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Abstract: Humans always identify persons through their characteristics, salient attributes, and these
attributes’ locations on the body. Most person re-identification methods focus on global and local
features corresponding to the former two discriminations, cropping person images into horizontal
strips to obtain coarse locations of body parts. However, discriminative clues corresponding to
location differences cannot be discovered, so persons with similar appearances are often confused
because of their alike components. To address the above problem, we introduce pixel-wise relative
positions for the invariance of their orientations in viewpoint changes. To cope with the scale change
of relative position, we combine relative positions with self-attention modules that perform on multi-
level features. Moreover, in the data augmentation stage, mirrored images are given new labels due
to the conversion of the relative position along a horizontal orientation and change in visual chirality.
Extensive experiments on four challenging benchmarks demonstrate that the proposed approach
shows its superiority and effectiveness in discovering discriminating features.

Keywords: person re-identification; orientation-aware attention; visual chirality

1. Introduction

In recent years, with the development and progress of smart cities, public security has
become increasingly significant. Personal trajectories play an important role in security.
In smart cities, the urban monitoring system has a large amount of cameras that generate
massive video data, which can be used for person identification and tracking. Face recogni-
tion and digital identity have been widely used for person identity acquisition. However,
due to the low resolution and different views of person images captured in surveillance
cameras, face recognition can be ineffective in most scenes. It is necessary to integrate
overall characteristics to capture enough clues for person–image matching. Thus, person
re-identification (ReID) has become an important task in video surveillance.

Person ReID is an image retrieval task, aiming to associate pedestrian images cap-
tured by non-overlapping cameras [1]. In the general procedure of person ReID, given
a query image from one camera and gallery images from other cameras, each image is
transformed into a feature embedding, and then feature similarities are ranked between
those embeddings of query and gallery images [2]. Those images with the same identities
should rank forefront. Hence, identifying robust discriminative features is a crucial factor
in person ReID.

Tremendous improvements [3–9] have been achieved in recent years by studying
many practical problems to obtain discriminative features, e.g., viewpoint change, pose
variation, and occlusion. Commonly, they use a main backbone to obtain global features
and crop person images into horizontal strips to extract local features. However, cropping
images using a fixed interval brings misalignments of local features, since some person
images are acquired with inaccurate detection boxes, such as boxes with the person not
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centered or boxes with partial bodies. Therefore, the attention scheme [10–12] has been
introduced to enforce the model to capture cardinal discriminative local features, which
boosts the performance of person ReID models greatly. These methods usually focus on the
existence of discriminative patterns without regard for positions and orientations. However,
persons with similar appearances usually have similar patterns on their clothing, such as
logos, figures, etc. These kinds of similar appearances can hardly be discriminated by these
methods, although humans can usually distinguish them.

Humans always identify a person through their characteristics, salient attributes,
and these attributes’ locations on the body. The aforementioned person ReID methods
almost always focus on the former two discriminations and have remarkable performance.
Recently, pose estimation methods [13] have been introduced to localize body parts to
enhance the correspondences between local features and their positions. However, there
exists a domain gap between the pose estimation dataset and the person ReID dataset. It
is hard to accurately localize the positions of body parts, which restricts the development
of pose-guided person ReID methods. Most studies [14,15] crop images into horizontal
strips to obtain coarse vertical position information, which need plenty of memory and are
vulnerable to being influenced by misalignment. Although these part localization methods
provide clues for person ReID, the generated inaccurate and coarse positions cannot help
discover fine-grained position-aware discriminative clues.

To obtain stable and effective position information, we analyze the position variation
when changing viewpoints and fixing other variables. We discover that the relative position
between visible parts has some characteristics. In circular views, since only half of the
visible part of the whole body can be captured, the orientations for horizontal and vertical
components of relative positions between visible patterns are invariant. As shown in
Figure 1, the horizontal components of relative positions between the bag shown in yellow
boxes and the white parallel lines shown in red boxes are invariant if the comparable
patterns are visible. The vertical components are also invariant for persons in images
captured in video surveillance, which are almost never upside-down. For the scale of
relative position, it is mainly related to the distances from viewpoint to person location and
the spin angle of body rotation. In practical scenarios, the distances between the camera
and the pedestrians are much greater than the widths of pedestrians. We can suppose it is
a nearly linear correlation between the relative position and the distance of the viewpoint
and captured part. Hence, the impact of neighbor body parts can be defined as a linear
form. Furthermore, visual chirality [16], an orientation phenomenon of images, also proves
usefulness with regard to the aforementioned orientation clue for discrimination. Note that
horizontal flipping with the same label, which is widely used in data augmentation, would
probably bring disorder to the calculation of relative positions.

