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Abstract: The development of new processor capabilities which enable hardware-based memory
encryption, capable of isolating and encrypting application code and data in memory, have led to the
rise of confidential computing techniques that protect data when processed on untrusted computing
resources (e.g., cloud). Before confidential computing technologies, applications that needed data-
in-use protection, like outsourced or secure multiparty computation, used purely cryptographic
techniques, which had a large negative impact on the processing performance. Processing data in
trusted enclaves protected by confidential computing technologies promises to protect data-in-use
while possessing a negligible performance penalty. In this paper, we have analyzed the state-of-
the-art in the field of confidential computing and present a Confidential Computing System for
Artificial Intelligence (CoCoS.ai), a system for secure multiparty computation, which uses virtual
machine-based trusted execution environments (in this case, AMD Secure Encrypted Virtualization
(SEV)). The security of the proposed solution, as well as its performance, have been formally analyzed
and measured. The paper reveals many gaps not reported previously that still exist in the current
confidential computing solutions for the secure multiparty computation use case, especially in
the processes of creating new secure virtual machines and their attestation, which are tailored for
single-user use cases.

Keywords: trusted execution environments; secure multiparty computation; secure virtual machine;
remote attestation; confidential computing

1. Introduction

The use and development of applications whose operations rely on computing and
processing various datasets have grown significantly over the last decade, induced espe-
cially by advances in artificial intelligence and machine learning. While, on one hand, the
useful features and potential of these applications are undoubtful, data processing is a
sensitive issue because the data that are processed are often considered either personally
identifiable or confidential information. Processing such data requires careful security
protection either because of the strict legal regulations (e.g., European Union’s General
Data Protection Regulation (GDPR)) or to protect the business interest of the data owners.

Secure processing or performing secure computation means performing a computation
on some data while that data remains secret to unauthorized actors. If the computation is
conducted locally on a single computer or within the infrastructure of a single company
without any data transfers outside, there is no need to additionally secure the data as long
as the physical and network access to the computing infrastructure are secured and allowed
only to the authorized actors. However, there are many cases in which the data owner
does not have the adequate capacity to process the data, which led to the rise of cloud
computing [1]. Also, there are situations when there is a need to conduct the computation
over merged datasets of multiple data owners to achieve some common benefit. In both
cases, data owners might want or have to preserve the privacy of their data. While the
methods for protecting data at rest (on some kind of storage) and data in transit (during
an exchange over an untrusted communication channel) have been known for a long time
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using traditional encryption techniques and protocols, efficiently protecting data in use and
providing performant secure computations has remained an elusive goal for a long time.

1.1. Outsourced and Secure Multiparty Computation

There are two similar models of secure and verifiable computation [2]: outsourced and
secure multiparty computation (SMC). With outsourced computation, a single data owner
sends the data in the encrypted form to the other party, who performs the computation on
the encrypted data and sends the encrypted result back to the data owner, without being
able to have an insight into the raw data [3]. In the case of SMC, a group of data owners
want to perform some computation over their joint datasets without revealing the raw data
to any of the parties.

1.1.1. Homomorphic Encryption

The initial research of both models was in the area of cryptographic algorithms, which
are capable of securing data processing on untrusted hardware. The key enabler for the
outsourced computation is homomorphic encryption, which allows computation over the
encrypted data. On the other hand, secure multiparty computation can be achieved using
mechanisms like garbled circuits with the oblivious transfer, secret-sharing, the extension
of homomorphic encryption to the multi-user case, or functional encryption. The key
issue of all of the previously mentioned mechanisms is the data processing performance.
Both outsourced and SMC using these mechanisms are by several orders of magnitude
slower compared to non-protected data processing on regular hardware. Even the lat-
est reported hardware- and software-accelerated secure multiparty computation systems
based on garbled circuits [4] are slower by 2–4 orders of magnitude than general purpose
processors in performing some specific computations, like dot product or gradient descent.
Similar results are obtained for homomorphic encryption [4], which, in addition, has other
implementation issues, making secure computations difficult: noise growth, limits of the
range of the numbers used in computation, and a limited set of supported mathematical
operations requiring the changes in the computation algorithms. This renders the previ-
ously mentioned algorithms an expensive and far from optimal solution for large-scale and
big data secure data processing.

1.1.2. Federated Learning

Another privacy-preserving computation approach tailored specifically for machine
learning is federated learning. With federated learning, many clients collaboratively and
independently train a model under the orchestration of a central server. Parts of the
model are trained locally by clients without any privacy protection because the data do
not leave the client’s devices. The clients exchange a minimal amount of information (e.g.,
intermediate results or model parameters) needed to fulfill the machine learning task,
while the raw data remains fully decentralized. However, one of the greatest challenges
for federated learning remains reaching the accuracy of centralized machine learning
performed over the whole dataset gathered from all the clients, in cases when the clients’
data are not independent and identically distributed (IID). There is also a tension between
data privacy and robustness (reliable results in cases of malicious clients who tend to poison
the models) [5], which might be critical in the case of sensitive data analysis (e.g., medical
data), which requires both strict privacy and very reliable results.

1.1.3. Trusted Execution Environments

The other branch of secure computation and processing development is in the area of
confidential computing, which uses new processor capabilities that enable secure execution
and data-in-use protection. Trusted Execution Environments (TEE) or secure enclaves
isolate, and with some technologies encrypt, the data in memory during the processing
process. There are different approaches, supported by different hardware solutions [6].
ARM TrustZone isolates the critical security firmware, assets, and private information from
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the rest of the applications while using the full processing power of the main cores. It
only separates secure from non-secure applications while not providing any additional
privacy protection using cryptographic algorithms. The other approach is to isolate and
encrypt the portions of the code that process security-sensitive data in an application. The
data are encrypted and decrypted using well-known symmetric cryptographic algorithms
on the fly (before being written to the system memory and upon reading from it) using a
hardware-based encryption engine, which resides on the CPU, and using cryptographic
keys, which cannot be exported from it. This approach was introduced by Intel Software
Guard Extensions (SGX) in 2015. A slightly different strategy is to isolate and encrypt
the memory of the entire virtual machine (VM). This approach is called Secure Encrypted
Virtualization (SEV) [7], introduced by AMD in 2016. It has been improved twice so far
(in 2017 SEV-ES (Encrypted State) [8] and in 2020 SEV-SNP (Secure Nested Paging)) [9].
At the beginning of 2023, with the 4th generation of Xeon processors, Intel released Trust
Domain Extensions (TDX), technology that, similarly to the AMD SEV, allows for deploying
hardware-isolated, virtual machines, called trust domains, using memory encryption using
AES-128-XTS and integrity using 28-bit MAC [10]. This latest development suggests that
key processor manufacturers have converged towards the strategy to allow full virtual
machine isolation and memory encryption.

Figure 1 shows a high-level architecture of an AMD-SEV virtual machine memory
encryption. AMD EPYC processors contain a separate ARM-based Platform Secure Pro-
cessor (PSP), which creates and stores symmetric cryptographic keys. Whenever the data
are being written to or read from the memory of a secure virtual machine (SVM), PSP
intercepts the data and encrypts or decrypts it, respectively. Figure 1 shows which parts of
computing resources on a remote server can be trusted by the AMD SEV virtual machine
owner (depicted in green) and which are not trusted (red). Enabling secure processing in
such a hostile environment requires careful SVM installation and a process to verify the
installation (called attestation), which are described in this paper in detail.
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The performance penalty of the on-the-fly data encryption and decryption during
memory writes and reads in the TEE is on the order of a few percent compared to processing
without the encryption turned on [11]. This development provoked the second branch of
research on protecting data in use and the rise of confidential computing—the use of TEE
in protecting the data that are processed on untrusted hardware. Confidential computing
specifically targets outsourced computing in a cloud environments use case, in which the
hardware is not controlled by its user, but rather by cloud providers. Data privacy was for
a long time one of the key blockers of wider cloud service deployment. Without additional
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protection, malicious cloud administrators and owners can access the resources used by the
user and compromise the data. While the user can secure the data that are on cloud disks
by encrypting it using the user’s keys, the data have to be decrypted to be processed. This
is the moment in which a malicious cloud provider can access both the user’s encryption
key and all of the data by simply dumping the RAM content. Using a hardware-based
TEE can prevent such scenarios by encrypting all of the user’s sensitive information in a
TEE. The data in server RAM are encrypted using cryptographic keys, which are stored
and protected on the CPU. If a server administrator tries to perform a memory dump, this
time it will not be possible to reveal the content of the user’s data. Since cryptographic
keys for memory encryption are stored on the CPU, distributed processing even on a single
multi-processor computer is a non-trivial problem, yet to be solved.

