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Abstract: With the rapid development of the Internet of Things (IoT), ensuring secure communication
between devices has become a crucial challenge. This paper proposes a novel secure communication
solution by extracting wireless channel state information (CSI) features from IoT devices to generate
a device identity. Due to the instability of the wireless channel, the CSI features are fuzzy and
time-varying; thus, we a employ locally sensitive hashing (LSH) algorithm to ensure the stability
of the generated identity in a dynamically changing wireless channel environment. Furthermore,
zero-knowledge proofs are utilized to guarantee the authenticity and effectiveness of the generated
identity. Finally, the identity generated using the aforementioned approach is integrated into an IBE
communication scheme, which involves the fuzzy extraction of channel state information from IoT
devices, stable identity extraction for fuzzy IoT devices using LSH, and the use of zero-knowledge
proofs to ensure the authenticity of the generated identity. This identity is then employed as the
identity information in identity-based encryption (IBE), constructing the device’s public key for
achieving confidential communication between devices.

Keywords: Internet of Things; wireless channel state information; fuzzy identity; locally sensitive
hashing; identity-based encryption; secure communication

1. Introduction

With rapid technological advancements, the Internet of Things (IoT) is undergoing a
remarkable and swift expansion, emerging as a key driving force in today’s digital era. The
rapid proliferation and application of the IoT span diverse domains, ranging from smart
homes and industrial automation to healthcare and urban infrastructure. This technology’s
dynamic growth plays a pivotal role in enhancing the quality of life, fostering industrial
innovation, and building intelligent societies. The convergence of sensors, embedded
devices, and interconnected networks enables various physical objects to exchange real-
time information, creating an extensive ecosystem of data. The widespread collection
and analysis of these data provide businesses, governments, and individuals with deeper
insights and the foundation for intelligent decision making. From the development of
smart cities to advancements in precision agriculture, the IoT is profoundly transforming
the ways we live and work.

Despite the rapid technological advancements that bring unprecedented connectivity
and intelligence, security communication remains a significant challenge in the IoT. The use
of traditional Public Key Infrastructure (PKI) systems, especially in large-scale deployments
of IoT devices, inevitably faces the daunting task of establishing massive Public Key
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Certification Centers. Managing the identity information of a vast number of devices
not only introduces complexity and cost challenges but also carries the potential risks of
performance bottlenecks and single points of failure.

Adopting an identity-based encryption (IBE) solution for establishing communication
systems presents unique challenges, even though IBE can avoid the implementation of
massive Public Key Certification Centers. Since the physical information of IoT devices
often exhibits fuzziness, traditional IBE struggles to directly construct a stable device
identity based on these ambiguous physical features. This challenge involves maintaining
the consistency of the device identity in a dynamically changing environment to ensure the
feasibility of secure communication. In such a scenario, the solution requires an innovative
combination of physical information extraction and secure communication technologies to
address the complexity and security requirements of IoT device identity management.

In addressing the aforementioned challenges, we introduced a novel device-to-device
communication solution for the Internet of Things (IoT). Firstly, by extracting the wireless
channel state information (CSI) from IoT devices, we successfully generated stable physical
features for these devices. Leveraging the wireless communication characteristics among
devices, we established a device identity. Subsequently, addressing the issue of the fuzzy
nature of physical features potentially causing disruptions and affecting the stability of
device identity, we introduced a locally sensitive hashing (LSH) algorithm. Through LSH,
we were able to generate stable identity representations for the fuzzy physical features. This
process not only ensures the consistency of the device identity in dynamic environments
but also provides a reliable foundation for establishing secure communication. Finally, we
applied this stable identity representation to the identity-based encryption (IBE) framework,
constructing device public keys. Through this innovative integration, we achieved confi-
dential communication between devices, presenting a new paradigm to address challenges
faced by existing Public Key Infrastructure (PKI) and traditional IBE solutions.

Our contributions are as follows:

1. We propose a novel device-to-device communication solution for the Internet of
Things (IoT). By extracting the wireless channel state information from IoT devices,
we successfully generated stable physical features for these devices and combined
them with IBE to implement secret communication based on CSI.

2. We propose a method to generate a fixed identity identifier from the fuzzy device
CSI. This method allows the generation of a unique identity identifier from a stable
identity feature in a deterministic manner, which can be used as the device public key
information in identity-based encryption (IBE).

3. We introduce an identity verification scheme based on zero-knowledge proofs. This
scheme can prove that the identity information generated by the device is derived from
its CSI without revealing the CSI itself, thus safeguarding the privacy of the device.

2. Related Work
2.1. Identity-Based Encryption

In the year 2001, Boneh and Franklin [1]; Sakai, Ohgishi, and Kasahara [2]; and
Cocks [3], independently proposed three identity-based encryption (IBE) schemes, marking
the initiation of a new era in identity-based cryptography research. Both the Boneh–
Franklin and Sakai–Ohgishi–Kasahara schemes utilize pairings satisfying bilinear map-
pings. Boneh and Franklin, employing the random oracle model, demonstrated that
their scheme achieves indistinguishability against an adaptive chosen identity and cho-
sen ciphertext attacks (IND-ID-CCA). The widespread application of bilinear pairings
in cryptographic scheme design was a result of their work, guiding the development of
identity-based cryptography. Subsequent works have often adopted methods similar to the
Boneh–Franklin method, utilizing pairings with bilinearity to construct IBE schemes. In
2005, Waters [4] designed an efficient IBE scheme that does not rely on a random oracle.

In recent years, many scholars have proposed various improvements to IBE. One major
challenge in the real-world deployment of IBE is the key escrow problem. If the private key
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generator (PKG) is malicious, it can decrypt all messages. Khaleda Afroaz [5] proposed an
IBE scheme based on anonymous identities, utilizing ring signatures to address this issue.
In this process, identities are signed with ring signatures generated by a ring authority
(RA) to mask the actual identity. Private keys are obtained from a key generation authority
(KGA), preventing the KGA from knowing which key corresponds to which recipient.
In the application of IBE schemes, V. Veeresh et al. [6] comprehensively overviewed the
applications of IBE in cloud computing. Van-Quang-Huy Nguyen et al. [7] proposed a
private identity-based encryption scheme for key management. Y. Liu et al. [8] introduced
a hierarchical identity-based encryption scheme for key distribution in wireless sensor
networks, reducing the computational time and saving storage space compared to IBE-
based key distribution for wireless sensor nodes.