In this paper, we propose a novel Multi-level Position-aware Global Attention Network
(MPGA-Net), which uses a simple but effective framework to introduce discriminative
position information including global and local features with relative position encoding.
Furthermore, given new labels to mirrored images, MPGA-Net treats the visual chirality
of person images as a new clue to identify persons. To obtain the position-aware global
and local relationships in different semantic levels, MPGA-Net inserts the position-aware
attention module (PAM) into several residual blocks. Meanwhile, to balance the discrimi-
nating effects of feature and position, we proposed an Adaptive Label Smoothing strategy
to ensure that features of mirrored images are closer to those of original images than images
with other identities.

The sections of this article are arranged as follows:
Section 1 introduces the research background and significance of person ReID, then

describes its definition and mainstream ideas, and finally elaborates on motivation and
innovation points.

Section 2 introduces the development and innovation of person ReID algorithms based
on position-aware representation and self-attention and then analyzes the shortcomings of
existing algorithms. Finally, it describes the innovative improvement briefly.
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Section 3 provides the framework of the orientation-aware person ReID algorithm,
which includes re-labeling augmented images in preprocessing, multi-scale self-attention
modules with position encoding in network construction, and an Adaptive Label Smooth-
ing strategy. The idea for label regulation mainly corresponds to the orientation problems,
and the module design and network construction are mainly related to the position-aware
representation acquirement.

Section 4 introduces person ReID datasets, evaluation protocol, and experimental
configuration. Then, we design comparative experiments and ablation studies and analyze
the results. Meanwhile, the visualizations of the response map and ranking results are
displayed to verify the effectiveness of the algorithm design.

Section 5 summarizes the content and the innovations of the paper and provides future
research directions on analyses of the shortcomings of the proposed algorithm.
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Figure 1. Example of relative position orientation between person areas. The orientation for the
horizontal component of the relative position remains unchanged if person areas are visible.

2. Related Work
2.1. Re-Identification Based on Position-Aware Representation

Position information is usually applied in person ReID to obtain local part representa-
tions. Zhao et al. [17] proposed a part-aligned deep neural network that adopted a part
map detector to localize aligned parts. The dynamic part alignment strategy provided
feature-based position-aware representation. Sun et al. [14] proposed a Part-based Con-
volutional Baseline (PCB) that uniformly divided images into horizontal strips using a
fixed interval, extracted part features from each strip, and then refined the consistency
within parts. Position information by fixed partitioning strategy is coarse, and part features
usually need to be refined or aligned.

To obtain more accurate parts, pose estimation is introduced into person ReID. Zhao
et al. [18] proposed a part-based framework to integrate multi-level features of the human
body structure. It formulates the body part areas through key points obtained by a pose
estimation network. Suh et al. [19] adopted a two-stream network to obtain local part
features, which combined appearance features in one stream and a part map in another
stream by bilinear pooling. The pose estimation components are always trained on pose
estimation datasets and then directly used to generate body key points. There exist domain

Figure 1. Example of relative position orientation between person areas. The orientation for the
horizontal component of the relative position remains unchanged if person areas are visible.

2. Related Work
2.1. Re-Identification Based on Position-Aware Representation

Position information is usually applied in person ReID to obtain local part representa-
tions. Zhao et al. [17] proposed a part-aligned deep neural network that adopted a part
map detector to localize aligned parts. The dynamic part alignment strategy provided
feature-based position-aware representation. Sun et al. [14] proposed a Part-based Con-
volutional Baseline (PCB) that uniformly divided images into horizontal strips using a
fixed interval, extracted part features from each strip, and then refined the consistency
within parts. Position information by fixed partitioning strategy is coarse, and part features
usually need to be refined or aligned.

To obtain more accurate parts, pose estimation is introduced into person ReID. Zhao
et al. [18] proposed a part-based framework to integrate multi-level features of the human
body structure. It formulates the body part areas through key points obtained by a pose
estimation network. Suh et al. [19] adopted a two-stream network to obtain local part
features, which combined appearance features in one stream and a part map in another
stream by bilinear pooling. The pose estimation components are always trained on pose
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estimation datasets and then directly used to generate body key points. There exist domain
gaps between pose estimation datasets and person ReID datasets. The generated position
information is unconfirmed.

Recently, transformers have been widely used in nearly every computer vision scene.
The transformer also has the position-encoding stage due to the lack of position information
in self-attention. He et al. [20] proposed a pure transformer-based person ReID frame-
work, which integrates side information embeddings and a jigsaw patches module with
a transformer to obtain robust features. Transformer-based methods always have higher
performance on large datasets, but they usually need higher computational cost and many
samples to train.

