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Abstract: Cascading failures are a major threat to interconnected systems, such as electrical power
transmission networks. Typically, approaches proposed for devising optimized control strategies
are demonstrated with reference to a few test systems of reference (IEEE systems). However, this
limits the robustness of the proposed strategies with respect to different power grid structures.
Recently, this issue has been addressed by considering synthetic networks randomly generated for
mimicking power transmission grids’ characteristics. These networks can be used for investigating
the vulnerability of power networks to cascading failures. In this work, we propose to apply a
recent algorithm for sampling random power grid topologies with realistic electrical parameters
and further extend it to the random allocation of generation and load. Integration with a realistic
cascade simulation tool, then, allows us to perform thorough statistical analyses of power grids
with respect to their cascading failure behavior, thus offering a powerful tool for identifying the
strengths and weaknesses of different grid classes. New metrics for ranking the control and mitigation
effort requirements of individual cascade scenarios and/or of grid configurations are defined and
computed. Finally, genetic algorithms are used to identify strategies to improve the robustness of
existing power networks.

Keywords: random power transmission grids; cascading failures; control and mitigation measures

1. Introduction

The reliable and safe operation of power transmission grids is of paramount impor-
tance for the prosperity of modern society. Power outages and interruptions in the U.S.
have been estimated to cost around 150 billion dollars per year. The major blackout of
Northeast America in 2003 resulted, alone, in a USD 6 billion economic loss for the re-
gion [1,2]. Moreover, the social consequences of power interruptions, such as those related
to transportation, food storage and credit card operations, just to mention a few, are no less
serious than economic consequences [3].

Electrical power blackouts are caused by cascading failures, usually initiated by the
failure of a limited set of components, often caused, in turn, by external events such as
lightning, ice, and other extreme weather conditions. Other components failures and
disconnections may then propagate across the transmission network, due to the following
power load re-distribution among the still-functioning components, which may pass their
design load capacities and fail or be disconnected to avoid further severe damage.

Various research efforts have focused on the risk of cascading failures in power trans-
mission networks, analyzing temporal series of blackout data [4] to build probabilistic
distributions by developing simulation models to describe cascade dynamics [5–8] and by
defining and calculating quantitative indicators for identifying system vulnerabilities to
cascading failures [9,10].
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These efforts are also of relevance for the successful development of the new concept
of the “smart grid” [3], which involves the evolution of the current centralized power
generation structures into distributed ones that are interconnected via a properly designed
and operated information and communication network (ICT) for improving its observ-
ability and controllability [11]. Indeed, the interconnection of the power network to a fast
and reliable ICT network allows, in principle, thorough online monitoring of the system
with improved coordination of the control and protection systems; automated control
strategies may then promptly detect and isolate small contingencies before they give rise to
catastrophic cascading failures, or, at the very least, they may contribute to the effective
mitigation of their damage [12–14]. Understanding of the dynamics of power system
cascading failures is essential for devising more reliable, safe, and economically sound
infrastructure designs to improve mitigation and control strategies and to provide more
accurate risk assessments. The complexity of the cascading failure process in an electrical
power grid is mainly due to the concurrence of the physics of power flows and discrete
stochastic network topology reconfigurations, as components become disconnected from
the grid as a result of the failure cascade.

For cascading failure analysis, the power transmission network is typically modeled
as a graph G = (V, E), where V is the set of vertices (nodes) representing generators,
transmission, and load buses and E is the set of edges (arcs) representing the power lines
linking the network components. Usually, it is assumed that only elements belonging
to one of the sets V or E are subjected to failure; consequently, the analyses are carried
out under the assumptions of node removals [7,15–17] or edge removals [5,6,10,18]. In
this work, we restrict our attention to only edge removals, since power transmission line
failures are more common than bus failures [19].

Under this graph-based framework, cascading failure models can be relatively simple,
conceptually. First, a capacity Cl is a assigned to each edge l ∈, to represent the maximum
amount of power flow Fl that can safely flow through line l. Then, a single edge is assumed
to fail and it is removed from the network, giving rise to a power redistribution transient
according to given rules. During the transient, whenever l Fl > Cl in a line, such a line can
fail with probability p. When a line fails, it is removed from the set E, thus further modifying
the topology of the network; then, the power flowing in the network is redistributed again,
possibly giving rise to further failures or disconnections.

Typically, two approaches are considered for cascading failure modeling: (i) complex
network (abstract) models and (ii) realistic power flow models considering alternate current
(AC) or linearized direct current (DC) schemes.

In the first kind of model, such as the Motter–Lai model [7], a generic flow unit is
assumed to travel along the shortest paths joining pairs of nodes, without specification
and consideration of electrical parameters; extensions of this model can be found, for
example, in Ref. [6], where the properties of network connection efficiency are introduced
for evaluating the flows; in Ref. [10], where the exceeding loads are propagated on the
neighboring components by a simple topological re-dispatch rule; and in Ref. [20], where
a random flow model is proposed. Although simple and computationally not expensive,
these models could be too far from the real physical behavior of power systems [21].
Nevertheless, they have been applied to analyze a broad range of networks ranging from
randomly generated networks to some real power transmission networks [15,17].

The second class of models aims to overcome the limitations of complex network
models by considering a more realistic electrical network model whose power flows
are governed by Kirchoff laws. Then, a system of nonlinear equations describing the
physics of the alternate current (AC) power flow can be derived [22]. Under normal
operating conditions, a solution of the system can be obtained by means of the Newton–
Raphson method. However, under extremely dynamic operating conditions, such as those
arising in cascading failures, the Newton–Rapshon approach may be too slow or may
even fail to converge, thus hampering any analysis requiring repeated network model
evaluations (e.g., for probabilistic risk assessment, uncertainty propagation, or sensitivity
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analysis). For these reasons, often, the linearized version of the AC power flow is preferred,
which assumes a direct current (DC) model and other simplifying assumptions [22]. The
major problem related to the use of this kind of model is that the electrical data of actual
power networks, such as generator and load locations, transformer voltage magnitudes,
and line impedances and capacities, are available to the scientific community only for
a handful of systems, e.g., IEEE test systems (the Power System Test Archive, UWEE).
This fact has limited the application of cascading failure models to a restricted set of case
studies with very specific topologies and electrical parameters, significantly hindering the
generality of the results obtained and of the conclusions drawn. These limitations should
not be underestimated, since many researchers have already pointed out the importance
of the topological configuration and electrical properties in the assessment of the network
behavior with respect to cascading failure [9,15,23] and voltage stability [24]. Moreover,
many of the control and mitigation algorithms presented in the literature [12–14] are
developed on the basis of the power flow models discussed above; thus, in general, their
performances have been tested on the same restricted set of case studies, leaving many
unanswered questions about their robustness and efficacy in different operating contexts.