2.2. Channel State Information

In recent years, scholars both domestically and internationally have proposed nu-
merous wireless device authentication schemes based on physical layer fingerprints. X.
Wan et al. [9] employed the Received Signal Strength Indicator (RSSI) technique for device
identification and monitoring. To enhance the spatial resolution and improve the accuracy
of attack detection, multiple antennas were deployed at various landmarks to collect richer
RSSI data. A. Mahmood et al. [10] introduced a distributed wireless device authentication
method based on a Channel Impulse Response (CIR), enhancing the system detection accu-
racy through multipoint sensing technology. Q. Wu et al. [11] utilized Radio Frequency (RF)
fingerprints for wireless device authentication, employing a Recursive Neural Network
(RNN) to autonomously learn RF fingerprint features without manual intervention.

The RSSI, RSS, and CIR can be used to describe the characteristics of the wireless
channel, but they provide limited channel information at a single frequency point. In
contrast, CSI contains both amplitude and phase information for each OFDM subcarrier,
offering more detailed wireless channel features and achieving a superior identification
performance. To address this, R. Liao et al. [12] proposed a CSI-based device authentication
scheme, employing a CNN as the recognition algorithm for physical layer fingerprints.
Meanwhile, C. Shi et al. [13] utilized an SVM to identify user channel fingerprints. Ribouh
et al. [14] designed a CSI-based key generation method for use in vehicular environments,
treating the CSI values of each subcarrier as random sources and using a new QAM
demodulation quantizer (QAM-Dem-Quan) to extract bit values for key generation. Ji
et al. [15] proposed a key generation scheme combining adaptive link selection and a two-
step decorrelation algorithm, leveraging CSI information. Wang et al. [16] combined CSI
features with the static position of devices, constructing CSI data into CSI images. Through
a deep learning-based recognition and authentication model, they learned the mapping
relationship between CSI and the device identity, achieving device authentication. Wang
et al. [17] introduced a physical layer authentication scheme based on Gaussian Process
channel prediction. By establishing a mapping between historical CSI information and
the sender’s location information, they predicted the next legitimate CSI information for
identity recognition. Additionally, they proposed a one-class authentication (OCA) scheme
that does not require any channel information from attackers.

2.3. Zero-Knowledge Proof

Many researchers are concerned about privacy issues in data sharing and have pro-
posed various data sharing schemes with privacy protection features. Lu et al. [18] intro-
duced a novel approach based on federated learning and deep reinforcement learning to
alleviate the transmission overhead and address the privacy concerns of data providers.
The asynchronous federated learning mechanism, learning models from edge data, mini-
mizes the total cost by selecting participating nodes and further enhances the efficiency
of federated learning. To validate the authenticity of collected data and protect user pri-
vacy, a study [19] employs homomorphic encryption technology to construct a ciphertext
space, ensuring the normal operation of data services under data encryption. Based on this
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ciphertext space, they propose an identity-based signature scheme and a two-tier batch
signature verification scheme.

A zero-knowledge proof (ZKP) refers to the ability of a prover to convince a verifier of
the correctness of a statement without revealing any useful information. This concept was
introduced by S. Goldwasser and others [20]. The security of zero-knowledge proofs relies
primarily on cryptographic assumptions related to challenging problems, such as discrete
logarithms and elliptic curve problems. The zero-knowledge proof system is widely used
for authentication because it has the following properties:

• Completeness: Referring to the assurance that anything valid generated by an honest
prover can be successfully verified by an honest verifier.

• Soundness: Ensuring that for any prover without access to the secret, they cannot
forge something that would pass verification.

• Honest verifier with zero knowledge: Ensuring that, for an honest verifier, apart from
knowing the outcome of the proof (i.e., the known parameters mentioned above), no
other information is revealed.

In recent years, ZKPs have been preliminarily applied and practiced in the context
of IoT access security. Walshe et al. [21] proposed an IoT and sensor device authentica-
tion scheme based on non-interactive zero-knowledge proofs. Unlike traditional ZKP,
the authors replaced the ZKP’s NP-hard problem and used Merkle trees to create au-
thentication challenges. The authors conducted simulations to evaluate the performance
of non-interactive zero-knowledge proofs relative to traditional zero-knowledge proofs.
Salleras et al. applied it to scenarios such as 5G services for user identity authentication [22].
Service providers can verify proofs and grant services without knowing the user’s identity.
Users can remain anonymous when using the service by proving the ownership of their
signature without revealing any other information.

Zero-knowledge proofs have been applied as a privacy protection technology in
various fields, such as traffic management, the crowdsourced IoT, identity management
schemes in blockchain, and vehicular ad hoc networks [23]. However, with the expo-
nential growth of IoT devices in various applications, ensuring the efficient, secure, and
bidirectional authentication of relevant devices without leaking any information remains
crucial.

3. Wireless Channel State Feature Extraction
3.1. Multipath Effects

Wireless signals typically propagate in environments characterized by complex elec-
tromagnetic wave scattering. In such environments, various objects along the signal propa-
gation path from the transmitting device to the receiving device can induce electromagnetic
wave scattering. These objects cause the signal to reflect along different paths, eventually
reaching the receiving device. Due to the presence of these reflected paths, the signal
received at the receiving device is the result of the superposition of multiple reflections, a
phenomenon commonly referred to as multipath effects.The origins of multipath effects
are diverse, including outdoor structures, terrain such as mountains, and densely packed
objects in indoor environments, all contributing to varied electromagnetic wave reflections
and refractions.

As the transmitted signal traverses different electromagnetic wave reflection or re-
fraction paths, differences in the amplitude, phase, and arrival time occur during the
transmission process. At the antenna position of the receiving device, multiple reflections
or refractions with different phases may simultaneously superimpose. Therefore, under the
influence of multipath effects, the signal response amplitude received at the antenna of the
receiving device exhibits significant variations. This phenomenon is known as multipath
fading.
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3.2. Orthogonal Frequency Division Multiplexing

Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier modulation
technique widely employed in the field of wireless communication, particularly in high-
speed data transmission environments. The core concept of OFDM involves dividing a high-
speed data stream into multiple lower-speed substreams and concurrently transmitting
these substreams on multiple carriers to enhance the overall data transmission efficiency.