1.2. Motivation and Contributions

The possibility to execute any code and computation without any restrictions and
process the whole datasets on untrusted hardware without revealing the data content,
with a performance penalty which is negligible compared to the purely cryptographic
solutions mentioned above, makes TEE a perfect candidate for outsourced and secure
multiparty computations. Several attempts in the research literature describe the use
of SGX-based enclaves for SMC, as will be reported in the next section. However, to
the best of our knowledge, there have been no studies so far that analyze the use of
virtual machine-based enclaves (using SEV or TDX) for secure multiparty computation.
Like any other technology, virtual machine-based enclaves come with their own set of
challenges, and despite the obvious benefits they promise, the implementation for the
SMC use case is far from straightforward. They have a larger trusted compute base (TCB),
specific remote attestation procedures which are not suitable for the SMC, and specific
programming rules that have to be followed to provide completely secure data processing.
The main contributions of this paper are: (1) the analysis of the TEE technologies that
enable secure virtual machines, their current status, and their suitability for the SMC; (2)
the identification of the key gaps that exist at the moment of writing this paper; (3) the
proposal and description of a new protocol and a novel Confidential Computing System for
Artificial Intelligence (CoCoS.ai) that enables secure multiparty computation in semi-honest
settings; (4) security analysis of the proposed solution; and (5) performance analysis of the
proposed solution.

The rest of the paper is organized as follows. Section 2 provides background, gives an
overview of related work, and enlists and discusses the limitations of the study. Section 3
describes the proposed CoCoS.ai system. Section 4 provides implementation details by
presenting the proof of concept that was developed. Section 5 concludes the paper and
presents open questions and future research directions.

2. Background and Related Work

This section gives an overview of the related research work in the fields of secure
multiparty computation, trusted execution environments, and especially SMC, realized
using TEE. The overview of the current limitations concludes the section.

2.1. Secure Multiparty Computation

Secure Multiparty Computation allows multiple actors to compute a joint function of
their private inputs while revealing only the computation output. One of the roles in SMC is
the input party—a party that provides protected data for the computation. Computing parties
carry out the computation and the SMC protocol. Finally, the result parties obtain the results
of the computation. One party can have multiple roles, depending on the SMC scenario [12].
For example, in the case of a machine learning-based medical diagnosis system trained on
multiple hospital data, there are many input parties (hospitals that provide their encrypted
patient data for system training), and there may be many result parties that overlap with
the input parties (doctors from any of the participating hospitals who want to learn the
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estimated diagnoses of their patients). On the other hand, in the case of a regulatory body
that checks the financial health reports of some consortium members without revealing the
raw data, there are many input parties (institutions whose financial health is checked) and
one result party (regulatory body), which is not among the input parties [13].

Lindell recently gave an overview of the key definitions, challenges, research direc-
tions, and current status of cryptography-based SMC protocols [14]. We adopt a few key
definitions from that paper which are important for further discussion. The security prop-
erties of the SMC system are privacy, correctness, independence of inputs, guaranteed output
delivery, and fairness. If these properties are fulfilled by the SMC system, then each party
can be sure that: 1. the other parties can learn only the output of the computation, and not
the raw data; 2. the result of the computation is going to be correct given the inputs; 3. all
parties choose their inputs independently; and 4. all parties can receive the output.

In real-world scenarios, not all of the parties in the SMC are necessarily honest. There
are two main types of adversarial behaviors described in the research literature: semi-
honest and malicious. Semi-honest adversaries follow the SMC protocol strictly, but if an
opportunity occurs, this adversary will try to reveal the data of other parties (also called
honest but curious or passive). Malicious adversaries actively try to manipulate the SMC
protocol and reveal the data of other parties. SMC secures only the computation process
from malicious parties. Adversarial behavior in SMC does not include manipulations with
the input data because all of the inputs are allowed (including false data). Ultimately,
there is no generic protection against false data being input by adversarial parties into the
SMC system [14]. Also, SMC does not protect from revealing the data of some party in
cases in which the computation result itself reveals the data (e.g., in a two-party case, any
calculation of the average of some parameter entered by both parties reveals to one party
the input value of the other).

2.2. Trusted Execution Environments

Three key available technologies that provide memory encryption while the data
are being processed, ordered by the time of their appearance, are: Intel SGX, AMD SEV,
and the most recent one, Intel TDX. As the TDX was released on processors early in 2023,
there have been no studies so far that have analyzed it in production. There are only a
few theoretical analyses of the specifications that appeared before the actual release of
TDX-enabled processors [15,16].

SGX’s approach is to keep the trusted compute base small, limiting it to only the CPU
and the enclave (trusted part of the application), thus keeping the operating system (OS)
and the hypervisor out of the TCB. On the other hand, the SEV approach uses a larger TCB,
with a virtual machine operating system inside it, and the hypervisor out. The problem
with a larger TCB is that there are more possibilities for potential vulnerabilities and that
the user needs to check more lines of code that belong to the TCB to make sure it can be
trusted. However, the SGX approach requires that an application is divided into trusted
and untrusted parts, making it expensive for existing applications to use this approach, as,
most often, they need to be redesigned and rewritten. Another downside is the limited
capacity of an SGX enclave, which is limited by the size of the Enclave Page Cache (EPC).
The exact EPC size depends on the specific processor. Before the Intel Ice Lake processors
generation, EPC memory ranged between 32 and 256 MB [17], which was small for many
large data applications. Starting with the Ice Lake series of Intel processors, the EPC size
has been substantially increased. The maximum EPC size can now reach up to 512 GB
per processor [18]. This size can be increased to 1 TB on multi-socket systems (512 GB per
processor). Enclaves share the EPC space. Having more enclaves decreases the performance
of each enclave. As of the 11th generation, Intel has stopped supporting SGX on desktop
processors, but it has continued to support SGX on Intel Xeon processors.

The SEV approach, on the other hand, has no memory limit other than the amount
of RAM that is available for the virtual machine and can run any existing application in
the secure VM. Even early comparison studies [17] have concluded that the SGX approach



Electronics 2024, 13, 991 6 of 25

is suitable only when performance is not essential but security is extremely important,
while the SEV approach is more appropriate for performance-intensive applications. Later
experiments confirmed these conclusions. Akram et al. compared the SGX and SEV
approaches on high-performance computing (HPC) benchmarks and concluded that SGX
is not appropriate for HPC because it has a limited secure memory size and a complicated
programming model, which leads to significant performance degradation compared to the
unencrypted execution [11].

The primary research focus of this paper is on confidential computing for artificial
intelligence, which means that high-performance computing requirements have to be con-
sidered. This is one of the reasons we decided to use AMD SEV as a basis for our research.