The first objective of this work is that of overcoming some of the limitations of the
models described above by exploiting the recently proposed algorithm for generating
random artificial power networks characterized by topological and electrical properties in
statistical agreement with those of real power transmission systems [25]. To this end, we
first extend the algorithm of Ref. [25] in order to be able to also sample the power supply
and demand locations and magnitudes. The extension allows for further enlargement of
the space of grid configurations available for statistical analysis and provides a means for
possibly capturing the role played by the uncertain distributions of the loads and gener-
ators, which are mainly due to the continuous shift towards the increasingly distributed
generation schemes of the new-generation power grids [3]. Note that the random networks
generated with the algorithm in Ref. [25] do not in general fulfill the N − 1 network design
basic criterion, which requires that at least two line failures are necessary for a cascading
failure event to be triggered [26]. Then, the algorithm is coupled to a model of cascading
failures based on a DC power flow approximation and relying on a minimal, proportional
re-dispatch control scheme, which maintains the power balance in each network island
formed during the cascades. A dynamic power inertia model taken from Ref. [12] is also
introduced to realistically account for the temporal evolution of the cascading failures.

The proposed computational model allows us to perform statistical analyses on differ-
ent families of power grids with respect to their cascading failure behaviors.

An additional original contribution of this work, derived from the computer simula-
tions generated with the tool described above, is the definition of new metrics for ranking
the control and mitigation effort requirement of individual accidental scenarios and/or
of the power grid configurations with respect to cascading failures. In order to do so, the
major cascade consequences—i.e., the final load shedding, the number of lines discon-
nected due to overloads, and the cascade durations—are properly accounted for in the
proposed definitions.

Finally, a genetic algorithm-based procedure aiming to optimize the proposed metrics
is proposed in order to identify possible strategies for improving the robustness of an
existing power network with respect to cascading failures.

The proposed computational approach is demonstrated with regard to random power
transmission networks derived from the IEEE14 and the IEEE118 reference grids (Power
System Test Archive, UWEE).

The paper is structured as follows. Section 2 reviews some of the topological properties
of the real data available on power transmission networks and briefly explains the RT-
nestedSW algorithm of Ref. [25]; Section 3 recalls the DC power flow model, illustrates
the details of the cascading failure model employed throughout the whole work, and
introduces the standard measures usually employed to quantify cascading failure damage;
Section 4 illustrates the simulation results and introduces the new metrics for the cascade
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scenarios and the sampled networks; and finally, Section 5 concludes the work and outlines
possible future research issues.

2. Random Generation of Power Grid Configurations

Previous works on modeling power transmission networks have pointed out the
need to generate random power grid test cases of scalable sizes. A few solutions have
been proposed for this purpose. For example, Ref. [27] proposed ring-like structures to
study the pattern and the velocity of contingency propagation, and Ref. [18] used a tree
structure network to study critical points and detect transition points in power system
blackouts. However, both types of random network generators neither accurately reflect
the topologies of real power transmission grids nor account for the electrical properties
of the networks (e.g., loads, generation, and impedances), which together determine the
behavior of a power transmission system including the dynamic propagation of oscillations
and disturbances in the grid. The recent RT-nested Small World (RT-nestedSW) algorithm
introduced by Ref. [25] significantly overcomes both the topological and the electrical
deficiencies of previous approaches.

In this section, we recall the main features of the RT-nestedSW algorithm introduced
by Ref. [25] for randomly generating plausible realistic power grid topologies, and we also
explain the extension we made in order to be able to generate load and generator schemes
with random positions and magnitudes. For further details, the interested reader is referred
to Ref. [25].

From a purely topological point of view, a power network can be represented by an
undirected graph G = (V, E), with |V| = N nodes representing the substations in the
system (i.e., generators, loads and transmission nodes) and |E| = NL links representing the
transmission lines interconnecting the substations. Often, the topologies of power grids are
considered small-world networks [28]. However, although real power network systems
bear some similarities with small-world networks, in Ref. [25], it was shown that they have
significantly better connectivity scaling laws. In fact, the average nodal degree < k > is
basically constant and does not scale with the network size, as in the case of small-world
grids [28]. A detailed analysis of the topological properties of real power transmission
networks is out of the scope of this work; for more complete studies of these systems and
their relationships with standard random graph models, the interested reader is referred
to [25,29,30].

In order to be able to reproduce the random wiring of a power transmission network,
Ref. [25] proposed a new approach based on nesting several small-world sub-networks
into a regular lattice. By doing so, it is possible to generate networks characterized by a
connectivity lying between those of one-dimensional and two-dimensional lattices with
better scaling properties than the standard small-world model. The RT-nested SW algorithm
proceeds in a hierarchical way for generating random power grids: first, it produces
connected sub-networks, and then it interconnects the sub-networks by means of lattice
connections. Finally, it generates line impedances by sampling from proper probability
distributions estimated on the basis of the available data.

The generation of the sub-networks stems from an algorithm different from the clas-
sical one proposed by Ref. [28], with differences lying mainly on the link selection and
rewiring procedures. With regard to the link selection, instead of generating links by con-
necting the most immediate <k>

2 neighboring nodes to form a regular lattice, the RT-nested
SW algorithm selects a number k (sampled from a geometric distribution with an expected
value < k >) of links at random from a local neighborhood of Nd0, with d0 being a properly
defined distance threshold. The local neighborhood for node i is defined as the group
of nodes with a mutual node index difference less than d0: N(i)

d0 = {j; |j − i| < d0}. With
regard to link rewiring, in Ref. [25], the authors exploited the apparent correlation between
the rewires for building a Markov chain with transition probabilities (α, β) in order to select
clusters of nodes and, therefore, groups of links to be rewired. After the Markov chain
is run N times, clusters of nodes are obtained, which are labeled “1” if they have to be
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rewired or “0” if not. Then, by a specific probability qrw, some links are selected to rewire
from all the links originating from each “1” cluster of nodes, and the corresponding local
links are rewired to outside “1” clusters.