OFDM subdivides the high-speed data stream into several lower-speed substreams
and allocates these substreams to different orthogonal subcarriers. This allocation ensures
mutual orthogonality among the subcarriers, reducing interference between spectral bands.
Due to the orthogonality of the subcarriers, symbols on each subcarrier can be transmitted
at different phases, achieving higher spectral efficiency within the same frequency band.
This adaptability makes OFDM suitable for the demands of high-speed data transmission.

Assuming a carrier bandwidth of B, it can be divided into N orthogonal subcarriers
with a bandwidth of ∆ f = B/N. If the center frequency of the first carrier is f_0, then the
frequency of the nth carrier is given by the following:

fn = f0 + (n− 1)∆ f (1)

Modulating the OFDM symbol Pn onto the subcarrier n results in the transmis-
sion symbol Pej2π fnt

n . Summing up the signals across all N subcarriers yields the final
transmitted signal:

f (t) =
N

∑
n=1

Pnej2π fnt = ej2π f0t
N

∑
n=1

Pnej2π(n−1)∆ f t (2)

Once the receiver obtains the signal, it can determine the OFDM symbol Pn transmitted
over the subcarrier using the following formula:

∆ f
∫ 1

∆ f
0 f (t)e−j2π fntdt = Pn + ∑k ̸=n ∆ f

∫ 1
∆ f

0 Pkej2π fkte−j2π fntdt = Pn (3)

3.3. Channel State Information

In the same physical environment, different subcarriers experience varying fading
and multipath effects in the wireless channel. The channel responses at different frequency
positions of the subcarriers exhibit differences. To describe the subchannel response at
each subcarrier frequency position, a set of data representing the features of the channel
frequency response is required. These data enable the communication system at the
receiving end to adapt to the actual conditions of the wireless channel, allowing the
reconstruction of the effective original wireless signal received by the receiving antenna.
This series of data describing the channel frequency response is commonly referred to as
channel state information (CSI). CSI is a crucial data metric in wireless communication,
encompassing various aspects of the radio waves between the terminals and enabling the
real-time dataization and visualization of the electromagnetic wave status between the
communicating parties.

The receiving device can recover the original signal based on the channel conditions
described by CSI, facilitating signal transmission under the adaptation to the current chan-
nel conditions. This is vital for achieving robust communication in OFDM systems. The
CSI is obtained through channel estimation in OFDM wireless communication systems. In
OFDM communication transmission systems, the primary purpose of channel estimation
is the selection of pilot information. As wireless channels may experience fading during
transmission, continuous tracking of the channel is necessary, requiring the ongoing trans-
mission of pilot information. Through the estimation of pilot information, the receiving
terminal can acquire the CSI of the wireless communication channel from the other party.

CSI reflects the communication channel conditions between the transmitter and the
receiver, manifesting on OFDM symbols as variations in the amplitude and phase of signals
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on each subcarrier. According to the signal system model, let H represent the channel
frequency response, X be the transmitted signal, and N denote noise. The received signal
Y can be expressed as follows:

Y = XH + N (4)

In WiFi, OFDM technology is commonly employed, and CSI reflects the representation
of the channel frequency response (CFR) on subcarriers. The expression of the CFR can be
easily obtained through the pilot portion of each OFDM symbol:

H = ∑
k∈K
∥hk∥ × e−jφk (5)

In this context, ∥hk∥ and φk represent the amplitude and phase values of the signal
on each subcarrier, respectively. The CFR can describe small-scale multipath effects and is
widely utilized as a channel indicator. By adjusting the firmware, it is possible to obtain the
CFR of multipath channel samples, i.e., the measured values of CSI, on existing wireless
terminal devices, such as commercial IEEE 802.11a/g/n equipment.

CSI represents the sampling of the wireless channel frequency response at various
subcarrier frequencies in OFDM. On each wireless channel, each antenna at the receiving
end can generate a set of CSI data. Due to the presence of multipath effects and fading phe-
nomena in the wireless channel environment, different subcarrier frequencies are affected
to varying degrees. As a result, each subchannel possesses a unique gain. This implies
that each subchannel has corresponding CSI values, reflecting its distinctive frequency
response features. The CSI features of the wireless channel exhibit robustness, uniqueness,
and irreproducibility.

3.4. Wireless Channel Features

The wireless channel possesses four features, reciprocity, time variability, short-term
stationarity, and spatial sensitivity, which are descrived below:

1. Channel reciprocity: Channel reciprocity in a wireless channel refers to the symmetric
propagation features between the transmitter and the receiver. In other words, if
the propagation channel from the transmitter to the receiver is reciprocal, then the
propagation channel from the receiver to the transmitter is also reciprocal. Reciprocity
simplifies the analysis and modeling of wireless communication systems. However,
in practical communication environments, various factors such as noise, channel
variations, and environmental conditions may lead to incomplete consistency in the
collected channel state data due to the asynchrony in signal reception times between
communication parties.

2. Time variability: The propagation features of a wireless channel undergo changes over
time. This time variability can be caused by various factors, including the movement
of objects, changes in obstacles along the signal path, and variations in atmospheric
conditions. Time variability is particularly crucial for mobile communication systems
as it impacts the signal transmission quality and system performance.

3. Short-term stationarity: Despite the time variability of the wireless channel, it is often
possible to approximate the channel as approximately stationary over short periods.
This implies that within very short time intervals, the propagation features of the
channel can be considered constant, simplifying the complexity of system design and
signal processing.