2.2. Re-Identification Based on Self-Attention

Attention [21] has been widely studied in recent years. Zhang et al. [22] proposed
a relation-aware global attention module to strengthen feature discrimination in a global
perception, which integrates local features and global relations to calculate the attention
weight. Chen et al. [23] proposed a salience-guided cascaded suppression network to
mine salient features and integrate them into the final representation in a cascaded manner.
Self-attention-based methods usually adopt a module similar to a non-local block [24] to
obtain attention to re-weight features. The attention calculation is based on affinity within
local features. This manner may reduce the importance of pixel neighbors, which would
weaken local information.

In this paper, we propose a novel module to learn a global representation with the
accumulation of attentioned local features and their relative position clues to alleviate the
problem of lacking position information in the self-attention module.

3. Proposed Method
3.1. Overall Architecture

Image-based person ReID aims at matching cross-camera person images pairwise.
Given a set of person images for training X = {xi}N

i=1 containing N samples from P
pedestrians with their corresponding identity labels as Y = {yi}N

i=1, the goal is to explore
discriminative features to identify persons.

To make features more discriminative, we propose a novel MPGA-Net to learn a
global representation with the accumulation of attentioned local features and their relative
position clues, as shown in Figure 2. In the data preparation stage, all images for training
are flipped horizontally and given new identities, named the Horizontal Flipping with
New Identities (HFNI) strategy, which is beneficial for discovering orientation clues for
bilateral asymmetric parts. After horizontal flipping, if the source image xi is labeled yi,
the mirrored image can be marked as xi+N with the label yi + P.

To enhance network extensibility, we design a plug-and-play module, named the
Position-aware Attention Module (PAM), which can be easily inserted into any block of
ResNet [25]. In this paper, the even sequence set of blocks in each layer has added the
PAMs that exploit relative position embeddings and self-attention on multi-level feature
maps. PAMs are placed after the second ReLU in the even blocks. In our view, the PAMs
discover discriminative areas by global attention based on features and relative positions.
After all residual layers, a Global Average Pooling (GAP) layer summarizes multi-level
position-aware features to global features.

Due to the newly added mirrored images and identities, we propose an Adaptive
Label Smoothing (ALS) strategy to force the network not only to discover position-aware
clues but also to learn more discriminative representations. Finally, we adopt the cross-
entropy loss with augmented new labels and the triplet loss with source old labels because
most personal appearances are bilaterally symmetric.
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Figure 2. The overall architecture of MPGA-Net. The training dataset is built by source training
images, and mirrored images are given new labels. The MPGA-Net is constructed by inserting
PAMs into the even sequence set of residual blocks in each layer. The loss function is built on the
cross-entropy loss and the triplet loss with an Adaptive Label Smoothing strategy.

3.2. Position-Aware Attention Module

The Position-aware Attention Module is developed for exploring position-aware
spatial attention on multi-level feature maps. On one hand, most existing attention-based
methods [22,26] in person ReID always place the attention module on the link of two
layers, which blocks the residual propagation. On the other hand, existing approaches
usually neglect the importance of the relative position of attentioned features. Motivated
by the above observation, we design a position-aware module that can be inserted into
each block to learn multi-level positional attention. Inspired by CBAM [27], as relative
positions are the spatial correlation between areas, the PAM is built on a spatial attention
module, as illustrated in Figure 2. Note that PAMs inserted in a bottleneck before the
last 1 × 1 convolution can reduce computing complexity, since the channel number is
quadrupled by the last convolution in each block. Moreover, 1 × 1 convolution combines
features and relative positions.

Let fi ∈ Rh×w×c denote the input feature map of the i-th image for PAM, where
h, w and c are the height, width, and channels of the feature map, respectively. We
use three 1 × 1 convolutions followed by Instance Normalization layers to obtain query
embedding Q ∈ Rh×w×2c, key embedding K ∈ Rh×w×2c and value embedding V ∈
Rh×w× c

2 , respectively. To obtain more clues of the relative position information, the channel
number of query embedding is doubled as 2c. Based on the non-local settings, the channel
number of key embedding is the same as the query. To reduce computational complexity
and preserve a block of channel space for local feature aggregation, the channel number of
value embedding is reduced to c/2.

According to [28], relative position can be resolved into an accumulation of relative
height and relative width. The accumulation of relative height and width can be calculated
by query embedding Q and learnable Relative Position Weight (RPW). The Position-aware
Global Attention (PGA) is computed as follows:

PGA = So f tmax(
QKT + SH + SW√

2c
)V (1)
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where SH and SW are relative height logits and relative width logits, respectively.

SH [t, k] = qT
t rH

ky−ty
, SW [t, k] = qT

t rW
kx−tx

(2)

where t and k are pixels, qt is the query vector of pixel t, and rH
ky−ty

and rW
kx−tx

are learned
embeddings for relative height ky − ty and relative width kx − tx, as shown in Figure 3.

t

k

Figure 3. An example of Relative Position Weight calculation. Each grid represents a pixel of the
feature map. The blue arrows show the orientations of the factorized relative position from the source
pixel to the target pixel.