In the second step of the algorithm, lattice connections are sampled from neighboring
sub-networks to form the main connected network.

Finally, line impedances are randomly generated from a heavy-tailed distribution
properly estimated from the data available. The NL realizations are then sorted by magni-
tude in ascending order and grouped into local links, rewire links, and lattice connections,
according to the range of values they belong to, as shown in Figure 1. The ranges are
properly defined on the basis of physical considerations. The line impedances in each
interval are then assigned randomly to the corresponding group of links in the topology.
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It is important to underline that the data used to estimate the distributions adopted in
the above procedure are those related to a single, specific real power transmission network.
The RT-nested SW algorithm, then, allows us to generate plausible networks that are
statistically similar to the grid chosen as the reference. The work of Ref. [25] also provides
the statistical tools needed to extract the required distributions from the reference network.

In particular, in this work, we aim to obtain transmission grids similar to the historical
IEEE14 and IEEE118 test cases (from the UWEE Power System Test Case Archive). In
order to do so, we fix the number of generators (NG) equal to the number of buses in the
IEEE system under consideration, which have non-zero power generation ( PGIEEE

i > 0
)

.
Moreover, the nominal power production vector PG, where each component PGi is the
power generated by node i in our network, is a simple random permutation of PGIEEE,
the nominal power production vector for the IEEE system under consideration. The total
power demand PDtot = ∑NG

i=1 PGi = PGtot is, then, randomly allocated among the nodes
which have PGi = 0, so that the power balance constraint within the network is satisfied,
in agreement with the DC power flow modeling of the system [22]:

∑NG
i=1 PGi = ∑ND

j=1 PDj (1)

The portion of PDtot to be assigned to node j with PGj = 0 is sampled from a
symmetric Dirichlet distribution in the following way:

PDj

PDtot
∼ D(1)

where 1 is a ND = N − NG dimensional vector of all ones.
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The maximum power that each generator can produce is assumed to be a fraction ρ
larger than nominal:

PMAXi = PGi ∗ (1 + ρ) i = 1, 2 . . . NG (2)

where PGi is the power produced by generator i. The line capacities Cl , l ∈ E are assigned
by the following procedure:

1. The power produced by each generator is assumed to be at its maximum: PGi =
PMAXi for each i = 1, 2, . . . , NG; accordingly, PDj is increased by the same fraction
for each j = 1, 2, . . . , ND in order for (1) to be satisfied.

2. The corresponding power Fl flowing in each line l ∈ E of the transmission network is
computed by means of a DC power flow model with no losses, solved by the Matlab
function MATPOWER [31].

3. The line capacities Cl are then assigned as follows:

Cl = Fl(1 + ε) ∀l ∈ E (3)

where ε is a parameter playing the same role of ρ for the power generation. Alternatively,
different strategies for more realistically assigning both the maximum generator power
and the line capacities could in principle be followed, based, for example, on sampling
values of both ρ and ε from properly devised probability distributions or on calculating
them on the basis of physical laws and/or engineering practices. However, we believe
this is outside the scope of the present work, which is mainly methodological, and that the
assumptions made are sufficient to capture the average properties of cascading failures in
power transmission networks. At the end of this procedure, we obtain a “topologically and
electrically” characterized power grid, which can be used for simulating cascading failures
within a DC power flow approximation of the power network behavior.

In what follows, the symbol G will be used to denote the complete power transmission
network configuration, i.e., its network topology, the loads, the generators, and the link
impedances and capacities.

3. Cascading Failure Model

The procedure adopted for simulating cascading failures on a random network G0 = G
generated by the algorithm described above bears some similarities with that employed in
Ref. [12] (see Algorithm 1). An initial failure in line l ∈ E, potentially triggering the cascade,
is chosen. At step 1 of Algorithm 1, the algorithm computes the new power flows in the
transmission network G1 = (V, E − {l}), i.e., the initial network without line l. Then, each
iteration of the FOR loop in Algorithm 1 corresponds to a line disconnection event in the
cascading failure simulation, which occurs whenever a line becomes overloaded. At step 2,
the algorithm re-dispatches the loads and the generation in order to keep all the possible
islands in the network balanced; in fact, the islands form when the line failures break
the original network G in multiple connected components, which might have an excess
in power supply or demand. Recall that in order to compute the DC power flow, each
connected component needs to be balanced in terms of power supply and demand. The
re-dispatch algorithm adopted in this work is described in Appendix A. At step 3, the new
power flows are computed and, at step 4, a line outage model (described in Appendix A)
accounting for the dynamic evolution of the power flows within the network lines is
adopted to identify the next disconnected lines (if any). At step 5, the network configuration
is updated. The procedure is iterated until lines become overloaded; otherwise, the cascade
simulation stops.
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Algorithm 1. Procedure adopted for simulating cascading failures on a random network.

INPUTS: Power network G0 = G and initial line failure l ∈ E
1. G1 = (V, E − {l}), compute vector F1 of power flows in G1

FOR r = 1, 2 . . . DO
2. Adjust load and generation (re-dispatch)

3. Compute Fr power flows vector in Gr

4. Set Or, i.e., the set of lines that become outaged at round r
IF |Or| ≥ 1
5. Set Gr+1 = (V, Er − Or)

OTHERWISE: END

The DC power flow, re-dispatch strategy and outage model are described in Appendix A.

4. Results
4.1. Case Study Description

We exploit the methodology and algorithms described in the previous Sections for
performing statistical analysis of the behavior of power transmission networks with respect
to cascading failures. In order to do so, we resorted to the proposed algorithm for generating
Ns = 5000 and Ns = 800 power grids statistically similar to the IEEE-14 and IEEE-118,
respectively (from the Power System Test Case Archive, UWEE). Both the number of nodes
and the power supplied by each generator are the same as those of the IEEE reference grid.
The properties of the IEEE-14 and IEEE-118 networks taken for reference are summarized
in Table 1.