2.3. SMC Using TEE

The first SMC applications for TEE were built for the SGX as the first widely available
confidential computing technology. An up-to-date literature review of the research on the
Intel SGX architecture, including its applications, was published by [19]. In this study,
SMC is recognized as one of the SGX potential applications, classified by context under
distributed data processing. The authors found six SMC system proposals based on the
SGX, which all try to improve the efficiency of the computation, one solution that proposes
a sandbox for remote computation for resource usage accounting, and one review paper
on trusted hardware adoption in SMC. Will and Maziero also found a lot of solutions that
address the issue of distributed machine learning, which is out of the scope of this paper.
One of the solutions that attempts to improve the efficiency of computation is the work
by [20], who constructed a general SMC protocol based on the SGX approach. The same
paper was the only one related to SMC that was also mentioned in a recent survey of the
Intel SGX approach and its applications [21]. According to this solution, only the user’s
private data are stored in the trusted part of the application, and the rest of the load, i.e.,
the functionality to be computed, is in the untrusted part. This design is somewhat forced
by the limitations of the SGX, mentioned in Section 2.2. The focus of this proposed solution
was on the protocol, achieving attestation and assurance about the security properties of the
TEE. There are other solutions for SMC using SGX for some specific use cases, which were
not included in the previously mentioned literature review. One such SMC solution based
on SGX and focused on big data was presented by [22]. The authors focused on providing
SMC for relational analytics queries without using cryptographic SMC techniques. This
approach aimed to separate computations by those that can be run outside the trusted part
and those that have to be run in the trusted part, minimizing the use of the enclaves. Again,
such a solution was imposed by the SGX constraints that require that the applications to
have secure and insecure parts. Later experiments confirmed the limitations of the SGX
and concluded that SEV would be a better fit, as was presented in Section 2.2.

To the best of our knowledge, there are no research papers describing SMC using SEV
published in the open literature. On the other side, Google recently launched Confidential
Space, a cloud product that offers secure multiparty data sharing and collaboration, while
allowing organizations to preserve the confidentiality of their data using secure virtual
machines and dockerized applications [23]. At the moment of writing this paper, Confiden-
tial Space relies on the first version of AMD SEV. Demo applications show that the current
version of Confidential Space assumes that the user’s data are either uploaded to the cloud
and stored on disks in cleartext (relying on general cloud storage encryption operated
by Google) or encrypted using the Google cloud key management system, which again
requires that the user trusts the cloud provider—in this case, Google. This is a significant
simplification of one of the key SMC requirements—that the computing party is not trusted.
Other potential weaknesses detected in a security assessment report are inadequate audit-
ing and logging, over-permissive permission, a lack of separation of duty, lack of assurance
of measured boot, and missing security controls in the underlying networks, applications,
or operating systems [24].
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2.4. Limitations of the Study

The main limitations of the SMC implementation using encrypted trusted execution
environments come from the technology readiness level and some security issues of the
existing trusted execution environments. Similar conclusions were found in a paper recently
published by [25]. Research papers and vulnerability reports that describe potential attacks
on TEE-enabled processors show that the technology is still maturing. For example, [26]
presented a known plaintext attack on AMD SEV or SEV-ES. Using this approach, an
attacker who controls the hypervisor and knows parts of the SVM kernel can successfully
determine the tweak values used in the AES XE mode and can insert random 16-byte
blocks in the encrypted memory, which ultimately leads to the execution of the random
code, compromising the confidentiality this way. This attack exploits the lack of memory
integrity in the first versions of the AMD SEV. Two other attacks that use the lack of memory
integrity, but also the fact that CPU registers content that is not protected in the original
AMD SEV, are described in [27,28]. Both attacks manipulate the Virtual Machine Control
Block (VMCB). In the first attack, the memory content is transferred to the instruction
pointer register (RIP) in the VMCB, and then an encryption/decryption oracle is created,
leading to memory leakage. In the second attack, by observing the VMCB content, an
attacker can reconstruct the executed code, and using instruction-based sampling (IBS),
can detect which applications are running inside the VM. There are also other types of
attacks. For instance, ref. [29] attacked the improper use of the address space identifier
(ASID), which enabled the attacker to connect the victim’s ASID with the attacker’s VM,
leading to the loss of confidentiality. The attacker has to be in control of the hypervisor
and the attack is possible for SEV and SEV-ES. And even more specific attacks, like [30–32],
focus on address-translation vulnerabilities, using either page faults to detect memory
locations or the hypervisor’s control of the nested page table (NTP) to detect and alter
guest physical address (GPA), all leading to the loss of confidentiality. Finally, there are
also hardware-based attacks, like the one in [33], where the authors showed how to use a
voltage glitching attack, on any version of the SEV, that enables an attacker to load custom
firmware and execute it on the platform’s secure processor (PSP).

As this brief overview shows, SEV technologies have evolved and there have been
three versions in only four years. Changes were primarily made upon the discovery of
some vulnerabilities. In the original SEV approach, the memory was encrypted, keeping
the hypervisor outside of the TCB, but some secret information would be available in the
CPU registers, thus enabling the hypervisor to access them when VM stops running. This
issue was addressed by AMD in their SEV-ES release [8] by encrypting CPU registers when
a VM stops running. Both SEV and SEV-ES suffered from one obvious design flaw, and
that was the lack of memory integrity; even though researchers tried to repair this issue
with their custom solutions, like in [34], the issue was addressed by AMD in their SEV-SNP
approach [9]. However, there are still a few attacks that are successful on all generations of
SEV, like [33]. Given the previously described trend, it is expected that in the future, there
will be further technology updates and that, at a certain point in time, there will be a mature
and fully secure technology for secure virtual machines, with all known vulnerabilities
eliminated. Until then, it is important to be aware of the limitations and the final reach of
the existing technologies.

Finally, we need to stress that all TEE technologies used today rely on the crypto-
graphic algorithms that are not quantum computer resistant. Given the typical operational
lifetime of the servers procured today, there is a possibility that, during that time, the
key exchange and signature mechanisms used in their processors will become obsolete.
However, we believe that swapping to some post-quantum mechanisms is not going to
present a significant burden for processor manufacturers.

3. Suggested Approach

In this section, we describe a characteristic SMC use case and key actors and their
roles in it. Next, we discuss the trust model associated with the proposed use case. Then,



Electronics 2024, 13, 991 8 of 25

we describe the conditions that need to be met to establish SMC using TEE. After that,
we present the remote attestation process used in the AMD SEV approach and how it
could be used for the SMC use case. Finally, based on all of the previous discussions, we
propose a novel system architecture and an associated protocol for the initialization of
our SMC secure module and conclude this section with the security evaluation and the
threat analysis.

3.1. TEE-Based SMC Key Actors

The SMC use case that we considered is a multi-party medical diagnostic system.
It assumes that several hospitals want to use an AI-based diagnostic system for some
specific diseases. To create a more reliable system by covering as many as possible patient
characteristics, hospitals want to join their datasets, but without revealing the raw data
to the other hospitals. Also, hospitals do not have the capacity to create an AI-based
diagnostic system, so they would like to hire a company specialized in such systems. This
company also does not want to reveal the code and work methodology to the hospitals and
considers the code to be their intellectual property. Hospitals and a code provider create
a consortium and look for a provider of secure multiparty computation services. Secure
multiparty computation provisioning consists of both providing secure virtual machines on
TEE-enabled hardware (classical cloud service) and orchestrating the SMC process. These
functions can be offered by two different companies or by a single company (e.g., the case
of Google Confidential Space). In our scenario, we consider the former case, which can
easily be generalized to a single-company case by joining both functions into a single actor.
The key entities in this SMC scenario and their roles, as depicted in Figure 2, are:
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• SMC consortium, which consists of multiple data providers and a code provider. It is
expected that they are bound by some internal consortium agreement that regulates
their rights and obligations. Data providers share their encrypted datasets (e.g.,
medical records) and want to use the results of the diagnostic system. They can be
both input and result parties. The code provider provides the data computation code.
If it does not want to reveal the code, it is assumed that the code is sent encrypted



Electronics 2024, 13, 991 9 of 25

to the SMC system. The code provider is generally the input-only party, but in some
cases, if it has to use some intermediate computation results (e.g., for machine learning
hyperparameter tuning), then the code provider can also be a result party. Since the
code provider creates the code which computes the results of the SMC, it is also a
computing party.

• SMC representative is one member of the SMC consortium who is chosen to represent
the consortium in contracting the SMC service with the SMC provider. The SMC
representative can be either a code or data provider and there can be only one member
of the consortium with this role. The existence of one “special” consortium member
with a slightly different role from the others is not entirely in keeping with the spirit of
SMC, by which all participants/input parties should be equal. However, as will be
explained later, the secure virtual machine attestation process as it is designed on the
existing technologies assumes that there is one party (guest owner) that participates in
the attestation process and implies such an asymmetric organization.