We apply a 3 × 3 convolution to the input feature map to obtain local feature aggrega-
tion and then concatenate the result to the PGA. Note that the channel of the local feature
is also reduced to c/2 after aggregation. After concatenation on channels, the output of
the PAM is the same as the input. Different from the convolution layers in ResNet50, all
the convolutions in this module are not followed by BN and ReLU to ensure information
independence and completeness in the integration process. The whole module is followed
by a BN layer to normalize the output to reduce covariate shifts.

3.3. Loss Function and Optimization

We apply a cross-entropy loss [29] Lce with a new label smoothing strategy and a
triplet loss [30] Ltri for each feature vector yielding a global loss as

L = λLce + (1 − λ)Ltri (3)

where λ is a hyper-parameter (λ = 0.6 in all our experiments except the ablation study).
The cross-entropy loss is defined as

Lce = − 1
N

N

∑
i=1

qi log(pi) (4)

where N is the number of samples, pi denotes the predicted probability for the ith identity,
and qi is the smoothed label, which is defined as

qi =


β × (1 − ϵ) + ϵ

2N , if j = yi

(1 − β)× (1 − ϵ) + ϵ
2N , if ∥j − yi∥ = P

ϵ
2N , others

(5)
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where j is the augmented image identity, yi is the identity for the source image of the sample,
P is the number of identities, ϵ is a precision parameter (ϵ = 0.1 in all our experiments),
and β is a symmetry factor (β = 0.8 in all our experiments except the ablation study). The
Adaptive Label Smoothing makes the sequence of ranking similarities between feature
embeddings from high to low: source images with the same IDs, source images and their
mirrored images, source images and images with other IDs.

Each mini-batch samples p identities and n images per identity. A hard mining strategy
is used to select the hardest positive and the hardest negative in each batch to form a triplet
for calculating triplet loss as

Ltri =
p

∑
i=1

n

∑
j=1

[m + max
k=1···n

(D( fij, fik)− min
a=1···p
c=1···n

a ̸=i

D( fij, fac)]+ (6)

where D(·, ·) denotes the Euclidean distances of two embeddings. Note that labels of
mirrored images adopted in the triplet loss are the same as those of source images. This
operation aims to force the distances of person image embeddings from different identities
farther than those from self-mirrored images.

4. Experiments
4.1. Experimental Settings

Datasets. We evaluate MPGA-Net on four of the most widely used large-scale datasets,
CUHK03-NP [31,32], Market1501 [33], DukeMTMC-ReID [34] and MSMT17 [35] all in
standard protocols.

Training details. MPGA-Net is trained on four Nvidia GV100 GPUs. All images are
resized into 384 × 128 pixels. Random erasing is adopted with a probability of 0.5 during
training. In each mini-batch, we set p = 32 and n = 8. We employ Adam as the optimizer
with a warm-up cosine annealing strategy for the learning rate [36]. The learning rate Lr(t)
is calculated as

Lr(t) =

{
1.0 × 10−3 × t

60 , if t ≤ 60
1.0 × 10−3 × 1

2 (1 + cos(π t−60
T−60 ), if 60 < t ≤ T.

(7)

Evaluation details. All images are resized to 384 × 128 pixels and normalized. We
follow the standard evaluation protocol in each dataset for a fair comparison and report
Cumulative Matching Characteristics (CMCs) at Rank-1, 5, 10 and mean Average Precision
(mAP) as evaluation metrics.

4.2. Comparison to State of the Art

We compare the performance of MPGA-Net with recent state-of-the-art person ReID
methods on CUHK03-NP [31,32], Market1501 [33], DukeMTMC-reID [34], and MSMT17 [35]
in Table 1, including methods based on ResNet [7,14,22,23,26,37–44], self-constructed net-
work [6], neural architecture search [45], and tranformer [20,46–48]. Overall, our proposed
MPGA-Net outperforms the state-of-the-art networks or achieves comparable performance.
The mAP of our network on CUHK03-NP is less than that of C2F [42] mainly because the
method uses an auxiliary-domain dataset for classification training while there are far fewer
training images in CUHK03-NP than in other datasets. The performance of our method on
MSMT17 is less than that of TransReID and DC-Former, which is mainly because of the
base structure. Transformer has more parameters and high computational cost, so it has
higher performance on large datasets. Meanwhile, we use an open-source post-processing
method [32] for re-ranking to evaluate the feature effectiveness in mutual sample learning.
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Table 1. Comparison with state-of-the-art person ReID methods.