Table 1. Main properties of the IEEE-14 and IEEE-118 test cases.

IEEE-14 IEEE-118

Number of buses 14 118

Number of links 21 184

Number of generators 2 19

Number of transmission nodes 0 35

Number of loads 12 64

Total power generated 272.4 MW 4377.4 MW

We set ρ = 10−1, ε = 10−1 so as to study the behavior of grids operating close to
their limit, in in an attempt to represent the conditions of old-generation power grids
overburdened by the continuously increasing power demand [3]. On the other hand,
we set α = 10−5 within a trial-and-error procedure aiming to minimize the occurrence
of simultaneous overloads during the cascades. This procedure is then applied to all
the links in the sampled network configuration. Due to the deterministic nature of the
cascade propagation, each simulation is completely identified by the pair (Gj,i), where
Gj (j = 1, . . . , Ns) is the sampled initial network configuration and i is the index of the
initial link removed from Gj. By so doing, for each Gj we obtain mj cascading failure
simulations, yielding a total of 98,213 cascading failures in the Ns = 5000 IEEE14-like
network realizations and 139,245 in the Ns = 800 IEEE118-like network realizations.

In order to be able to quantify the intensity of a cascading failure event, we introduce
the following indicator, computed at the end of each cascading failure simulation (Gj,i):

FOGj ,i =
Nout

Gj ,i

mj
(4)
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i.e., the fraction of lines cut due to overloads, where Nout
Gj ,i

is the number of outages due to
overloads at the end of a cascading failure event initiated by the removal of link i in the
network Gj. Another indicator of the cascading failure intensity is defined as follows [18]:

FLSGj ,i =

(
PDtotal

j (0)− PDtotal
Gj ,i

(rlast)
)

PDtotal
j (0)

(5)

i.e., the final fraction of load shedding, where PDtotal
Gj

(0) is the total power delivered in the

network Gj before the initial link i removal, and PDtotal
Gj ,i

(rlast) is the power still successfully
delivered at the last iteration of Algorithm 1, i.e., at the end of the cascade of failures
initiated by the removal of line i.

Finally, while FOGj ,i and FLSGj ,i are important measures for quantifying the severity
of a cascading failure scenario, the cascading failure duration TGj ,i = trlast − t0—in terms
of the number of time steps elapsed from the time of the initial line i failure, t0, to the end
of the cascading event, trlast —plays, in general, an important role for cascade control and
mitigation. In all the scenarios simulated, with the purpose of facilitating the display of the
results in logarithmic scales and with no loss of generality, the initial time step at which the
initiating line failure event occurs is arbitrarily set to t0 = 10.

4.2. Statistical Analysis

In what follows, we analyze the statistical properties of the randomly generated
network configurations from the point of view of the intensities of the simulated cascading
failure scenarios. The aim is that of capturing the main recurrent behaviors and, possibly,
finding relationships with some intrinsic properties of the generated networks.

Figure 1 shows the histograms of the FOGj ,i of the cascading failure scenarios obtained
for the IEEE-14-like (a) and the IEEE-118-like (b) networks, respectively. It can be noted
that despite the large difference in the number of nodes of the two network typologies,
there seem to exist a few common features. First, the range of variability of FOGj ,i for both
types of networks is very similar, i.e., approximately (0, 60%) and (0, 70%) for IEEE-14-
like and IEEE-118-like networks, respectively. This suggests the existence of a physical
limitation in the propagation of the cascading failures, preventing larger disconnections of
the networks. A possible motivation probably lies in the fact that when the loss of lines
due to overloads and unbalanced islanding becomes very large with respect to the network
size, the remaining amount of load that can be satisfied becomes so small that the power
flowing in the remainder of the network is not enough to trigger further outages due to
overload. A similar saturation effect was identified also in Ref. [32] in a similar context,
where a truncated branching process was employed to model the number of line overloads
during a failure cascade. Then, FOGj ,i follows a bimodal distribution, with a separation
between the occurrences of cascading failures affecting small portions of the network and
those leading to larger consequences in terms of lines disconnections. This behavior is less
evident for IEEE14-like networks due to the fact that the average number of lines of the
Ns = 5000 IEEE14-like network configurations (19.6) is rather low, so the two modes of the
distribution tend to overlap. On the other hand, in the case of the IEEE118-like networks,
the average number of lines is 173.7 and the two modes are well separated by a range of
FOGj ,i values, the correspondence of which features almost no cascading scenarios.

The motivation of the bi-modal behavior of the scenario distributions probably lies in
the superposition of two competing processes. The first process is the natural extinction
of the cascading overloads due to the network reaching a new sustainable equilibrium
point. Figure 2 shows the histograms of the FOGj ,i in scenarios which do not lead to any
islanding (IEEE14-like (a) and IEEE118-like networks (b)); in both network typologies, the
cascading failures extinguish for FOGj ,i < 10%. The second process is the formation of
isolated islands due to the separation of portions of the transmission network including
more buses and lines; this process, in turn, boosts the further propagation of multiple
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parallel cascades in the separated islands (provided the islands have at least one generator;
otherwise, they undergo a full blackout). This is due to the simple re-dispatch strategy
adopted in this work, which does not take into account the capacities of the lines; in fact,
in the event that multiple large islands form during the cascading failure, in an attempt
to balance the individual island power generation and demand, this can easily give rise
to new overloads, thus triggering the further propagation of the cascading failures within
the islands. This process gives rise to the second mode of the histogram, shifted towards a
larger number of overloading events, as shown by Figure 2, which reports the histograms
of the FOGj ,i associated with scenarios leading to islanding of any size (IEEE14-like (c)
and IEEE118-like networks (d)). Indeed, the process can start only when the number of
lines disconnected due to overload becomes large enough, with respect to the network
size, to isolate significant portions of the network. Figure 3 shows the histograms of FOisl

Gj ,i,
i.e., the fractional overload, within whose correspondence the network experiences the
formation of the largest power island of the entire cascade event. Note that by the largest
island in the grid, we mean either the largest separate aggregation of nodes and links if it
does not contain generators or the second largest island containing generators, since we
formally consider the first as a direct evolution of the original grid. In the IEEE118-like
networks, the formation of the larger islands starts at approximately FOisl

Gj ,i = 5% and

finishes between FOisl
Gj ,i = 40% and FOisl

Gj ,i = 50% (Figure 3b), giving rise to the delayed
second mode of the histogram of Figure 1 due to the delayed cascading failure, as explained
above. A similar behavior can also be observed for IEEE14-like networks (Figure 3a),
although its interpretation from the histograms is more difficult due to the small number of
lines involved.