• SMC provider is a company that facilitates the SMC process, orchestrates the virtual
machine provisioning process, and provides the interface between the cloud system
and SMC consortium. This can be the cloud provider, but to provide a different trust
model, as will be discussed further, it can be another entity.

• Cloud provider owns servers with TEE-enabled processors, hypervisors, and related
cloud management infrastructure and offers secure virtual machines as Infrastructure
as a Service. The cloud provider allows the attestation of the virtual machines it offers.
The cloud provider is not trusted by any of the consortium members.

• Processor, hypervisor (or virtual machine emulator) and server and virtual machine BIOS/UEFI
providers, although not directly involved in the contracted secure multiparty computa-
tion use case, implicitly participate in the SMC. The processor manufacturer ensures
that the code is executed in a secure virtual machine through the remote attestation
process, which provides cryptographic proof that the code is executed on the appropri-
ate hardware. The server’s BIOS/UEFI enables secure virtual machine encryption (SEV
functionality), while the virtual machine UEFI participates in defining which memory
pages will be encrypted and is an essential part of the attestation process. The virtual
machine UEFI of choice for AMD SEV is Open Virtual Machine Firmware (OVMF) [35],
although there are solutions that use qboot [36]. The hypervisor also participates in the
secure virtual machine attestation, as will be described in Section 3.4.

3.2. Trust Model

In this paper, we make several assumptions under which it is possible to achieve SMC
on TEE, which have an impact on the overall solution security:

• All parties that participate in SMC are semi-honest (honest but curious) and follow
the SMC protocol honestly. Data providers input their real data and do not provide
fake data to forge the computation results. As mentioned earlier, there is no general
way of preventing malicious behavior in which some party provides fake data. In
general, the assumption is that there is a common interest among the consortium
members and that all members agree to share their data to obtain the overall benefit
from computations over richer joint datasets.

• There is no collusion between the CPU manufacturer, hypervisor producer, and cloud
provider. Memory encryption keys stay within the CPU and cannot be leaked to
third parties. Therefore, memory content cannot be leaked to the CPU manufacturer,
hypervisor producer, and cloud provider.

• There is no collusion between the SMC representative and SMC and/or cloud provider.
The way such collusion can result in data leakage specifically in the SMC use case is
explained in detail in the next section.

• Underlying hardware, firmware, and hypervisor security can be measured and verified.
For the SMC use case, it is assumed that these components are secure.
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• The SMC computation code can be inspected and certified that it does not leak the
data to any of the consortium or third parties.

3.3. Towards Secure Multiparty Computation in Trusted Enclaves

Secure virtualization technologies provide the privacy of the virtual machine code and
data stored in the RAM from external actors like the hypervisor, server operating system
and virtual machine emulator (e.g., qemu [37]), server owner, or other virtual machines.
On the other hand, an actor who is logged into a secure virtual machine (e.g., using ssh
access) can see the data processed by that virtual machine by executing commands that
dump the memory content. Once logged into the secure virtual machine, all the memory
content of that virtual machine is visible. For a single user of an outsourced computation on
a remote TEE-based machine, this is not an issue. However, to preserve secure multiparty
computation data privacy from internal adversaries in a TEE-based environment, either
shell access on a well-known open-source operating system should not be allowed to any
of the SMC actors because it enables actors logged into the system to see the data of other
parties or a secure virtual machine operating system has to be customized in such a way
that executing memory dump commands is not available or possible for any of the users
logged into the shell. In the former case, closing some communication channels on a secure
virtual machine can be conducted at the boot time, as will be described in the remainder
of this section. For full security, the latter solution implies that a full software audit of a
customized operating system has to be conducted before the start of its use, which can be a
costly and time-consuming process.

Without the shell access and to allow sending the data securely into the SVM RAM for
processing, encrypted network connections (e.g., TLS) must be established from each input
party directly into the SVM RAM. The data can either be sent in cleartext through such an
encrypted network connection, which protects data in transit, while SEV protects the data
in RAM, or without a secure channel, but encrypted using the input party’s symmetric key,
in which case the data can even be stored encrypted on the disk. However, in the latter
case, the cryptographic keys needed to decrypt and later use the data must be sent securely
and directly into the secure VM RAM using a secure network connection. Therefore, in
both cases, a server process on the SVM that will serve as the endpoint for secure network
connections is needed to provide full data-in-transit and in-use protection. Initiating such a
server on secure virtual machines on a machine with untrusted hardware and a hypervisor
and providing it with the necessary cryptographic material is a non-trivial task for which
we propose one method in Section 3.7.

Multiple virtual machines can exist on the same server and host the same network
services. Therefore, virtualization platforms often use some sort of port forwarding and/or
address translation to enable external communication towards the deployed VMs. Figure 3
shows an example of two VMs with identical operating systems and application software
(e.g., the same operating system image file is used on both) deployed on one server, where
a web server on the first VM is visible from the internet over port 4431 and the second
over port 4432 (in both cases, these ports are translated to the common 443 web port on a
VM). Also, both machines use qemu management protocol (QMP) to enable some remote
management functions, including obtaining the remote attestation measurement. QMP
ports on two machines cannot overlap and must be different. In this example, one machine
is secured using SEV and the other is not. The difference in the boot process configurations
of the two machines is in those lines of a configuration command which defines the type
of SEV encryption that defines port forwarding for web servers and QMP parameters
(marked red on Figure 4). If a secure virtual machine is installed properly, but the users of
its web service obtain the port of a non-secure VM for communication (e.g., a malicious
platform owner or hypervisor intentionally misinforms them), they could conduct all of the
processing as if the data are being sent to the secure VM, only their data will be processed
on the non-secure VM and visible to the platform owner. This is a case of the cuckoo
attack [38], in which a malicious hypervisor or platform owner plants a non-secure VM
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and directs users to use it instead of a secure VM. To prevent this type of attack, secure
virtual machine users must be assured that the ports they use to upload the data into
the secure virtual machines correspond to the ports that are configured for the verified
and attested secure virtual machine (specific ports that are forwarded should correspond
to the attestation setup and files). This further means that a high-touch secure virtual
machine provisioning methodology in which the SVM user can fully control the installation
of a secure virtual machine on a bare metal server deployment provides more trust in
computation security than those deployments conducted through the cloud provider’s
closed source VM provisioning automation software.
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The previous discussion implies that there are several important additional constraints
that have to be respected to obtain a trusted SMC:

• Console access, which is commonly used for debugging remote resources in various
virtualization systems (e.g., VMware, qemu), must be switched off. Console access
allows shell access to a virtual machine, and thus to dumping memory content. A
party that has console access would have an unfair advantage over the other parties.

• For the same reason, shell access or memory dump functionality on the secure virtual
machine must be disabled and no one should be able to connect to the SVM and dump
the memory content.

• Data (including both the data that are processed and the cryptographic material
needed to decrypt the data) must be sent to the secure virtual machine via an en-
crypted network session which ends on the SVM and cannot be stored on cloud
disks unprotected.
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• These constraints mean that to have full trust in the TEE-based SMC system, one has
to be sure about the following:

• that the system is executed on the trusted hardware with the appropriate TEE func-
tionality turned on;

• that the hypervisor or virtual machine emulator have the appropriate configuration
(e.g., no console access, the exact configuration of port forwarding, well-known appli-
cation ports, etc.);

• that the operating system has the appropriate configuration and that only the required
services are turned on.

The remote attestation process, described in the following section, currently only
partially fulfills these requirements.

3.4. AMD Attestation

Remote attestation is a process that proves to the SVM user that SEV protection is in
place and that the virtual machine was not subject to manipulation. Before sending secrets
to the SVM, the SVM user must verify the attestation information. While this process is
the same for the SEV and the SEV-ES, it changed with the SEV-SNP. From the SMC use
case point of view, there is little difference between the SEV and the SEV-SNP attestation
processes. In the following subsections, the SEV and the SEV-SNP attestations are described,
and their differences are highlighted.