4. Spatial sensitivity: The propagation features of a wireless channel are highly sensitive
to spatial changes. Even within relatively small spatial ranges, significant variations
in the channel’s features may occur. This sensitivity is due to the signal’s propagation
through multiple paths, influenced by reflection, refraction, and scattering. Spatial
sensitivity is particularly important in places with complex structures, such as in-
door and urban environments, necessitating the adoption of appropriate antenna
configurations and signal processing techniques to address it.
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3.5. CSI Acquisition Module Based on Multipath Effects
3.5.1. CSI Acquisition

In general, CSI is often represented by the channel frequency response (CFR) in a
wireless multipath channel environment. When the transmission frequency is denoted as f ,
the formula for CSI is given by the following:

H( f ) =
N

∑
n

ane−j2π f τn (6)

In OFDM wireless networks, such as IEEE 802.11a/g/n, each pair of antenna channel
propagations results in a set of CSI data. The length of each set of CSI data corresponds to
the number of subcarriers, and the individual CSI values within the set are represented by
the following formula:

CSIm,n = [csi−i, csi−i+1, . . . , csi0, csi1, . . . csii] (7)

In the above formula, m represents the index of the transmitting antenna, n denotes
the index of the receiving antenna, and i represents the subcarrier index. When a device
transmits data with a bandwidth of 20 MHz in the 2.4 GHz frequency band, the utilized
channel will consist of 64 subcarriers. The measured CSI at the receiver will include the
frequency response for each subcarrier, forming a 64-dimensional complex CSI vector. In
a Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-
OFDM) wireless communication systems (assuming the system has V transmit antennas
and G receive antennas), the CSI will be expanded into a three-dimensional complex matrix
of size V × G × 64. This provides an alternative representation for the CSI:

CSIk = |csik|e−j∠csik , k = −i, . . . ,−1, 1, . . . , i◦ (8)

where |csik| represents the amplitude and ∠csik represents the phase.
The majority of CSI amplitudes tend to stabilize within a relatively concentrated range,

with only a portion of the data exhibiting discrete deviations. However, CSI phase data
are characterized by an unstable pattern, displaying a distribution with random rotations.
Additionally, significant discrepancies are observed in the CSI data between the receiving
and transmitting ends at the same position.

3.5.2. Preprocessing of CSI

CSI data may have certain errors due to environmental noise. To eliminate these
errors, preprocessing is applied. First, due to hardware errors, environmental factors, etc.,
there may be outliers or anomalous points in the data sequence. To reduce the impact of
errors and enhance the robustness, an outlier detection method is employed. Secondly,
normalization is used to reduce data dispersion. Finally, the samples undergo smoothing
to eliminate the effects caused by environmental noise.

1. Outlier Handling

After obtaining CSI′, the n samples are denoted as − CSI′n = c1
n, c2

n, · · · , cM
n (n =

1, 2, · · · , N), where N represents the number of collected samples and M represents the
number of available subcarriers collected (52 in this case). Let Lm =

(
cm

1 , cm
2 , · · · cm

N
)

represent the average value of each subcarrier across all samples, where m = 1, 2, · · · , M.
The median window chosen in this paper is CI

D,n and the sample values within a range of
2l around it. The standard deviation for all samples is derived from the absolute deviation,
as shown in the following formula:

σm
I =

1
γ

median(|cm
i − cm

I |) (9)
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where cm
I represents the median of the window, cm

i represents the samples within the
window, and γ =

√
2 erfinv(0.5). The removal of outliers in the samples is processed using

the following formula:

cm
i =

{
cm

i

∣∣cm
i − cm

I
∣∣ ≤ ησm

I
cm

I
∣∣cm

i − cm
I
∣∣ > ησm

I
(10)

2. Normalization

Due to environmental interference, the amplitude of CSI may exhibit certain variations
over time, but, overall, it will have similar fluctuation trends. To reduce the adverse
effects of amplitude fluctuations, the amplitude sequence of CSI is normalized using the
following formula:

ci =
ai − amin

amax − amin
(11)

After normalization, the amplitude sequence of CSI exhibits a smaller degree of
dispersion while preserving the original shape information to a certain extent.

3. Smoothing

The smoothing process involves working solely on the amplitude values of each
subcarrier, aiming to reduce temporal influences. The smoothing method is expressed
as follows:

c̃m
n =

1
w

min(N,n+⌊ w−1
2 ⌋)

∑
max(0,n−⌊ w

2 ⌋)
cm0

n (12)

where w represents the length of the smoothing window.

4. Non-Interactive Channel Feature Similarity Comparison
4.1. Zero-Knowledge Proof

A zero-knowledge proof (ZKP) refers to the ability of a prover to convince a verifier of
the correctness of a statement without revealing any useful information. This concept was
introduced in the early 1980s by S. Goldwasser and others. The security of zero-knowledge
proofs relies primarily on cryptographic assumptions related to challenging problems, such
as discrete logarithms and elliptic curve problems. This paper focuses on the enhancement
of Sigma Protocols in zero-knowledge proofs, grounded in the assumption of the difficulty
of the discrete logarithm problem. The objective is to tailor Sigma Protocols to meet
the specific requirements of certain industry applications while maintaining the security
principles inherent in zero-knowledge proofs.

The Sigma Protocol is an interactive proof system consisting of a prover (P) and a
verifier (V) in a three-step process. This system is based on the discrete logarithm problem
and a commitment key (ck) generated with a security parameter λ. The commitment key
ck is derived from the discrete logarithm problem and a random number r ∈ Z∗q , where
represents a non-negative integer ring of order q. The prover can generate a commitment
Comck(c; r) for a secret c, representing a declaration of the secret c. Based on prior research
results, it is known that, with negligible probability, this commitment uniquely binds to the
secret c and does not leak information about c.

The Sigma Protocol process is described as follows:

1. The prover initiates the process by sending the commitment regarding the secret c to
the verifier.

2. Upon receiving the commitment, the verifier randomly selects a challenge value
x ∈ Z∗q and sends it to the prover.

3. Based on the received challenge value x, the prover generates the corresponding
response value z and sends it to the verifier.

4. These three steps constitute the proof by the prover for the secret c. With the known
parameters, including the commitment key ck, commitment value Comck(c; r), chal-
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lenge value x, and response z, the verifier is capable of validating the legitimacy of
the proof.

The intersection proof proposed in this paper is a modification of the aforementioned
Sigma Protocol, based on the Pedersen commitment scheme. The properties of this com-
mitment scheme are defined as follows:

Let G be a q-order cyclic group generated by the commitment key ck, with generators
g and h. Given a random number r ∈ Z∗q , a Pedersen commitment based on the message c
can be generated as follows:

Comck(c; r) = gc · hr ∈ G (13)

The Pedersen commitment is a homomorphic commitment scheme that, under the
discrete logarithm assumption, possesses two essential properties, hiding and binding:

• Concealment (hiding): For any adversary with a probabilistic polynomial time com-
putational capability, if the adversary is unable to effectively distinguish between the
commitments Comck(c0; r0) and Comck(c1; r1) corresponding to two distinct messages
c0 and c1, then the commitment scheme is considered to possess concealment.