However, a small contribution to the first mode of the histogram in Figure 3b still exists
in the case of the IEEE118-like networks, due to cascades involving some islanding. In order
to further investigate this behavior, Figure 4b shows a scatterplot of FOGj ,i versus the size,
in terms of number of nodes, of the largest island (see the definition given above) formed
during the corresponding cascading failure; the grey intensity of the points in the scatterplot
is the log10 of the number of observed occurrences. It can be seen that the first mode of
the histogram receives contributions of scenarios involving the formation of islands whose
larger size is generally smaller than 10, whereas the second mode of the histogram is due to
occurrences of scenarios leading to larger islanding, with no apparent correlations between
the size of the larger island formed and FOGj ,i. A conclusive topological motivation of
this small “early” contribution to islanding is still to be found; on the other hand, the
occurrences of scenarios of this kind are almost negligible with respect to those associated
with the two main behaviors discussed earlier.
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For the IEEE14-like networks, the same scatterplot (Figure 4a) does not allow us to
draw similar conclusions, probably due to the same problem of overlapping behaviors
illustrated above.

With reference to the second indicator introduced at the beginning of this Section,
Figure 5 shows the histograms of the FLSGj ,i obtained for the IEEE14-like (a) and the
IEEE118-like networks (b). As already shown in Figure 1a,b, in both types of networks,
cascading failures rarely lead to fractional overloads FOGj ,i larger than 60–70%, but in
smaller systems, the same portion of disconnected lines leads to a broader range of fractional
power losses, FLSGj ,i, as shown in Figure 6a. In fact, a power network with only 14 buses
is so small that in some of the configurations generated, even the failure of a single line
(without any further propagation) can potentially jeopardize the entire power distribution.
The bi-modal behavior observed for the distribution of the FOGj ,i at the end of the cascading
events (Figure 1b) is thus lost when considering the distribution of the corresponding
FLSGj ,i for the IEEE14-like networks because the correlation between FOGj ,i and FLSGj ,i
is weak, as shown in the scatterplot of Figure 5c. On the other hand, for the IEEE118-like
networks (Figure 5b), the bi-modal behavior is shown by both FOGj ,i and FLSGj ,i due to
the larger correlation between FOGj ,i and FLSGj ,i (scatterplot of Figure 5d).
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Figure 6 shows the scatterplots of the cascading failure scenarios in the plane
(log10TGj ,i

− FLSGj ,i) for the IEEE14-like (a) and the IEEE118-like (b) networks. These
plots are important for quickly visualizing cascading scenarios that could represent a
challenge for an automatic control strategy aiming to mitigate the propagating events, i.e.,
those characterized by short durations, TGj ,i, and large fractional load shedding, FLSGj ,i.
The points located at log10TGj ,i

= 1 (Figure 6a) correspond to scenarios wherein the initial
failure does not propagate but gives rise to a large power loss. The duration of these
scenarios is TGj ,i = 10, which corresponds to the arbitrarily chosen time of occurrence of
the first failure; in fact, the model (13) for the power grid inertia obviously intervenes after
the first failure occurrence. As verified by the authors but not shown here for brevity’s sake,
these scenarios occur in a few “pathological” networks randomly containing evident struc-
tural vulnerabilities (for example, both generators connected to the rest of the network by
only one line) and unrealistic topologies (for example, tree-like topologies). Thus, in these
cases, no effective mitigation strategies could be devised without a preventive topological
re-design of the network.

The simulations of cascading failures in IEEE118-like networks (Figure 6b) appear
to be more concentrated than those obtained in IEEE14-like networks (Figure 6a). This is
due to the fact that the sample space of the IEEE118-like networks is by far larger than
that of the IEEE14-like networks, since the space dimension increases exponentially with
the number of nodes of the grid, so that the sample size (Ns = 800 random topologies) is
relatively small and no critical configurations are included. On the other hand, the smaller
sample space and, at the same time, the larger sample size (Ns = 5000) allow for better
exploration of the IEEE14-like networks. Larger sizes of the IEEE118-like samples would
require computational efforts beyond the scope of this work.

The scatterplots of Figure 6 show also the cascading failure scenarios obtained with
the original IEEE14 and IEEE118 networks (green crosses). It can be seen that even with the
rather crude re-dispatch strategy adopted in this work, all the points corresponding to the
simulated scenarios lie well within the main “clouds”, without showing any criticalities.
This confirms the expectation, since the original IEEE networks of reference were actually
extracted from real portions of the US power transmission network (from the UWEE Power
Systems Test Case Archive); as such, they must have been designed to be robust with
respect to this kind of failure.
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As a final remark, note that the re-dispatch policy adopted is purposely simplistic
to allow for the generation of a large number of network configurations in reasonable
computational times; this is in order to explore a broad region of the cascading failure
scenario space. On the other hand, the adoption of such a re-dispatch strategy with a
minimal number of actions involved allows for the effects of the network topology and
electrical characteristics on the cascading failure propagation to be enhanced. This is useful
for identifying the weaknesses of an individual network or of a class of networks with
respect to these characteristics. Finally, the conservative nature of the re-dispatch logic
employed in this work ensures that the protection/control system, optimized based on the
outcomes of these analyses, will be highly robust against cascading failures.