3.4.1. AMD SEV, SEV-ES Attestation

This process involves three main actors: AMD, which proves that the processors
have the SEV capability and that it is switched on for each particular virtual machine;
the platform owner (PO), which verifies its authenticity; and the secure virtual machine
user—guest owner (GO), who verifies the installation. The first operation in the process of
the remote attestation is the creation of a certificate chain that is used to verify the platform
on which the SVM will be executed. The keys that are parts of the certificate chain are:

• AMD Root Key (ARK)—an RSA 2048 asymmetric key pair;
• AMD SEV Signing Key (ASK)—an RSA 2048 asymmetric key pair;
• Chip Endorsement Key (CEK)—an ECDSA curve P-384 asymmetric key pair;
• Platform Endorsement Key (PEK)—an ECDSA curve P-384 asymmetric key pair;
• Owner Certificate Authority (OCA)—an ECDSA curve P-384 asymmetric key pair;
• Platform Diffie-Hellman Key (PDH)—an ECDSA curve P-384 asymmetric key pair.

At the root of the certificate chain is ARK. The ARK private key is used to sign ASK.
ARK and ASK public key certificates can be obtained from the AMD Key Distribution
Server (KDS). The ASK private key is then used to sign the CEK. CEK is unique for each
AMD SEV processor, so by signing CEK with ASK, AMD enables users to verify that the
platform is run on an authentic AMD SEV processor. PEK is then signed using the private
key of CEK and with the private key of OCA. The OCA belongs to the PO. By signing
the PEK with OCA, the PO enables the GO to verify the authenticity of the owner of the
platform. The PEK private key is used to sign PDH. PDH will be available to the GO at the
beginning of the remote attestation process.

The PO should export the PDH certificate and the whole certificate chain (Figure 5) to
the GO.

The GO needs to take some steps in order to be sure that his/her code/data will run
safely inside an SVM. These steps are:

• Fetching the PO’s certificate chain and the code of a virtual machine firmware (in the
case of AMD SEV, OVFM is the firmware that is supported and recommended);

• Verification of fetched certificates. Verification is conducted using the AMD’s and the
PO’s certificates.
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Figure 5. AMD SEV certificate chain.

The next step for the GO is to exchange the master secret with the PO (Figure 6). The
GO generates an ECDH key pair and sends the public key, along with a nonce value (N)
to the PO. Now, both the PO and the GO can calculate the same secret value (Z) using the
ECDH algorithm. For this algorithm, the GO is using the generated ECDH private key
and the PDH public key, and the PO is using the received ECDH public key and the PDH
private key. Then, the master secret (M) can be created using the counter mod [39], as a
key derivation function based on Z and N in a HMAC-SHA-256 pseudorandom function.
Finally, the Z value is deleted, and the value M can be used for further communication.
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Additional keys need to be generated by the GO:

• Transport Integrity Key (TIK)—HMAC-SHA-256 symmetric key;
• Transport Encryption Key (TEK)—AES-128 symmetric key.

The communication (Figure 7) is started by the client, who randomly generates the TIK
key and the TEK key. The KIK and the KEK keys are generated next based on the master
secret M and finally, the triplet IV, C, and MAC are calculated on the client side and sent to
the server. The server is capable of generating the KEK and the KIK keys, which can be used
to decrypt the TEK and the TIK keys, which can be used for further secure communication.
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Following all of the previous steps, the client now can perform remote attestation by
obtaining the measurement from the server and making sure that the measurement matches
the expected value. The measurement is calculated as an HMAC over seven concatenated
values, with the TIK key used for calculation. The values are:

• Context—always has value 0x04;
• API_MAJOR—major AMD SEV API version;
• API_MINOR—minor AMD SEV API version;
• BUILD—build version;
• GTCX.POLICY—defined by the SMC member;
• GTCX.LD (DIGEST)—SHA256 output digest over OVMF UEFI used during VM launch;
• MNONCE—a random value generated by the PSP firmware at the server.

GTCX designates Guest Context and the GTCX.POLICY is the value used by the
client to define certain virtual machine configuration options, like enabling the SEV-ES or
debugging mode. This value is set by the client and verified during the SVM boot process.
The UEFI used during the SVM launch must be built as a stateless firmware file that does
not use a non-volatile random-access memory (NVRAM) store. AMD supports OVMF at
the moment, so if only the basic SEV VM is started, GCTX.LD is SHA256 of the UEFI file.
The server has to send the UEFI image and the MNONCE to the client so that he/she can
calculate the expected value of the measurement. If the calculated value of the measurement
matches the value received from the server, then the remote attestation is successful. The
hypervisor incorporates the attestation process into the boot process of a secure virtual
machine. If the client–server secure communication is successfully established, then the
machine will be booted up and the entire VM content will be encrypted using the VM
Encryption Key (VEK), which is an AES-128 symmetric key randomly generated and
available only to the processor for encryption/decryption.

In addition to the calculation of the UEFI digest during the attestation process, as de-
scribed above, the qemu software extended the input to the HMAC function to include addi-
tional elements and supports the following measurement: hash(firmware_blob||kernel_hashes
_blob||vmsas_blob), where firmware_blob is the content of the entire firmware flash file (for
example, OVMF.fd), kernel_hashes_blob is the content of PaddedSevHashTable (including
the zero padding), which itself includes the hashes of kernel, initrd, and cmdline that are
passed to the guest, and vmsas_blob is the concatenation of all VMSAs of the guest vcpus.
This means that some necessary components of the hypervisor and operating system con-
figuration are still not measured and checked. At the moment, there is no out-of-the-box
solution for verifying all the critical components (e.g., qemu configuration or the whole
SVM operating system). Decentriq recently reported on additional hardening of the secure
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virtual machine’s initial boot, which includes measuring the OS disk, gaining the integrity
of the loaded operating system [36].

3.4.2. AMD SEV-SNP Attestation

The process of attestation in the SEV-SNP involves the same actors as in previous SEV
versions. However, the SEV-SNP introduces two new keys for the attestation report signing:
the Versioned Chip Endorsement Key (VCEK) and the Versioned Loaded Endorsement
Key (VLEK). The VCEK is a private ECDSA key constructed using the CEK key hashed
together with the version numbers of all the TCB components. The VCEK is unique to each
AMD chip with the specific TCB. The VCEK is signed using the ASK and ARK keys to
authenticate the attestation report. The TCB components are:

• Microcode of the CPU;
• SNP firmware;
• PSP operating system;
• PSP bootloader.

The VLEK is an alternative to the VCEK and can replace it in the attestation report
signing. The VLEK is an ECDSA P-384 signing key signed by AMD. Unlike the VCEK,
which obtains the unique seed from the chip, each PO needs to enroll with AMD and obtain
a unique VLEK seed from the AMD Key Derivation Service (KDS). To use the VLEK, the
PO needs to send to the KDS the current TCB version and the chip ID of the processor
that the PO is using. The AMD KDS calculates the so-called VLEK hashstick from the
delivered TCB and the POs VLEK seed and wraps it using an AES-256-GCM key derived
from the chip ID information. The PO then provisions the platform with the wrapped
VLEK hashstick. Once the VLEK hashstick is loaded, the firmware can use the VLEK as a
replacement for the VCEK. VLEK functionality is introduced in the latest available version
of the SEV SNP Firmware ABI Specification, and its use is not yet available as a service
from AMD [40].

The GO can provide the PO with an identity (ID) block. The ID block is provided
to the hypervisor at the launch of the SVM. The ID block is a data structure that contains
the expected measurement launch digest, the GO policy, and the cryptographic signature
of the ID block. The ID block is signed using a private ECDSA ID key. The launch of the
SVM will fail if the ID block measurement is different from the calculated measurement
at launch. The GO sends the hypervisor the ID block and the public ID key needed for
signature verification. The hypervisor passes this public ID key to the SNP firmware.

The SEV-SNP guest policy information has the same role as the guest policy in the first
two SEV versions. It contains binary flags that defines how the SVM should be booted. The
guest policy contains information like the debug flag and the minimum major and minor
versions of the SNP firmware.