• Binding: For any adversary with a probabilistic polynomial time computational capa-
bility, given a known commitment Comck(c0; r0), the task is to find another secret value
c! such that their commitment values are equal, i.e., Comck(c0; r0) = Comck(c1; r1). If
the probability of successfully achieving this task is negligible, then the commitment
scheme is deemed to exhibit binding characteristics.

4.2. Interactive Similarity Matching

Similar to fingerprint recognition, when collecting fingerprints from the same individ-
ual multiple times, various factors such as sweat, pressure variations, and other elements
on the fingers can result in subtle differences in the collected fingerprints. Ensuring fuzzy
identity recognition while maintaining both accuracy and fault tolerance in the presence of
these subtle variations is a crucial consideration.

In the process of identity authentication, despite the preprocessing of channel state
information (CSI), deviations from standard values may still occur during the quantification
process. Therefore, it is necessary to enhance the tolerance of identity recognition without
compromising accuracy. In this context, we introduce the concept of fuzziness to assess the
similarity of fuzzy equations. The extracted CSI exhibits fuzzy characteristics, with the CSI
collected by both parties not being entirely consistent but demonstrating a high degree of
similarity. This paper, by comparing the similarity of CSI from both parties and obtaining
the intersection, negotiates a shared channel key for communication. Simultaneously, the
successful comparison of CSI similarity also signifies that the remote end possesses CSI
highly similar to the local end, enabling dual-end authentication.

This paper employs a zero-knowledge proof based on the Sigma Protocol for conduct-
ing a Comparative Similarity Index (CSI) matching. Initially, the collected CSI information
is quantified into a binary CSI vector. This binary vector serves as a representation of
the CSI, and the similarity matching involves comparing the binary vectors held by both
parties, leading to the determination of their binary vector intersection. Subsequently, by
constructing an n-th order polynomial to express the binary vector, the similarity matching
of binary vectors is transformed into the intersection operation of an n-th order polynomial.
The intersection calculation is achieved by verifying the polynomial’s zero points. This
process substantiates the high degree of similarity between the binary vectors held by both
parties, thereby facilitating the mutual authentication of the communicating entities.

For a binary string s owned by the communication party Alice, it is divided into n
segments of a fixed length, represented as (s1, . . . , sn). The prover wishes to convince the
verifier of possessing the secret vector s = (s1, . . . , sn) without disclosing any information.
Similarly, after preprocessing, Bob obtains the set s = (s′1, . . . , s′n).
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In the first place, we construct an n-degree polynomial p(x) = (x − 1 · s1), . . . ,
(x − n · sn) = xn + an−1xn−1 + · · · + a1x + a0. Clearly, the polynomial evaluates to 0
only when the input x = i · si(i ∈ [1, n]). This property can be utilized for a prover to
verify their possession of secrets without disclosing these secret values (including their
corresponding values in the group field) to others. Based on this idea, the problem of
similarity comparison can be transformed into a zero-knowledge similarity comparison
problem: the prover needs to prove that they possess a polynomial p(x), and the zeros of
this polynomial can be verified by the verifier.

The similarity comparison relation is defined as follows:

R =

{
ck← Setup

(
1λ

)
; Pi ∈ G; ai, ri, x ∈ Z∗q ∑n

i=1 P(
si)

i = Comck(0; r′)
Pi = Comck(ai; ri)(i = 0, . . . , n) where s ∈ 1 · s1, . . . , n · sn

}
(14)

Firstly, we define the variables required for the algorithmic flow description, based
on the discrete logarithm problem. Let G be a cyclic group of order q, where q is a prime
number. The generators of this group are denoted as g and h, both belonging to G. For an
element x in the multiplicative group of q-order positive integers Z∗q , it holds that gx ∈ G.
Boldface notation such as a is used to represent vectors, for instance, a = (a0, . . . , an)
denotes a vector composed of n numerical values. The prover can generate a corresponding
Pederson commitment for their secret a, denoted as Com(a; r), which can be succinctly
expressed as Com(a; r) = ga · hr.

The prover initially generates, for each secret value ai, corresponding random numbers
ri, ui, and vi. The commitments Ai = Comck(ai; ui) and Ri = Comck(ri; vi) are computed
and disclosed to the verifier. Subsequently, the verifier generates a random number x
as the challenge value for the aforementioned commitments. The prover, in response
to the verifier’s challenge x, computes fi = ai · x + ri and zi = ui · x + vi. Finally, the
verifier performs validation on the proof, checking if the prover possesses the secret vector
a = (a0, . . . , an) and confirming whether the subchannel characteristics are mutual. If
the result corresponds to a commitment of 0 in the form Comck(0; u′), then the currently
computed value s′j is considered a shared secret between the communicating parties and is
utilized in generating the final channel key.

Channel Key Computation

After the application of the feature extraction algorithm to the CSI information, a set of
binary sequences is obtained. It is ensured that a significant portion of the binary sequences
held by both Alice and Bob exhibit similarity, as illustrated in Figure 1.

Figure 1. Quantized and segmented binary feature sequences.

In the proposed scheme, the sequence is divided into segments, and each segment is
treated as a secret value si for verification purposes. The verifier only needs to sequentially
compute the verification for each segmented secret value s′j. If the equality holds, it can
be inferred that the corresponding segments in the binary sequences of the communicat-
ing parties are identical, thereby establishing a common element. Ultimately, the verifier
obtains the intersection of the secret value vectors s and s′, denoted as s ∩ s′. This intersec-
tion sequence serves as the shared channel key for the mutual authentication in the key
negotiation process.
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4.3. Non-Interactive Key Similarity Comparison

The aforementioned similarity comparison is observed to be interactive. In this context,
apart from the commitment value initially transmitted, a challenge–response process must
be completed between the prover and the verifier to execute the entire procedure. The
interactive nature of this process may result in an increased execution time and potential
resource waste or even incompatibility when deployed in certain protocols. This paper
leverages the Fiat–Shamir transformation to convert the aforementioned three-step inter-
active similarity comparison into a non-interactive process requiring only one step. The
principle of this transformation involves utilizing the hash value of the interactive data
as the challenge for the second step of the Sigma Protocol and using this challenge value
to compute the response in the third step. Finally, the commitment and response are sent
together to the verifier.