4.3. Cascading Failure Control and Mitigation Effort Measures

We introduce the following measure associated with the individual cascading event i
to rank the scenarios in the scatterplots of Figures 5 and 6 in terms of the effort they require
to be controlled and mitigated with respect to cascading failures:

Si = FLSGj ,i ∗
log10 Tmax

log10 TGj ,i
(6)

where Tmax = 108 time steps is a bound chosen so as to be larger than all the cascading
failure durations simulated. Taking the logarithm of the cascade durations is a convenient
choice based on the observation that the metric would readily allow us to identify critical
areas in scatterplots of the kinds of Figures 5 and 6, where the adoption of a logarithmic
scale for TGj ,i is needed to capture the general behavior of the networks. On the other
hand, a ranking of the control and mitigation effort based on this metric would be the
same without the use of the logarithm. The proposed metric accounts for both the cascade
propagation time TGj ,i and the fraction of load loss FLSGj ,i, which are two major objectives
of control and mitigation. More precisely, the metric measures an average “velocity” of load
loss in the development of the cascading event: the larger this velocity is, the more effective
a control strategy must be in order to limit the spreading of the cascade and terminate the
propagation. Note that for both IEEE14-like and IEEE118-like networks, Si can assume
values in the range (0, 8), with larger control and mitigation efforts required in association
with with higher values.

By averaging the values of the metric Si over all the scenarios pertaining to the
individual sampled configuration Gj, for each j = 1, . . . , NS, it is possible to obtain a new
metric for the control and mitigation efforts of a given network with respect to cascading
failures due to a single initiating event. Specifically, we compute the following:

MSj =
1

Nl j
∑

Nl j
i=1 Si (7)

Furthermore, the dispersion of Si around its mean for each configuration Gj is as follows:

σSj =

√
1

Nl j − 1 ∑
Nl j
i=1

(
Si−MSj

)2 (8)

This represents a measure of the robustness of the design configuration, since a strong
average score MSj could also be achieved when a few very critical scenarios characterized
by large values Si occurred, thus rendering the network vulnerable. Taken together, the pair(

MSj, σSj
)

provides a more accurate representation of the overall behavior of configuration
Gj with respect to the propagation of cascading failures.

Figure 7 shows the sorted values of MSj (blue crosses) and the corresponding σSj
(red circles), respectively, obtained for the NS = 5000 IEEE14-like (a) and the NS = 800
IEEE118-like (b) networks. The ranges of variability of these two metrics are larger for
IEEE14-like than for the IEEE118-like configurations. This is due to the fact that (i) as said
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before, the sample size of the IEEE14-like grids is relatively much larger than that of the
IEEE118-like ones, so that many more configurations at the extremes can be investigated.
(ii) Smaller power grids are made of fewer components, so that they tend to be more
sensitive to the failure of one of them.
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The plots of Figure 7 also show the values obtained for the reference IEEE14 and
IEEE118 power transmission networks (green crosses). Interestingly, the original IEEE14
and IEEE118 networks are ranked 3846 out of NS + 1 = 5001 and 10 out of NS + 1 = 801
random networks, respectively. Thus, apparently, the reference network IEEE118 is more
robust with respect to cascading failures than the reference IEEE14, although this result
may be due to the same issue of sample space dimension and coverage by the simulations
mentioned above.

Surprisingly, the standard deviations σSj of the metric values in Figure 7a for the
IEEE14-like networks can be roughly clustered into two families, as opposed to the case
of the IEEE118-like grids. This behavior is likely due to the presence or the absence of
at least one connection whose initial failure causes the loss of at least 50% of the whole
demanded power in the network; the cascading failure sequences originating from the
failures of these connections are made out of the initial failure event alone and thus have a
very short time duration (fixed at 10, as shown before), such that the associated metric Si
tends to assume values slightly above the average. These sequences are then characterized
by large values of σSj. The clustered behaviors of the metric σSj are further highlighted in
the scatterplot (MSj − σSj) of Figure 8a, where the points corresponding to the sequences
in the IEEE14-like networks with more than 50% of load shedding due to the initial failure
(green squares) are shown to correspond to the points in the cluster characterized by the
large σSj. No such behaviors can be observed for the IEEE118-like networks (Figure 8b),
where their corresponding σSj values have a general behavior similar to the that of the
first cluster of low values for the IEEE14-like networks. Again, this is due to the poor
exploration of the sampling space achievable for systems of increasing size. It is likely
that if we were able to generate a few orders of magnitudes more sample of IEEE118-like
networks, it would be possible to observe the same anomalous configurations with strong
structural deficiencies. In conclusion, the metric σSj could in principle also be used for
identifying power grid configurations with obvious structural vulnerabilities among those
automatically generated, such as, for example, those not meeting the N − 1 reliability
criteria [22].
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4.4. Sensitivity Analysis and Genetic Algorithm Optimizations

Besides the cases of poorly designed networks with obvious flaws, other configurations
with no evident problems can be characterized by rather large values of MSj. This is
interesting because it shows that even more subtle differences in configuration can have a
strong influence on the overall behavior of the system. Indeed, the identification of which
kinds of differences lead to such a degradation of the network robustness with respect to
cascading failures is very important, but it is not an easy task, due to the large number
of features involved in the network sampling process, i.e., the topology, the loads, the
generation distribution and the impedances of each line. More specifically, the difficulties
are related to (i) their distributed nature, especially with regard to topologies; (ii) their high
interdependences (recall that in the proposed sampling algorithm, the loads/generators
and the impedances depend on the sampled topology); and (iii) the potentially associated
computational expenses.

We propose to exploit the control and mitigation efforts metric definitions given above
and the sampling framework developed used in this work to perform a crude sensitivity
analysis aiming to identify which features most influence the behaviors of the networks
with respect to cascading failures.