Another change introduced in the SEV-SNP is a different process of fetching and
sending the attestation report to the GO. The attestation report is retrieved from the SVM
using a kernel driver (sev-guest driver) to interact with the SNP firmware and retrieve the
report. The sev-guest driver communicates with the SNP firmware by sending messages
encrypted using the VM platform communication keys (VMPCKs) through the hypervisor.
During the launch of the SVM, a special secrets memory page that contains the VMPCKs
is inserted into the SVM. The firmware decrypts the messages, and if a message is an
attestation report request, sends the attestation report back to the hypervisor and then to
the guest.

The most important fields in the SEV-SNP attestation report are the measurement
of the launched SVM, the policy provided by the GO, TCB information, the digest of the
ID key that signed the ID block, and the report data provided by the guest. The report
data are a 512-bit data block provided to the firmware at the moment of the attestation
report request. The report data are not interpreted by the firmware and are placed in the
attestation report without modifications. As a result, the report data can be used to transfer
relevant information to the GO. For example, the report data can be a public key of a



Electronics 2024, 13, 991 16 of 25

generated keypair, which can be used to establish a trusted channel with the GO. Upon
receiving the attestation report, the GO verifies the report by checking the signature and
ensuring that the information is valid.

3.5. AMD SEV Attestation for SMC

The default attestation protocols described in the previous two sections do not provide
all the assurances defined in Section 3.3 required for the SMC use case. It does not make
any assurance that the hypervisor or virtual machine emulator have the appropriate
configuration (e.g., no console access, port forwarding configuration, etc.), and that the
operating system has the appropriate configuration with only the required services turned
on. With the latest versions of qemu and the development of the AMD Secure VM Service
Module (SVSM) [41], it is possible to add the kernel and initial file system in the TCB. In the
CoCos.ai system, we have managed to boot secure virtual machines with just a kernel, an
initial file system (initramfs [42]), and a kernel command line. The entire VM is measured
by the firmware thanks to the AmdSev package of OVMF [35], which allows for inserting
the hashes of the kernel, initramfs, and the kernel command line into the firmware binary
and can be verified by the guest owner. However, hypervisor configuration still remains
outside of the attestation process.

Further, the attestation processes for both SEV and SEV-SNP are designed to be per-
formed by a single guest owner, primarily supporting a single-user secure outsourced
computing use case. The key exchange methods used in them are point-to-point between
the GO and the platform and excludes other consortium members from the process. For an
SMC case, such attestation protocols imply that one member of the consortium (e.g., SMC
representative) who is performing the attestation process has to conduct the attestation, but
this way, the SMC representative obtains an advantage over other consortium members
as they have to trust that there will be no collusion with the platform owner. SMC repre-
sentatives must actively participate in the high-touch process of exchanging cryptographic
material, establishing the appropriate policy and attested booting of the secure virtual
machine to ensure the correct configuration. The use of the derived guest key via an
SNP_GUEST_REQUEST call does not help in this process. Guest keys are derived in a
deterministic way from the set of parameters that are either the same for all the virtual
machines on one processor (e.g., VCEK or TCB version) or using the data that are known
to the hypervisor at the launch (e.g., host data or ID Key/Author Key) or have a limited
number of possible values (e.g., Virtual Machine Privilege Level—VMPL) [40].

Therefore, after completing the attestation process, there are two options for other
SMC consortium members to verify the attestation process:

• The SMC representative could distribute the TEK and TIK keys to the other members
of the SMC consortium, enabling them to request the measurement from the SMC
provider through a channel, like qemu management protocol (QMP), and check it in
the same way as the SMC representative did (Figure 8a);

• Other members can obtain the attestation report and the PEK certificate chain directly
from the SMC provider. After they verify the PEK certificate chain, they can use it
to validate the attestation report that also contains SHA256 over UEFI, and is signed
using the PEK (Figure 8b).

However, if malicious, this SMC consortium representative can, in collusion with the
SMC provider, steal the data of the other consortium partners by misinforming them about
the exact ports of the secure virtual machine and redirecting their data to a non-secure
machine (using, e.g., cuckoo attack, described in Section 3.3).
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3.6. System Architecture

The previously mentioned constraints have further implications on the design of the
TEE-based SMC system. Trust in the operating system can be obtained only by providing
an open-source operating system image with preinstalled open-source SMC orchestration
software, which can be inspected by the SMC consortium members and measured.

The SMC orchestration solution proposed in the CoCos.ai project consists of two com-
ponents:

• SMC Business Application (BA): A web application installed on any web server (not
necessarily secure). Its role is to create accounts and roles for all the parties in the SMC
and consortium and to provide a graphical user interface for all the parties and a web
service for the SMC Secure Modules;

• SMC Secure Module (SM): a web service on a secure virtual machine that exposes an
API used by the SMC BA to securely send the encrypted data and code, and SMC
consortium members to send the cryptographic keys, receive the results, and monitor
the computation process.

As mentioned previously, one of the key issues is the initialization of the SMC SM
web service on the secure virtual machine. If the communication towards the SMC SM is
supposed to be secure using TLS, for example, then the cryptographic material needed for
it to run must be placed on the operating system image. If that cryptographic material is
unprotected in the image file, then it is visible to the platform owner. If it is protected using
some symmetric encryption algorithm and keys that are not stored in the image, then there
is a problem with securely transferring this key to the secure virtual machine.

3.7. Protocol for SMC Initialization

We propose a simple and secure protocol for SMC SM initialization. A secure virtual
machine image is an image of the operating system with a preinstalled minimal set of
components needed for its operation and the SMC SM software which is supposed to start
upon the start of the secure virtual machine. The SMC consortium (or their representative)
uploads the data necessary for secure initialization to the secure virtual machine image
(e.g., using virt-customize command). That data consists of:

• The public key of the SMC BA PuWA (e.g., from the SMC BA web server TLS certificate);
• Contact URLs on SMC BA that will be used by the SMC SM to contact the business

application;
• A random session identifier NS encrypted using the randomly chosen symmetric key

of the SMC Consortium representative KCC–KCC(NS).

All of these elements are either public (PuWA, contact URLs) or encrypted (KCC(NS))
and can be stored in the operating system image file without worries that something might
be compromised. An adversary can know the public data, but not the value of the session
identifier NS one consortium has created. Upon SVM startup:



Electronics 2024, 13, 991 18 of 25

1. SMC SM generates a random symmetric encryption key KS and sends it to the BA
encrypted using BA’s public key PuWA(KS||N1), where N1 is an anti-replay nonce.
The key KS is kept on the SMC SM only in RAM and must never be stored on the disk.

2. SMC BA decrypts the session key using its own private key PrWA and sends the TLS
certificate and keys needed for the secure VM to start the web service encrypted
with the session key KS: KS(CERTSMCSM||PrSMCSM||N1), where CERTSMCSM and
PrSMCSM are the TLS certificate and a private key that the SMC SM web service will
use. Each new secure virtual machine that contacts BA must obtain a different (CERT,
Pr) pair.

3. SMC SM decrypts the CERTSMCSM and PrSMCSM and starts the TLS-based web
interface. Again, these keys must be kept at all times only in RAM and never stored
on disks.

The purpose of these steps is to establish a TLS-secured web service on the SMC SM,
which will be trusted by the SMC BA (hence the certificate and key pair sent from the
BA). Until this moment, any adversary can conduct steps 1–3, assuming that the process is
somehow made publicly available (among other reasons, to allow security assessment of the
whole process). However, a random adversary will not have its secure VM pre-initialized
with the appropriate (KCC(NS)) value. If the hypervisor is malicious and performs a cuckoo
attack, then the same KCC(NS) value can be on a non-secure machine. The final steps for
verifying the identity of the SMC SM instance are:

4. SMC BA establishes a TLS session with the SMC SM through the port known from the
SVM initialization process, verifies using the CERTSMCSM the identity of the SMC SM
and sends to the SMC SM (KCC||N2), where N2 is an anti-replay random nonce. If
the hypervisor is not malicious and has not fooled the SMC representative to establish
the connectivity towards the fake non-secure VM, then only the SMC SM can obtain
the KCC key.

5. SMC SM decrypts KCC(NS), which was preinstalled on it using the obtained KCC, and
returns to the SMC BA decrypted (NS||N2) through the TLS session. An adversary
that does not have an appropriate (KCC(NS)) value will not decrypt an accurate NS
value and the BA will be able to reject such a secure VM.