Upon applying the Fiat–Shamir transformation, the non-interactive similarity compar-
ison process is outlined as follows:

1. In the execution of the aforementioned Protocol 1, the prover randomly generates
three sets of random vectors (r0, . . . , rn), (u0, . . . , un), and (v0, . . . , vn), and produces
the corresponding commitment values (A0, . . . , An, R0, . . . , Rn).

2. The prover generates a challenge value for the data to be sent, where x = H(ck, A0, . . . ,
An, R0, . . . , Rn) and H(·) denotes a hash function.

3. In accordance with the challenge value x, the secret vector a = (a0, . . . , an), random
value vector r = (r0, . . . , rn), u = (u0, . . . , un), and v = (v0, . . . , vn). The prover com-
putes the corresponding response vectors f = ( f0, . . . , fn−1) and z = (z0, . . . , zn−1).

4. The final prover will transmit the proof, denoted as Proo f = (x, A, R, f , z), to the
verifier in a single instance.

5. Implementation
5.1. Locality-Sensitive Hashing

We employ the locality-sensitive hashing (LSH) algorithm to process bit sequences.
LSH is an algorithm designed for similarity search in massive datasets. Essentially, LSH
is a technique for data dimensionality reduction, aiming to map data points from the
original high-dimensional space to a lower-dimensional space while attempting to preserve
their similarity.

The LSH algorithm consists of two main parts. In the first part, we utilize the SimHash
algorithm for data dimensionality reduction. It involves merging long bit sequences
through weighted combination, merging, and dimensionality reduction steps, resulting in
shorter bit strings. In the second part, we apply LSH to locally search for matching pairs
among the short bit strings. The bit strings are hashed into hash buckets after being split,
ultimately generating a unique identity for terminal devices.

The SimHash algorithm is primarily employed for text similarity detection, using
Hamming distance to calculate similarity, making it suitable for the dimensionality reduc-
tion of long bit sequences. In the classical SimHash algorithm, text needs to be hashed
and transformed into a binary string of 0s and 1s that can be measured using Hamming
distance. The m = 6 SimHash algorithm is illustrated in the accompanying Figure 2.
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Figure 2. m = 6 SimHash algorithm.

The SimHash algorithm employed in this experiment is primarily divided into the
following components:

1. Tokenization: The long bit sequence is segmented into multiple equidistant feature
strings, each with a length of m bits.

2. Weighting: Each equidistant feature string is assigned a weight, based on its impor-
tance. Additionally, each bit in the feature string, whether 1 or 0, is transformed.
For instance, for a feature string of length 6 bits, the assigned weight is 4, and the
weighted representation becomes 4 −4 −4 4 −4 4.

3. Merging: The weighted feature strings are cumulatively added to obtain a final
sequence string.

4. Dimensionality reduction: The merged sequence string undergoes dimensionality
reduction. If a particular position in the sequence string is greater than 0, it is set to 1;
otherwise, it is set to 0. The output is the signature corresponding to the long bit se-
quence. Multiple signatures are combined to produce the SimHash signature matrix.

After obtaining the SimHash signature, the locality-sensitive hashing (LSH) algorithm
is employed to hash the signature matrix, aggregating the results into hash buckets. This
facilitates local searching for matching pairs, with the hash bucket signature serving
as the final identifier. During the hashing process, the algorithm further reduces the
dimensionality of the input data, enabling unique and stable identity outputs for inputs
with minor variations. The locality-sensitive hashing algorithm is depicted in Figure 3.

The specific steps of the locality-sensitive hashing (LSH) algorithm are as follows:

1. Initially, the signatures in the previously obtained signature matrix are divided into
different bands, with each band containing a fixed number of rows.

2. Each band is hashed into a distinct hash bucket.
3. Identification is applied to each hash bucket, combining the identifiers of the buckets

where each segment of the signature resides. The final result represents the output of
the LSH algorithm.

These steps facilitate the segmentation of signatures into bands, followed by the hash-
ing of each band into separate hash buckets. Subsequently, the identification of each hash
bucket is performed, combining the identifiers of the buckets associated with each segment
of the signature. The ultimate outcome constitutes the output of the LSH algorithm.



Electronics 2024, 13, 984 13 of 20

Figure 3. The locality-sensitive hashing algorithm.

5.2. CSI-Based IBE for IoT

We let k be the security parameter given to the setup algorithm.
Setup: (1) Choose a large prime p for some prime q > 3. Let E be the elliptic curve

defined by ·y2 = x3 + 1· over ·Fp. Choose an arbitrary P ∈ E/Fp· of order q. (2) Pick a
random s ∈ Z∗q and set Ppub = sP. (3) Choose a cryptographic hash function H : Fp2 →
{0, 1}n for some n. Choose a cryptographic hash function G : {0, 1}∗ → Fp.

The message space is M = 0, 1n. The ciphertext space is C = E/Fp × {0, 1}n. The
system parameters are < p, n, P, Ppub, G, H >. The master key is s ∈ Z∗q .

Extract: For a given string ID ∈ {0, 1}∗, the algorithm builds a private key d as
follows: (1) Map the ID to a point QI D ∈ E/Fp of order q. (2) Set the private key dID to be
dID = sQID where s is the master key.

In the first step, we need to initially use the CSI Acquisition module in Section 3 to
obtain the physical state information features of the device. Since in the actual environment
these physical state information features are always fluctuating, it is necessary to use LSH
to transform the steady-state features of the device into the same hash. Only in this way can
they be used as identity identifiers in IBE, serving as public keys externally. In this process,
it is also necessary to utilize the non-interactive channel feature similarity comparison in
Section 4 to prove the effectiveness of mapping feature values to hash values through LSH
and to maintain the privacy of the device’s physical state features.