Methods
CUHK03L CUHK03D Market1501 DukeReID MSMT17

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

PCB+RPP (2018) [14] - - 63.7 57.5 93.8 81.6 83.3 69.2 68.2 40.4
MHN (2019) [37] 77.2 72.4 71.7 76.5 95.1 85.0 89.1 77.2 - -
OSNet (2019) [6] - - 72.3 67.8 94.8 84.9 88.6 73.5 78.7 52.9

ABDNet (2019) [26] - - - - 95.6 88.3 89.0 78.6 82.3 60.8
Pyramid (2019) [38] 78.9 76.9 78.9 74.8 95.7 88.2 89.0 79.0 - -

IANet (2019) [7] - - - - 94.4 83.1 87.1 73.4 75.5 46.8
PISNet (2020) [39] - - - - 95.6 87.1 88.8 78.7 - -

ISP (2020) [40] 76.5 74.1 75.2 71.4 95.3 88.6 89.6 80.0 - -
RGA-SC (2020) [22] 81.1 77.4 79.6 74.5 96.1 88.4 - - 80.3 57.5

SCSN (2020) [23] 86.8 84.0 84.7 81.0 95.7 88.5 91.0 79.0 83.8 58.5
CDNet (2021) [45] - - - - 95.1 86.0 88.6 76.8 78.9 54.7

PAT (2021) [41] - - - - 95.4 88.0 88.8 78.2 - -
C2F (2021) [42] 80.6 79.3 81.3 84.1 94.8 87.7 87.4 74.9 - -

DFLN (2023) [43] 86.8 84.0 84.8 81.5 95.9 89.8 91.3 81.8 - -
SCS+ (2023) [44] 80.3 77.2 77.1 74.3 96.0 89.4 90.3 80.9 - -

TransReID (2021) [20] - - - - 95.2 89.5 90.7 82.6 86.2 69.4
FED (2022) [46] - - - - 95.0 86.3 89.4 78.0 - -

DCAL (2022) [47] - - - - 94.7 87.5 89.0 80.1 83.1 64.0
DC-Former (2023) [48] 84.4 83.3 79.6 77.5 96.0 90.6 - - 86.9 70.7

MPGA-Net (Ours) 88.0 85.7 85.8 82.8 96.1 90.9 93.1 84.4 83.9 64.9
MPGA-Net + ReRanking [32] 91.8 92.8 90.8 91.1 96.5 95.6 94.5 92.4 86.3 77.9

4.3. Ablation Study

To demonstrate the effectiveness of the proposed data augmentation strategy, attention
module, and label smoothing strategy on the performance of MPGA-Net, we incrementally
evaluate each module on Market1501.

The impact of the proposed modules and strategies. Table 2 summarizes the experi-
mental results of the ablation studies. The Baseline represents only the original backbone
built on ResNet50. The performance of the Baseline decreases by using the HFNI strategy.
It is mainly because images and their horizontal flipped images can hardly be distinguished
without positions of salience parts or a balance of features and positions. The performance
of the Baseline with PAM is similar to that without PAM, which indicates that it hampers
the model to discover clues about the positions of salient parts in which mirrored images
have the same labels as the source images. On the premise of the HFNI, each module or
strategy brings effectiveness, which proves that relative position coordinated with visual
chirality boosts the performance of MPGA-Net.

Table 2. Validity verification for each component within MPGA-Net on the Market1501 dataset.

Method Rank-1 mAP

Baseline 94.8 85.6

Baseline + HFNI 91.2 80.5
Baseline + HFNI + ALS 95.2 88.1

Baseline + PAM 95.1 86.0
Baseline + PAM + HFNI + ALS 96.1 90.9

The impact of position for placing PAM. In Table 3, we conduct experiments to
analyze the influences of PAM in different layers. The location of each layer is shown
in Figure 2. As shown in Table 3, when selecting only one layer to insert the PAM in,
the performances of Layer 2 and Layer 3 reach promising results. It proves that learning
the relative positions of mid-level features is more effective. When inserting PAMs in
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multiple layers, Layer 234 obtains the best performance. Adding PAMs to Layer 1 brings a
performance decrease. It indicates that the relative position information about low-level
features can hardly be utilized probably because of the disordered distribution in low-level
features. In Table 4, we conduct experiments to analyze the influences of PAM in different
blocks in Layer 234. ‘last’ represents the last residual block. ‘odd’ and ‘even’ represent the
odd and even sequence of residual blocks respectively. Adding PAMs to the oven sequence
set of blocks brings the best performance. By a comparative analysis of preset structures,
we suppose that the process of Position-aware Global Attention would need a residual
block following PAM. Moreover, inserting PAM to the first block in each layer may bring
information loss because of the downsampling operation before the first block.

Table 3. The performances of different layers to place PAM on the Market1501 dataset.