The whole protocol is depicted in Figure 9. The exchange consists of two separate
phases related through the NS parameter and separated by the TLS exchange, which pro-
tects the second phase. In the next section, we analyze the security of the proposed scheme.
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3.8. Security Evaluation and Threat Analysis

There are two types of adversaries who can attack the previously described SMC
initialization protocol and secure virtual machines: external—those that are outside the set
of actors described in Section 3.1, and internal—actors described in Section 3.1. We discuss
potential attacks coming from both types of adversaries.

External adversaries can exist at any point on the internet between the SMC actors
and can intercept, copy, replay, modify, delete, and/or insert any protocol message or even
perform other types of attacks (e.g., Denial of Service—DoS). The way external adversaries
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can attack the protocol and secure virtual machines depends on the way the access to
the SMC resources is set up by the cloud provider. SMC BA and SMC SM can be behind
the firewall and accessible by SMC consortium members via an encrypted VPN or be
accessible openly over the public internet. In the former case, the protocol exchange is
protected by the VPN tunnels and the adversary cannot see the message content or change
it unnoticeably. Also, the SVM is behind the firewall, not accessible directly over the
internet, which reduces the risk of other types of attacks (e.g., DDoS). The security of
the SMC protection in that case, in addition to the security of the protocol, depends on
the security of the VPN and firewall solutions. In the latter case, the adversary can see
the protocol messages, as described in Section 3.7, and could perform various attacks, as
mentioned above. For this more challenging case, we have performed a formal analysis
of the exchange protocol security using the ProVerif tool v.2.0.4 [43]. We have analyzed
both exchange phases separately. The first phase was tested for the security of the TLS
credential transfer (CERTSMCSM||PrSMCSM). The exchange passed formal verification
under a reasonable assumption that the SMC BA private key (PrWA) is not compromised
and known to the attacker. The second phase was tested for the security of the session
nonce (NS) transfer, which allows SMC BA to finally confirm the identity of the secure VM.
This phase also passed formal verification, under the assumption that TLS session keys are
not compromised. The ProVerif code for both formal tests is available at [44]. Although
the exchange is proven secure, even in the latter case, it is recommended that access to the
SMC resources is established through the firewall and VPN to reduce the population of
potential adversaries and the set of attacks that could be performed.

As introduced in Section 2.1, internal adversaries (key SMC actors) can be semi-honest
or malicious. The case in which internal adversaries are semi-honest is similar to the case
of external adversaries when there is no VPN protection because semi-honest adversaries
can see protocol messages. However, semi-honest SMC members are passive and do
not attempt to change the protocol and gain access this way. The formal analysis of the
protocol exchange shows that the protocol is secure in cases of passive message observation.
Therefore, it can be concluded that using this SMC initialization protocol, and under the
assumption that the secure virtual machine booting and verification process is improved
according to the recommendations given in Section 3, secure multiparty computation using
secure virtual machines can be possible in semi-honest adversarial settings.

Finally, it does not seem that SMC is possible in malicious adversarial settings, in
which active internal adversaries modify or inject messages or collude to steal the data of
other participants. A malicious SMC BA owner can expose and use SVM private TLS key
PrSMCSM or session nonce NS to compromise the SMC initialization process. In collusion
with a malicious hypervisor, it is possible to perform the cuckoo attack by creating a non-
secure virtual machine capable of responding to the SMC initialization protocol the same
way as a legitimate SVM as it can access all of the necessary data for this (decrypted NS).
For this reason, it is recommended that the SMC provider and cloud provider are not the
same entity.

4. Proof of Concept

In this section, we give a description of an implementation of the SMC system, which
is secure under the assumption that there is no collusion between the SMC representative
and platform owner, and the performance evaluation of the proposed implementation. A
proof of concept of the SMC system developed for AMD SEV is described in the remainder
of this chapter. The system was installed on a server with an AMD EPYC 7313P 16-Core
processor with 32 GB of RAM and 2 TB SSD. This processor belongs to the 3rd generation
of AMD EPYC processors and supports the SEV, the SEV-ES, and the SEV-SNP. The SEV
software used on this server was from AMD’s SNP development branch [sev-snp-devel].
The version of the server and SVM kernels are 6.1.0-rc4-snp-host-93fa8c5918a4 and 5.4.0-
135-generic, respectively.
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4.1. Establishing SVM

The first step taken by the SMC provider is the installation of the sev-tool [45]. This
tool can be downloaded from the official sev-tool GitHub. The sev-tool is a command-
line utility specifically designed for working with SEV-enabled systems and provides
various commands for performing tasks related to SEV administration, key management,
attestation, and more. Users can also employ this tool on systems that do not support SEV.
The SMC provider also needs to prepare an image of a virtual machine that will become an
SVM. The image needs to be publicly available so that the members of the consortium can
verify the image. SMC SM should be installed on the image and configured in a way that it
automatically runs at the start of the SVM. The image should also have a tool that can check
for backdoors to the SVM so that the SMC members can be sure that no information is
being exported without their knowledge. Finally, for the purpose of the remote attestation
process, the SMC provider initiates the creation of a certificate chain that is used to verify
the platform on which the SVM will be executed. The commands for the creation of a
certificate chain can be found on the official sev-tool GitHub repository.

After the SMC provider has completed the previous steps, the SMC representative first
needs to install the sev-tool locally on his/her machine. After that, the SMC representative
obtains the SMC provider’s certificate chain and verifies it. The sev-tool can also be used
here for verification. The SMC representative should verify that the obtained ARK and
ASK from the SMC provider match the ARK and ASK that are obtained from AMD.

The next step for the SMC representative is to generate an ECDH keypair. In order
to create and start the secure VM, according to the steps described in Section 3.4.1, the
SMC representative prepares his/her launch blob, which is an encrypted file, and his/her
certificate and sends them to the SMC provider. The policy is a hex value that represents
the configuration of a VM. The SMC provider’s app must send the command for starting
the VM with a previously loaded launch blob, certificates, and the rest of the configuration
of the VM.

As we decided to use secure encrypted virtualization, our attestation protocol is related
to AMD SEV remote attestation capabilities. Following all of the previous steps, the SMC
representative can now perform remote attestation by obtaining the measurement from
the server and making sure that the measurement matches the expected value. After that,
other SMC members can verify the attestation report. The measurement is obtained using
the QEMU Machine Protocol (QMP). QMP is a communication protocol for managing and
controlling VMs running on the QEMU emulator.

After the server has been prepared and the SMC provider, the SMC representative,
and the SMC members have completed the required steps, the SMC members can send
their data and code to the server.

4.2. SVM SM

Upon the secure virtual machine boot and attestation processes, the application script
that is installed on the SVM starts the SMC SM. The script exchanges with the SMC BA
cryptographic material, as described in Section 3.7, and launches a separate web service for
secure multiparty computation using the certificates that were transmitted in the previous
exchange. This web service enables the addition of the code for data processing, the data,
and keys to decipher the code and data by all SMC consortium members through an API. All
of the communication of this web service is protected using TLS. In this section, we outline
the key steps in exchanging the necessary keys, input data, and computation results, along
with examples of the corresponding API calls. Web service is implemented as a RESTful
web application in the Python programming language using the Flask framework. Each
functionality is achieved through a specific API call, where parameters are passed either in
the JSON format or as form-data. Table 1 shows a list of API calls and the corresponding
parameters. The code of the SMC SM is publicly available here [44]. More details about the
code encryption key management and the code decryption problems can be found in [46].
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Table 1. List of API calls.

API Call Name API Parameters

add-code code-file, code-key
add-data data-file, data-key

add-result-key result-key
check-computation /
start-computation /

collect-results /

The code provider submits the data processing code script through the add-code API
call. As this script is encrypted by the code provider, for the application to be able to run it,
the code provider must also send the appropriate key, through the same API call. Figure 10
contains the example of the CURL command for the add-code API call. Each input party
provides the data, encrypted using keys created by each input party. The encrypted data
files, as well as the necessary keys for their decryption, are uploaded through the API call
add-data.
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The encrypted data and code files are stored in a predetermined location in the
file system. As the keys are transferred in an unencrypted form, they are stored in the
application’s memory only, instead of the file system, where they would be exposed to the
hardware owner.