Encrypt: To encrypt m ∈ M under the public key ID, take the following steps: map
the ID into a point QID ∈ E/Fp of order q. Then, choose a random r ∈ Zq, and set the
ciphertext to be

C =< rP, m⊕ H(gr
ID) > (15)

where gID = ê(QID, Ppub) ∈ Fp2 .
Decrypt: Let C = (U, V) be a ciphertext encrypted using the public key ID. If

U ∈ E/Fp is not a point of order q, reject the ciphertext. Otherwise, to decrypt C using the
private key dID, compute the following:
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V ⊕ H(ê(dID.U)) = m (16)

6. Implementation and Experiment
6.1. Construction of a Key Exchange Module Testing System
6.1.1. Testing Environment

The testing environment for channel key negotiation based on channel fingerprints
was established with distinct communication characteristics, namely, line-of-sight (LOS)
and non-line-of-sight (NLOS) characteristics, as illustrated in Figures 4 and 5, respectively.

1. In the NLOS scenario, as illustrated in Figure 4, the communication devices of the
two parties are positioned at distances of 3 m, 4 m, and 5 m, with the attacker at the
closest proximity of 0.1 m.

2. In the LOS scenario illustrated in Figure 5, the devices of the communicating parties
are situated at distances of 25 cm, 50 cm, and 75 cm, with the attacker positioned at a
minimum proximity of 0.1 m.

Figure 4. Illustration of key negotiation module testing scenario (non-line of sight).

(a) A and B are 25 cm apart (b) A and B are 50 cm apart (c) A and B are 75 cm apart
Figure 5. Illustrative diagram of key exchange module testing scenario (within line of sight).

6.1.2. Testing Apparatus

In the channel key negotiation module testing, three Raspberry Pi devices (all Rasp-
berry Pi 3 Model B+) were employed as the testing equipment, with the device information
outlined in Table 1. The three Raspberry Pi devices assumed the roles of Alice (legitimate
communication device (1)), Bob (legitimate communication device (2)), and Eve (illegiti-
mate communication device, i.e., the attacker) during the testing. Specifically, Alice and
Bob functioned as legitimate communicating parties, executing normal access requests,
channel feature collection, identity authentication, key negotiation, and communication
processes. Meanwhile, Eve played the role of an attacker, engaging in man-in-the-middle
attacks and replay attacks during the identity authentication and key negotiation stages
conducted by Alice and Bob.
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Table 1. Device information for channel key negotiation module testing.

No. Model of Device Name of Device Identity of Device

1 Raspberry Pi 3 Model B+ Alice Legal equipment

2 Raspberry Pi 3 Model B+ Bob Legal equipment

3 Raspberry Pi 3 Model B+ Eve Attacker

6.1.3. Software and Hardware Parameters

All Raspberry Pi models utilized in this paper are Raspberry Pi 3 Model B+. The
Wi-Fi chipset integrated into all Raspberry Pi devices is identified as BCM43455C0. The
antennas employed for both transmission and reception are 2.4 GHz single-frequency
antennas with a gain of 6 dBi. All experimental tests are conducted based on the wireless
communication protocol IEEE 802.11n, utilizing channels 1–14 with a center frequency
range of 2.412–2.472 GHz and a bandwidth of 20 MHz. The firmware version installed on
the Wi-Fi chipset is 7_45_189, and the operating system deployed on the Raspberry Pi is
the Raspberry Pi OS, with a kernel version of 4.19.

The software parameters for the LOS and NLOS test environments of the channel key
negotiation module are configured as presented in Tables 2 and 3, respectively.

Table 2. Parameter configuration for non-line-of-sight indoor testing software.

No. Communication
Distance (m)

Minimum Distance
to the Supplier (cm)

Packet Transmission
Rate (pkts/s)

Number of Transmitted
Packets (pkts)

Number of Channel
Key Negotiation Iterations

1 3 10 500 50,000 5000

2 4 10 500 50,000 5000

3 5 10 500 50,000 5000

Table 3. Parameter configuration for line-of-sight testing software.

No. Communication
Distance (m)

Minimum Distance
to the Supplier (cm)

Packet Transmission
Rate (pkts/s)

Number of
Transmitted Packets (pkts)

Number of Channel
Key Negotiation Iterations

1 25 10 500 20,000 2000

2 50 10 500 20,000 2000

3 75 10 500 20,000 2000

After experimental verification, it has been demonstrated that there is a significant dis-
parity in the modulus results between Alice and Bob compared to those of Eve. This obser-
vation elucidates the efficacy of the modulus operation in enhancing the distinguishability
between attackers and legitimate devices. Following the modulus operation, the proportion
of data variations across the three sets remains within the anticipated and reasonable range.
Subsequent quantization processing further amplifies the observed distinctions.

6.2. OFDM and CSI
6.2.1. Testing Parameters

This paper selected a wireless network with a bandwidth of 20 MHz and 64 OFDM
subcarriers, utilizing a wireless terminal with a single transmitter and receiver antenna
as a sample. Upon receiving data packets, the receiver calculated the CSI using a channel
estimation method, resulting in a matrix of size 1 × 1 × 64. In the long training sequence,
the amplitudes of 12 subcarriers are zero, numbered −32, −31, −30, −29, −28, −27, 0, 27,
28, 29, 30, and 31. This implies that the CSI data on these subcarriers is not obtained through
channel estimation and is not associated with the wireless channel. After removing these
data points, a matrix of size 1 × 1 × 52, denoted as the complex sequence, was obtained,
where each value corresponds to the amplitude and phase of a subcarrier.

In this scenario, if the above sequence is directly used for training and recognition,
considering factors such as hardware errors and environmental interference, there may be
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outliers in the sample sequence, leading to the poor recognition performance of the trained
model. Therefore, it is necessary to perform outlier handling, normalization, and smoothing
on the obtained amplitude and phase sequences. This process is further explained in the
following section, which discusses the preprocessing of CSI data.

6.2.2. Functional System Testing

This paper employed various wireless IoT devices of different types and brands,
including Raspberry Pi, wireless cameras, smart lights, and smart plugs. These devices
were connected to a router serving as an access point (AP) to create a simulated IoT network.
All these IoT devices operated in the 2.4 GHz frequency band with a bandwidth of 20 MHz,
and their communication data packets were captured. Nexmon was chosen as the CSI
extraction tool because it offers support for larger bandwidths and a higher number of
subcarriers compared to other tools.