Method mAP Rank-1 Rank-5 Rank-10

Baseline 85.6 94.8 98.2 99.0

Layer 1 86.5 94.6 98.5 99.0
Layer 2 90.5 95.7 98.8 99.4
Layer 3 90.5 96.2 98.7 99.2
Layer 4 87.9 95.2 98.4 99.0

Layer23 90.8 95.8 98.7 99.2
Layer34 90.7 95.8 98.6 99.2

Layer234 90.9 96.1 98.8 99.4

Layer1234 87.5 95.1 98.3 98.9

Table 4. The performances of different blocks to place PAM on the Market1501 dataset.

Location of PAM mAP Rank-1

last 87.2 94.3
odd 87.3 94.8
even 90.9 96.1

Parameter analysis of β. In Figure 4, we analyzed the effect of parameter β on the
Adaptive Label Smoothing strategy. As source images with the same IDs have the same
orientations of critical parts, their label logits should be larger than the mirrored images.
The value range of β is from 0.5 to 1.0. We can observe that the performance of MPGA-Net
reaches 90.3% mAP and 95.8% rank-1 with β set as 1.0, which means source images and
mirrored images are forced to be separated. When β decreases, the performance improves
and reaches 90.9% mAP and 96.1% rank-1 (β = 0.8), which indicates that source images
and mirrored images have some identical feature patterns. With a further decrease of
β, the performance decreases, which indicates that position information is of benefit to
feature discrimination.

Parameter analysis of λ. In Figure 5, we analyzed the effect of parameter λ on the
loss function formulation. The performance with λ greater than 0.5 is better than that
with λ less than 0.5. It is mainly because the cross-entropy loss performs on new labels
and the triplet loss performs on source old labels. It also confirms the significance of the
orientations of relative positions in our design. Due to the mAP representing performance
on all samples, we set λ to 0.6, with which the performance reaches the highest.
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Figure 4. Parameter analysis of β on Market-1501.

Figure 5. Parameter analysis of λ on Market-1501.

4.4. Visualization

Visualization of gradient responses. We apply the Grad-CAM [49] tool to our model
for the qualitative analysis. Grad-CAM tool can indicate the regions that the network
considers significant. Figure 6 shows the gradient responses of each layer in MPGA-Net.
We can observe that each layer concentrates on different discriminative parts, especially
the areas of vision chirality.

Visualization of matching results. We compare the ranking results of the baseline
and MPGA-Net in Figure 7. As shown in Figure 7, MPGA-Net can effectively address the
problem of similar clothing, self-occlusion, pose variations, and local omissions.
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Figure 6. Grad-CAM [49] visualization for examples on each layer according to gradient responses.
The original image is masked by a heat map with temperature representing the impacts. The impacts
of the regions on results prediction from high to low are masked with colors: red, yellow, and blue.

Figure 7. Comparison of retrieval results on the Market-1501 dataset. (a) Baseline; (b) MPGA-Net.
Figures with red boxes represent the wrong query results.
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5. Conclusions

In this paper, we present a novel Multi-level Position-aware Global Attention Network
to learn a global discriminative representation with an accumulation of relative position
clues and attentioned local features. An Adaptive Label Smoothing strategy is proposed to
balance representation learning and position mining. Extensive experiments on four chal-
lenging benchmarks have demonstrated that our proposed MPGA-Net achieves significant
performance improvements.

However, our model needs more GPU memories and computation power than tra-
ditional CNNs, just like other self-attention and transformer-based methods. Moreover,
due to the augmentation strategy, each batch should contain original images and mirrored
images at the same time to train faster. On the large dataset MSMT17, the performance has
greater room for progress. We will concentrate on how to extend our idea to new structures,
such as transformers and large-convolution-based models.
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PGA Position-aware Global Attention
CMCs Cumulative Matching Characteristics
mAP mean Average Precision
BN Batch Normalization

References
1. Zheng, L.; Yang, Y.; Hauptmann, A.G. Person Re-identification: Past, Present and Future. arXiv 2016, arXiv:1610.02984.
2. Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S.C. Deep Learning for Person Re-identification: A Survey and Outlook. IEEE

Trans. Pattern Anal. Mach. Intell. 2022, 44, 2872–2893. [CrossRef] [PubMed]
3. Wang, G.; Yuan, Y.; Chen, X.; Li, J.; Zhou, X. Learning Discriminative Features with Multiple Granularities for Person Re-

identification. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October
2018; pp. 274–282.

4. Dai, Z.; Chen, M.; Gu, X.; Zhu, S.; Tan, P. Batch Dropblock Network for Person Re-identification and Beyond. In Proceedings of
the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3691–3701.

https://drive.google.com/file/d/0B8-rUzbwVRk0c054eEozWG9COHM/view
https://drive.google.com/file/d/0B8-rUzbwVRk0c054eEozWG9COHM/view
http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
https://www.pkuvmc.com
https://www.pkuvmc.com
http://doi.org/10.1109/TPAMI.2021.3054775
http://www.ncbi.nlm.nih.gov/pubmed/33497329


Electronics 2024, 13, 910 13 of 14

5. Fu, Y.; Wei, Y.; Zhou, Y.; Shi, H.; Huang, G.; Wang, X.; Yao, Z.; Huang, T. Horizontal Pyramid Matching for Person Re-identification.
In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 8295–8302.