A subset of the participants in the SMC, the result parties, are able to receive the
computation results. After the computation is finished, the results are encrypted and
transmitted to the users in a secure manner. Therefore, the result parties need to provide
the encryption keys for the results. These keys are passed to the application through the
API call add-result-key for each user that expects the results. The computation cannot start
until all the necessary data, codes, and corresponding keys are present in the application.
Each user can check the computation status at any moment through the API call check-
computation, which returns the current state of the computation, e.g., NOT_READY, READY,
STARTED, DONE.

The SMC representative can initiate the computation when its status is set to READY
(all the data, codes, and keys uploaded) through the API call start-computation. Once the
computation has started, the supplied data processing code is decrypted. The decrypted
code is directly run from the application memory. For this, we used the Marshal module for
serialization to convert an array of bytes to an executable code object. This module provides
functions that can read and write Python values in a binary format that is independent
of the machine architecture. Such an approach is crucial to ensure secure code execution
without any leakage towards the platform owners.

The SMC SM web service passes the input data in the encrypted form to the decrypted
data processing code that performs the computation. The data processing code decrypts
the data using supplied keys. In addition, the SMC SM forwards the keys necessary for
encrypting the computation results to the data processing code. Once the results are
derived, the script encrypts them for each user expecting the results. Users can retrieve the
encrypted results through the collect-results API call.

4.3. Performance Evaluation

As indicated in the introduction, there are several previous studies that have ana-
lyzed the performance penalty of trusted execution environments in different settings
(e.g., [11,17]). In addition to these studies, we have tested the performance of machine
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learning applications executed in the CoCos.ai environment. We used the SciML-bench
tool [47], which provides the most versatile set of features compared to the other scientific
machine learning benchmarking approaches [48]. The secure virtual machine we used
for testing on a server, mentioned at the beginning of Section 4, had allocated 16 cores
and 16 GB of RAM. We tested two different use cases with real-world datasets: improving
signal-to-noise ratios of the electron microscope images—em_denoise (Test 1) and searching
for patterns in X-ray images—dms_structure (Test 2). Names written in italic are the names
used to invoke the test in the SciML-bench tool. The sizes of the datasets for these two tests
are 5 GB and 8.6 GB, respectively. All the tests consist of several phases: parsing input
arguments, saving input arguments, loading the dataset, training, and saving training
model, history, and performance metrics. We have modified the SciML-bench tool in a
way that allows the measurements to be invoked through the CoCos.ai system, that the
cryptographic key is passed to the SciML-bench, and that the SciML-bench decrypts and
loads the dataset, which is stored encrypted on the disk to preserve data privacy. Table 2
shows the execution times for each of the test phases. The key additional processing time
when the CoCos.ai system used is the time to decrypt the encrypted dataset. With the
AES-256 that we used, this time was around 1.9% and between 10 and 12% of the total
training execution time for Tests 1 and 2, respectively. This percentage depends on the
dataset size and the number of files in it, as well as the choice of the training algorithm.

Table 2. SciML performance evaluation.

Test 1 Test 2

NO SEV SEV SEV-SNP NO SEV SEV SEV-SNP

Parsing and saving input arguments [s] 0.0011 0.0009 0.001 0.0011 0.0015 0.015

Decrypting datasets [s] 0 108.75 115.83 0 238.31 288.28

Loading datasets [s] 0.0030 0.0023 0.0027 3.505 3.387 3.381

Creating the model [s] 0.009 0.008 0.0097 0.405 0.509 0.457

Training the model [s] 5404.9 5584.7 5857.3 1817.1 1961.6 2079.4

Saving model history and metrics [s] 0.008 0.011 0.009 0.141 0.145 0.186

Total [s] 5404.9 5693.5 5973.2 1821.2 2204.1 2371.8

We have further focused on the training phase because it is a part of the test that, in
our measurements, took, in all of the tests, more than 87% of the total test time, it does not
depend on the interaction with other computer components (e.g., disk), and is the most
impacted by the SEV RAM encryption during dataset processing. For all of the tests, we
have calculated the training time slowdown due to the use of SEV or SEV-SNP as (tSEV(SNP)
− tnoSEV)/tnoSEV, where tSEV(SNP) is the time to complete the training with SEV or SEV-SNP,
and tnoSEV is the time to complete the training without SEV switched on. The SciML-bench
detailed output showed a uniform use of all 16 virtual machine cores with small variations
and no use of swap in all of the tests. Table 3 shows the training time measurement results
for tests 1 and 2 using real datasets.

Table 3. Training time performance evaluation.

SEV SEV-SNP

Test Slow Down [%] CPU Load [%] RAM Usage [%] Slow Down [%] CPU Load [%] RAM Usage [%]

1 3.328 87.372 32.901 8.371 86.003 33.486

2 7.954 90.744 58.155 14.435 88.233 59.864

The performance evaluation results show that there is a difference in the performance
of different SEV versions. Additional data integrity protection of SEV-SNP using the new
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Reverse Map Table is paid with an additional slowdown compared to the first SEV version.
Also, the slowdown is not the same for the tested algorithms and probably depends on the
memory access patterns of the algorithm, which should be explored further. However, in
all cases, the performance penalty was less than 15%, which is negligible compared to the
other solutions for privacy-preserving data processing, as mentioned in Section 1.

5. Conclusions and Further Work

In this paper, we have given an overview of the existing trusted execution environment
technologies and analyzed their suitability for secure multiparty computation. We also showed
that it is possible to perform secure multiparty computations in the TEE environments and
described an original protocol for it. However, truly secure computations of multiple parties
on untrusted hardware are possible under a set of assumptions that are a consequence of the
technological limitations of the existing secure enclave and system administration procedures.
TEE and data-in-use protection technologies have converged towards solutions that protect
the memory of the whole virtual machine (AMD SEV and Intel TDX). The technologies are
still maturing, with vulnerabilities being removed with every new release. TEE attestation
is designed primarily for the single-user outsourced computing use case, and its process
produces asymmetric roles of the SMC consortium members. One of the consortium members
must be in direct contact with the SMC provider and must tightly control the SVM booting
process. Such a setup brings the danger of collusion between the server provider and SMC
representative, who can, if acting maliciously, jointly steal the data of other parties. Such
an organization is not following the basic SMC principles that all the input parties have the
same rights and possibilities. Further, TEE technologies protect data privacy from malicious
hypervisors, which, if the SVM is booted properly, cannot see the content of the guest machine
RAM. However, there are still attack vectors that are possible through malicious hypervisor
configuration and port forwarding. The hypervisor operation must be verifiable, and its setup
and network configuration must be protected in a way that does not allow it to tamper with
the VM management and port forwarding configuration. SMC deployments that are built on
top of bare metal servers and in which all software components installed on the server can be
inspected and controlled by the SMC consortium provide more trust than closed-source VM
provisioning automation software and cloud provider systems. If closed source hypervisors
and closed virtual machine automation systems are used, like in all big cloud providers, the
SMC participants must trust that the server/cloud provider will not maliciously alter the
operation of the hypervisor and steal the data using, e.g., cuckoo attack. This is also directly
against the basic principle of secure multiparty computation—not trusting the computation
provider. If SMC partners have to trust the server provider, then it is easier not to use
confidential computing technologies at all. Finally, the computation code and the operation of
the SVM must be closely monitored to ensure to all the SMC consortium members that there
is no data leakage by the computation code prepared by the code provider (e.g., disk writes or
network communication). The computation performance obtained when TEEs are used is a
big reason for the further development of confidential computing technologies. On the other
hand, the set of issues for the SMC implementations listed in this section indicates that, in the
future, we can expect to see research attempts in several different directions aiming to solve
the listed issues. There is also a potential for new commercial services supporting confidential
computing and secure multiparty computation (e.g., multiparty attestation, software auditing,
secure virtual machine monitoring solutions, etc.).
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