figure 13a, it is distorted as well
as imbalanced in Figure 13b. These results demonstrate that the grid currents are quickly
restored to the sinusoidal form even under both grid frequency change and harsh grid
disturbance such as imbalance and distortion, which well matches the simulation results
in Figure 5. Additionally, the grid frequency estimated by using the MAF-PLL from the
estimated grid voltages rapidly tracks new frequency value without a noticeable overshoot.
All experimental tests clearly verify the robustness and performance of the proposed
method which produces stable and pure sinusoidal grid current even under weak grid and
parametric uncertainty without using the measurement of the grid voltages.
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8. Conclusions

This paper presents a robust EMPC-based frequency-adaptive current control com-
bined with the LMI approach without using grid voltage sensors for the GCI with an
LCL filter in the presence of parametric uncertainties and abnormal utility grid. The main
contributions of this paper can be summarized as follows:

(i) The LMI-based MPC algorithm has been employed by an LQR-based prediction model
in order to achieve zero-reference tracking error even under grid voltage imbalance
and negative effects from parametric uncertainties. The resonant controllers with the
grid frequency-adaptive capability have been adopted to effectively compensate the
distorted grid harmonics under grid frequency fluctuations.
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(ii) In order to realize a current controller without the grid voltage sensors, the proposed
controller employs a frequency-adaptive LMI-based resonant extended state observer
to guarantee high estimation accuracy for grid voltages and system state variables
under abnormal and unexpected grid conditions. Also, the proposed LMI-based
observer also integrates a disturbance observer to ensure a good performance of the
resonant extended state observer by rejecting the influence of disturbances.

(iii) The eigenvalue maps and frequency responses of the nominal system and parametric
uncertain systems have been evaluated to validate the stability and robustness of the
proposed current control scheme.

The proposed control scheme for GCI without using the grid voltage sensor has
been validated by conducting both simulations based on PSIM software (9.1, Powersim,
Rockville, MD, USA) and experiments based on a lab-based testbed. Comprehensive
simulation and experimental results have effectively validated the control robustness
of the proposed scheme under several adverse conditions such as internal parametric
uncertainties as well as unexpected distorted and imbalanced grid.
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