For computational issues, but with no loss of generality, we make reference only to the
IEEE14 network. First, we sample 5000 new random topologies and the corresponding link
impedances, but we keep the power demands and generations of each of the 14 nodes of
the sampled networks fixed to those of the reference IEEE14 grid. Ideally, in order to isolate
the single contributions to the control and mitigation effort metrics, the topologies and the
impedances should be varied one at a time, but this is impossible for the topologies alone
since a change in the topology would inevitably also change the impedance distribution.
Then, we rank the synthetic networks according to the values of the metric MSj, thus
obtaining the plot in Figure 9 (blue crosses), where the standard deviations σSj are also
shown (red circles); note that the procedure is similar to that which led to Figure 7, but
the values of MSj now depend only on the topologies and the impedances. A visual
comparison with the results in Figure 7a, obtained by sampling all the features together,
does not highlight any particular difference, showing that the majority of the variability
of the metric MSj is due to the topology and impedance distributions. This confirms the
aforementioned observations of single topologies with no apparent deficiencies leading to
catastrophic cascades with very large values of MSj.
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The intuitive sensitivity analysis can now be further carried on by investigating the
effects of the impedance and load distributions alone. For the reasons explained before,
unfortunately, the effects of the impedances can be observed only with a fixed topology;
thus, we perform the analysis on the original IEEE14 configuration. However, instead
of obtaining curves similar to those of Figure 7a,b, which would have a rather limited
meaning, since the topology is fixed, we propose a more operative and useful sensitivity
approach based on the minimization of the value of MSIEEE14 by separately optimizing the
line impedances’ allocation and the load distribution on the nodes.

Even though the network is small, the dimensions of the minimization search spaces
(21 for the impedances and 14 for the loads) are such that classical gradient descent-based
optimization algorithms could be inefficient, and the problem surely becomes more and
more burdensome as the size of the network increases. Thus, here, we resort to a genetic
algorithm [33].

In order for the values of the system parameters to remain physically meaningful,
we allow a 10% maximum variation around their values in the original IEEE14 network
during the optimization. The results of the two GA optimizations are shown in Figure 9
by light blue triangles (impedance optimization) and purple squares (load configuration
optimization). In both cases, the GA optimizations lead to an improvement of the original
IEEE14, suggesting that the control and mitigation requirements of a given network with
respect to cascading failures can be improved by re-designing both the load distribution and
the impedance scheme. Note that from a sensitivity analysis point of view, a significantly
larger improvement can be achieved by varying the impedance distribution alone. The
improvements achieved are not very large, but this was to be expected due to the fact
that (i) the IEEE14 reference network represents a portion of an actual power transmission
network, that has been optimally designed to avoid failure propagations and (ii) the search
ranges for both impedances and loads are rather narrow. As already noted above, Figure 9
further shows that the maximum improvements on the single IEEE14 configuration due to
the impedances and loads optimizations are smaller than the potential ones achievable by
modifying the topology of the network.

Although the impedances and load optimizations could not be performed for the
IEEE118 original network due to the computational constraints mentioned above, its
margins of improvement with respect to the metric MSIEEE118 are apparently much smaller
than for the IEEE14 grid, as shown in Figure 7b. However, before a final conclusion can be
drawn, a broader exploration of the sampling space is required in order to possibly increase
the range of variability of MSIEEE118.



Electronics 2024, 13, 943 17 of 21

5. Conclusions

In this work, we have investigated some statistical properties of power transmission
networks with the general objective of identifying common strengths and weaknesses with
respect to their cascading failure behavior. In order to do so, we have integrated a random
power grid generator with a cascading failure simulator based on a DC approximation of
the power flows. The integrated algorithm has allowed us to perform a systematic analysis
of the cascading failure dynamics within a broad set of networks that are individually
different in terms of power grid topologies, loads configurations, generators configura-
tions and line impedances but bear the same statistical properties typical of actual power
transmission grids. In particular, in this work, we have referred to both IEEE14- and
IEEE118-like networks.

The analysis has led to the identification of an unexpected bi-modal behavior of
the cascading failures, leading to load shedding, with respect to the final number of
lines disconnected due to overloading. It has been shown that this bi-modality is strictly
correlated to the formation of large islands during the cascade propagation, which, under
the re-dispatch strategy adopted in this work, amplifies the network damage in terms of
load losses.

Then, we developed a new metric for quantifying the control and mitigation require-
ments of individual scenarios with respect to cascading failures; this metric accounts for the
duration of a cascading failure event initiated by a single-line failure and its consequences
in terms of final load shedding. By averaging the values of the metric over all possible line
failures in a single-grid model, we obtained a new metric for the robustness of a whole
network with respect to cascading failures; the standard deviation of the metric can also be
interpreted as a metric itself, since it captures the presence of weak lines whose failures
lead to anomalous propagating behaviors in power networks, which otherwise appear
to be robust. The metric has been shown to be able to correctly identify as critical those
randomly generated scenarios and/or configurations that present evident design flaws;
however, at the same time, it also identifies those scenarios/configurations with more
subtle and unexpected deficiencies, which are otherwise very difficult to capture. The
calculation of the proposed metric has also allowed us to perform a rough sensitivity analy-
sis of the features most influencing the cascading failure behavior of power transmission
networks, which confirmed the expected importance of the topology and of the correlated
impedances’ distribution.

Finally, we have shown that the proposed metrics can be effectively exploited within
a genetic algorithm search scheme for the identification of optimal improvements to an
existing power grid in terms of both line impedances and loads at the nodes. The new
metrics can then be effectively included in practical optimizations, where the necessary
modifications to national and over-national power grids must be chosen by taking into
account several other possibly conflicting objectives such as economics, congestion issues,
political considerations, etc.

There are many other potential uses of the computational approach developed in this
work. One of the most promising seems to be that of automatically generating and selecting
critical scenarios/configurations to be used as worst-case scenarios for testing, validating,
and improving the robustness of the control or mitigation strategies to be adopted during
cascading failure events; control and mitigation effort metrics, such as those introduced in
this work, may serve to compare the performances of different controllers, possibly also
accounting for associated economic requirements.

Current and future research efforts are focused on strengthening the applicability
of the proposed approach, which is mainly methodological, to practical problems. This
entails, first of all, modifying the random network sampling algorithm in order to be able
to generate only N − 1 secure configurations and, secondly, accessing more powerful and
parallelized computational resources in order to be able to study the dynamics of more
realistic large power transmission networks.
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Appendix A

This appendix describes in detail the steps in Template 1.