This paper continuously recorded the changes in CSI amplitude curves for different IoT
devices under four interference conditions, including scenarios with no human movement
and individuals walking back and forth from distances of 1 m, 2 m, and 3 m from the
terminal. A selection of typical IoT devices was chosen, and the CSI information varied
among different devices. Even under interference conditions, the measured CSI amplitude
curves maintained a similar shape, with an overall shift in amplitude occurring across
all subcarriers. Further experiments indicated that, after processing, the differences in
extracted device identities under various interference conditions were within the tolerance
range of our algorithm.

6.3. CSI and LSH

Due to the inherent noise in the channel, signals inevitably degrade during transmis-
sion. The user identity used for encryption and decryption should be accurate. Therefore,
channel state information (CSI) cannot be directly used as a user identity. Only through
processing with locality-sensitive hashing (LSH), where the same segment of signal falls
into the same hash bucket after stabilization, can CSI be used as a means of user identifica-
tion. As illustrated in Figure 6, we transmitted 100 identical signal segments repeatedly. To
simplify the problem, we calculate the average of the signal sequence in both amplitude
and frequency dimensions. However, due to the inherent noise in the channel, the signals
received by the actual receiver exhibit subtle differences in amplitude and frequency. These
differences, amplified by the avalanche effect of cryptographic hash functions, result in
completely different identity representations. Therefore, it is necessary to employ LSH to
ensure that these 100 signal segments stably fall into the same hash bucket before they can
be used for identity generation.
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Figure 6. Stablity of LSH.

7. Discussion
7.1. Potential Attack and Security

In this section, we will discuss potential attacks that the methods described in this
paper may face, as well as the security of the proposed solution.

7.1.1. Man-in-the-Middle Attack

The man-in-the-middle attack refers to the attacker inserting themselves between
communicating parties to intercept or manipulate the information exchanged. Attackers
can impersonate user identities through man-in-the-middle attacks. However, in the
proposed solution in this paper, user identities rely on the physical characteristics of the
user’s device, specifically constructed through channel state information. Unlike traditional
approaches that depend on specific message information submitted by users, the attacker
cannot mimic the user’s channel environment. Therefore, they are unable to impersonate
users through man-in-the-middle attacks.

7.1.2. Replay Attack

The replay attack refers to the act of an attacker retransmitting previously intercepted
communication data without modification, with the aim of deceiving the system to achieve
unauthorized access or execute certain unauthorized operations. In this paper, on one hand,
similar to a man-in-the-middle attack, attackers cannot mimic the channel state in which
the user is located. On the other hand, in zero-knowledge proofs, a random freshness
number is used as secret information. Therefore, attempting to impersonate a user through
replaying messages cannot pass the zero-knowledge verification. Thus, in the discussed
solution in this paper, it is not possible to impersonate a user through a replay attack.

7.1.3. Brute-Force Attack

The brute-force attack is a method of password cracking where attackers attempt all
possible password combinations until the correct one is found. This method does not rely
on pre-obtained information but systematically tries every possible password and is often
automated using computer programs. It is a relatively straightforward but time-consuming
attack, and its success typically depends on the strength and complexity of the password.
In this paper, due to the difficulty of the discrete logarithm problem on elliptic curves,
brute-force attacks are computationally infeasible. Meanwhile, attackers not only need to
brute-force crack passwords but also attempt to brute-force crack the user’s channel state.
The attacker can only be successful if they find a channel that is equivalent to the one in
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which the user’s device is located. However, the state of the channel itself is uncertain,
making it impossible for attackers to brute-force crack the user’s channel state.

7.2. Challenges
7.2.1. Channel Time Variability

Channel time variability refers to the phenomenon where the characteristics of a
communication channel change over time. In wireless communication environments,
factors such as multipath propagation and the movement of obstacles can cause variations
in the channel. This time variability may result in signal fading, changes in multipath
effects, and even a distortion of the channel. Due to the existence of channel time variability,
the user identity generated based on CSI in this paper is also subject to time variations.
Therefore, to ensure the effectiveness of the system, periodic updates of the channel state
and user identity are necessary. This introduces an additional communication overhead
and may reduce the system’s availability. Addressing the time variability of the channel for
efficient real-time updates is a direction for future research.

7.2.2. Location-Dependent Channel State

The location-dependent channel state refers to the characteristics of a communication
channel that are influenced by the spatial position of communication devices, capturing
how the channel changes based on the location and movement of the devices involved.
The communication channel state describes the variations in the signal during the trans-
mission process, encompassing changes such as fading, delay, and other effects caused
by propagation paths, multipath effects, obstacles, and other influences. The position,
movement, and environmental changes of devices can all have an impact on the channel
state. Therefore, the solution discussed in this paper has limitations for general discussions
about wireless mobile devices. The devices discussed in this paper are also fixed devices
in specific scenarios. In Figure 7, we demonstrate the effect of user identity recognition
when the device undergoes a position shift. We recorded the successful recovered number
at the red cross, and it can be observed that after deviating a certain distance and angle, the
device becomes unacceptable. The location dependency of the channel is also one of the
directions for future research, which holds significant practical value for applications in
wireless scenarios.

Figure 7. Location-dependent channel state and the number of successfully recovered IDs.



Electronics 2024, 13, 984 19 of 20

8. Conclusions

This paper introduces an innovative secure communication solution that leverages
wireless channel state information (CSI) features from IoT devices for generating device
identities. Given the inherent instability of wireless channels, the CSI features are in-
herently fuzzy and subject to time variations. To address this, we employ the locally
sensitive hashing (LSH) algorithm, ensuring the stability of the generated identity within
a dynamically changing wireless channel environment. Additionally, zero-knowledge
proofs are incorporated to validate the authenticity and effectiveness of the generated
identity. Subsequently, the identity produced through this approach is integrated into an
identity-based encryption (IBE) communication scheme. This scheme encompasses the
fuzzy extraction of channel state information from IoT devices, stable identity extraction
for fuzzy IoT devices using LSH, and the application of zero-knowledge proofs to ensure
the authenticity of the generated identity. The resultant identity serves as the basis for
identity-based encryption, constructing the device’s public key, and facilitating confidential
communication among devices.
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