6. Zhou, K.; Yang, Y.; Cavallaro, A.; Xiang, T. Omni-scale Feature Learning for Person Re-identification. In Proceedings of the IEEE
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3702–3712.

7. Hou, R.; Ma, B.; Chang, H.; Gu, X.; Shan, S.; Chen, X. Interaction-and-aggregation Network for Person Re-identification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 9317–9326.

8. Fang, P.; Zhou, J.; Roy, S.K.; Petersson, L.; Harandi, M. Bilinear Attention Networks for Person Retrieval. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8030–8039.

9. Zhu, X.; Liu, J.; Wu, H.; Wang, M.; Zha, Z.J. ASTA-Net: Adaptive Spatio-temporal Attention Network for Person Re-identification
in Videos. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020;
pp. 1706–1715.

10. Li, W.; Zhu, X.; Gong, S. Harmonious Attention Network for Person Re-identification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2285–2294.

11. Li, W.; Zhang, Y.; Shi, W.; Coleman, S. A CAM-Guided Parameter-free Attention Network for Person Re-identification. IEEE
Signal Process. Lett. 2022, 29, 1559–1563. [CrossRef]

12. Zhang, F.; Zhang, T.; Sun, R.; Huang, C.; Wei, J. An Efficient Axial-attention Network for Video-based Person Re-identification.
IEEE Signal Process. Lett. 2022, 29, 1352–1356. [CrossRef]

13. Xu, J.; Zhao, R.; Zhu, F.; Wang, H.; Ouyang, W. Attention-aware Compositional Network for Person Re-identification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 2119–2128.

14. Sun, Y.; Zheng, L.; Yang, Y.; Tian, Q.; Wang, S. Beyond Part Models: Person Retrieval with Refined Part Pooling (and a strong
convolutional baseline). In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September
2018; pp. 480–496.

15. Sun, Y.; Xu, Q.; Li, Y.; Zhang, C.; Li, Y.; Wang, S.; Sun, J. Perceive Where to Focus: Learning Visibility-aware Part-level Features
for Partial Person Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, 15–20 June 2019; pp. 393–402.

16. Lin, Z.; Sun, J.; Davis, A.; Snavely, N. Visual Chirality. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Virtual, 1–19 June 2020; pp. 12295–12303.

17. Zhao, L.; Li, X.; Zhuang, Y.; Wang, J. Deeply-learned Part-aligned Representations for Person Re-identification. In Proceedings of
the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3219–3228.

18. Zhao, H.; Tian, M.; Sun, S.; Shao, J.; Yan, J.; Yi, S.; Wang, X.; Tang, X. Spindle Net: Person Re-identification with Human Body
Region Guided Feature Decomposition and Fusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1077–1085.

19. Suh, Y.; Wang, J.; Tang, S.; Mei, T.; Lee, K.M. Part-aligned Bilinear Representations for Person Re-identification. In Proceedings of
the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 402–419.

20. He, S.; Luo, H.; Wang, P.; Wang, F.; Li, H.; Jiang, W. Transreid: Transformer-based Object Re-identification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 15013–15022.

21. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All You Need.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 6000–6010.

22. Zhang, Z.; Lan, C.; Zeng, W.; Jin, X.; Chen, Z. Relation-aware Global Attention for Person Re-identification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 3186–3195.

23. Chen, X.; Fu, C.; Zhao, Y.; Zheng, F.; Song, J.; Ji, R.; Yang, Y. Salience-guided Cascaded Suppression Network for Person
Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 3300–3310.

24. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local Neural Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803.

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

26. Chen, T.; Ding, S.; Xie, J.; Yuan, Y.; Chen, W.; Yang, Y.; Ren, Z.; Wang, Z. Abd-net: Attentive but Diverse Person Re-identification.
In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 8351–8361.

27. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional Block Attention Module. In Proceedings of the European Conference
on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19.