Appendix A.1. DC Power Flow

The vector fr at each iteration of Algorithm 1 is computed with the DC power flow
MATLAB function MATPOWER [31]. The DC power flow model is a linear approximation
of the AC power flow model, which relies on the following assumptions [22]:

• Flat voltage profile: all bus voltage phasors are 1.0 per unit in magnitude.
• The lines are lossless or, equivalently, line resistance is neglected:

∀ l ∈ E zl = resl + ixl ≈ ixl

• Voltage angles differences are small enough that

∀ i, j ∈ V sin
(
θi − θj

)
≈ θi − θj

Under the above assumptions, let θi be the voltage angle at bus i and θ the N dimen-
sional vector of voltage angles, where a component is chosen to be equal to 0 (reference
bus). Let bij be the susceptance of the line joining bus i and bus j. The N × N matrix at the
r-th iteration of Algorithm 1 Br is defined as follows:

Br
ii = ∑bus j connected to bus i br

ij

Br
ij = −bij

The DC load flow equations are as follows:

Pr = Brθr (A1)

where Pr is the vector of the node power outputs, which sums to zero due to the balance
constraint (A1). The matrix Br has rank N − 1: thus, removing the row corresponding to
the reference bus and taking the inverse, we obtain

θr = XrPr (A2)

Finally, the power flow in line l connecting bus i and j is found:

f r
l = br

ij

(
θr

i − θr
j

)
(A3)

For further details on the DC power flow approximation, the interested reader may
refer to Ref. [22].

Appendix A.2. Re-Dispatch Strategy

During the propagation of the cascading failures, the transmission grid could become
separated in multiple connected components, also called islands. The newly formed
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islands, in principle, do not meet the power balance Equation (A1), thus not allowing
further DC computation. In order to overcome this issue a simple power re-dispatch
routine is embedded in the simulator. Considering the island I ⊂ G, where (GenI , LoadI)
are the sets of generator and load buses in I, at each iteration r, three different unbalanced
possibilities could arise:

1. The power supply does not meet the demand but the generators have enough reserve
to accommodate the surplus:

∑
i∈GenI

PGr−1
i < ∑

i∈LoadI

PD0
i and ∑

i∈LoadI

PD0
i < ∑

i∈GenI

PMAXi

Then, the power production of each generator belonging to I is increased proportionally:

∀i ∈ GenI : PGr
i = PGr−1

i +
PMAXi − PGr−1

i

∑i∈GenI
PMAXi − ∑i∈GenI

PGr−1
i

( ∑
LoadI

PD0
i − ∑

LoadI

PGr−1
i ) (A4)

∀j ∈ LoadI : PDr
j = PD0

j (A5)

2. The power supply does not meet the demand and does not have enough reserve to
meet the surplus:

∑
i∈GenI

PGr−1
i < ∑

i∈LoadI

PD0
i and ∑

i∈LoadI

PD0
i > ∑

i∈GenI

PMAXi

Then, the power demand of each load belonging to I is decreased proportionally and
the power supply is fixed to the maximum limit:

∀ i ∈ LoadI : PDr
i = PD0

i
∑i∈GenI

PMAXi

∑i∈LoadI
PD0

i
(A6)

∀ j ∈ GenI : PGr
j = PMAX j (A7)

3. Meanwhile, if in the island I the power supply exceeds the demand,

∑
i∈GenI

PGr−1
i > ∑

i∈LoadI

PD0
i

Then, the power production of each generator belonging to I is decreased proportionally:

∀i ∈ GenI : PGr
i = PGr−1

i
∑i∈LoadI

PD0
i

∑i∈GenI
PGr−1

i

(A8)

∀j ∈ LoadI : PDr
j = PD0

j (A9)

In all the above equations, PD0
j denotes the power demand of node j before the

initial failure.
The major drawback of this strategy is related to the fact that it does not take into

account the capacities of the surviving lines in the system in order to more effectively re-
dispatch the power flows. Other more realistic re-dispatch strategies have been employed
in previous works of literature. For example, in Ref. [5], the power supply and demand is
adjusted by means of a linear optimization, whereas in Ref. [13], a controller proportionally
sheds load or increases generation depending on the situation. On the other hand, with the
strategy proposed here, simulations of cascading failures are much faster, thus allowing
us to demonstrate the feasibility of statistical analysis and to perform optimization with
reasonable computational efforts.
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Appendix A.3. Outage Model

At step 5 of Algorithm 1, an outage model is required to identify the transmission
lines which fail during iteration r. To this aim, we exploit the concept of effective power
flow [12,34], where the transients of the power flows xl in the network lines after a discon-
nection event are modeled as follows:

xl(t + 1) = (1 − α)xl(t) + αFr
l ; l ∈ Er (A10)

xl(0) = Hr−1
l (A11)

where the parameter α ∈ (0, 1] is called the thermal inertia of the grid, Fr
l is the l-th

component of the power flow vector Fr(step 3, Algorithm 1), t is a discrete time index, and
Hr−1

l is the power flowing through line l at the (r − 1)-th failure event. The grid inertia
α represents the “reactiveness” or “memory” of the grid with respect to any change in
the power flows: if α = 1, the system is memoryless and xl(t + 1) = Fr

l , thus implying
an instantaneous power flow change after the r-th failure event, whereas α < 1 implies
a transient phase which becomes longer as α approaches 0 [12]. In order to identify the
line disconnection to be considered in the cascading failure sequence, we first identify the
set of the candidate line outages at round r as the lines with a corresponding final power

flow larger than the line capacity, i.e.,
∼
O

r
=

{
l ∈ Er : Fr

l > Cl
}

and the corresponding

set of transient durations:
∼
T

r
=

{
tl : l ∈

∼
O

r
, min{t : x l(t) > Cl

}
}. Then, the set of lines

failed at the r-th failure event Or and the corresponding transient duration Tr are identified
as follows:

Tr = min
{

t : t ∈
∼
T

r}
(A12)

Or =

{
l : l ∈

∼
O

r
, tl = Tr

}
(A13)

i.e., the candidate line outage with fastest transient. Note that (i) tr = ∑r
i=1 Ti is the time of

occurrence of the r-th failure event (ii) Hr
l = xl(Tr), and (iii) Tr is the scalar discrete time

within which more than one failure event may, in principle, occur. As will be shown in the
next section, a small value of α will be chosen, so that the unrealistic occurrence of multiple
failure events in the same instant (possible in our model, due to its discrete time nature)
becomes very rare; consequently, it will not affect the reproducibility and generality of
the results.
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