28. Bello, I.; Zoph, B.; Vaswani, A.; Shlens, J.; Le, Q.V. Attention Augmented Convolutional Networks. In Proceedings of the IEEE
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3286–3295.

http://dx.doi.org/10.1109/LSP.2022.3186273
http://dx.doi.org/10.1109/LSP.2022.3178673


Electronics 2024, 13, 910 14 of 14

29. De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A Tutorial on the Cross-entropy Method. Ann. Oper. Res. 2005, 134, 19–67.
[CrossRef]

30. Hermans, A.; Beyer, L.; Leibe, B. In Defense of the Triplet Loss for Person Re-identification. arXiv 2017, arXiv:1703.07737.
31. Li, W.; Zhao, R.; Xiao, T.; Wang, X. Deepreid: Deep Filter Pairing Neural Network for Person Re-identification. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 152–159.
32. Zhong, Z.; Zheng, L.; Cao, D.; Li, S. Re-ranking Person Re-identification with K-reciprocal Encoding. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1318–1327.
33. Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable Person Re-identification: A Benchmark. In Proceedings of the

IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1116–1124.
34. Zheng, Z.; Zheng, L.; Yang, Y. Unlabeled Samples Generated by Gan Improve the Person Re-identification Baseline in Vitro. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3754–3762.
35. Wei, L.; Zhang, S.; Gao, W.; Tian, Q. Person Transfer Gan to Bridge Domain Gap for Person Re-identification. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 79–88.
36. Loshchilov, I.; Hutter, F. Sgdr: Stochastic Gradient Descent with Warm Restarts. arXiv 2016, arXiv:1608.03983 .
37. Chen, B.; Deng, W.; Hu, J. Mixed High-order Attention Network for Person Re-identification. In Proceedings of the IEEE

International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 371–381.
38. Zheng, F.; Deng, C.; Sun, X.; Jiang, X.; Guo, X.; Yu, Z.; Huang, F.; Ji, R. Pyramidal Person Re-identification via Multi-loss Dynamic

Training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 8514–8522.

39. Zhao, S.; Gao, C.; Zhang, J.; Cheng, H.; Han, C.; Jiang, X.; Guo, X.; Zheng, W.S.; Sang, N.; Sun, X. Do Not Disturb Me: Person
Re-identification under the Interference of Other Pedestrians. In Proceedings of the European Conference on Computer Vision,
Springer International Publishing: Cham, Switzerland, 23–28 August 2020; pp. 647–663.

40. Zhu, K.; Guo, H.; Liu, Z.; Tang, M.; Wang, J. Identity-guided Human Semantic Parsing for Person Re-identification. In Proceedings
of the European Conference on Computer Vision, Cham, Switzerland, 23–28 August 2020; pp. 346–363.

41. Li, Y.; He, J.; Zhang, T.; Liu, X.; Zhang, Y.; Wu, F. Diverse Part Discovery: Occluded Person Re-identification with Part-aware
Transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 2898–2907.

42. Zhang, A.; Gao, Y.; Niu, Y.; Liu, W.; Zhou, Y. Coarse-to-fine Person Re-identification with Auxiliary-domain Classification and
Second-order Information Bottleneck. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Nashville, TN, USA, 20–25 June 2021; pp. 598–607.

43. Yang, S.; Liu, W.; Yu, Y.; Hu, H.; Chen, D.; Su, T. Diverse Feature Learning Network With Attention Suppression and Part Level
Background Suppression for Person Re-identification. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 283–297. [CrossRef]

44. Zhu, K.; Guo, H.; Liu, S.; Wang, J.; Tang, M. Learning Semantics-consistent Stripes with Self-refinement for Person Re-identification.
IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 8531–8542. [CrossRef] [PubMed]

45. Li, H.; Wu, G.; Zheng, W.S. Combined Depth Space Based Architecture Search for Person Re-identification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6729–6738.

46. Wang, Z.; Zhu, F.; Tang, S.; Zhao, R.; He, L.; Song, J. Feature Erasing and Diffusion Network for Occluded Person Re-identification.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June
2022; pp. 4754–4763.

47. Zhu, H.; Ke, W.; Li, D.; Liu, J.; Tian, L.; Shan, Y. Dual Cross-attention Learning for Fine-grained Visual Categorization and Object
Re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA,
USA, 18–24 June 2022; pp. 4692–4702.

48. Li, W.; Zou, C.; Wang, M.; Xu, F.; Zhao, J.; Zheng, R.; Cheng, Y.; Chu, W. DC-Former: Diverse and Compact Transformer for
Person Re-Identification. arXiv 2023, arXiv:2302.14335.

49. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual Explanations from Deep Networks
via Gradient-based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10479-005-5724-z
http://dx.doi.org/10.1109/TCSVT.2022.3199394
http://dx.doi.org/10.1109/TNNLS.2022.3151487
http://www.ncbi.nlm.nih.gov/pubmed/35298384

	Introduction
	Related Work
	Re-Identification Based on Position-Aware Representation
	Re-Identification Based on Self-Attention

	Proposed Method
	Overall Architecture
	Position-Aware Attention Module
	Loss Function and Optimization

	Experiments
	Experimental Settings
	Comparison to State of the Art
	Ablation Study
	Visualization

	Conclusions
	References

