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Abstract: In response to the limitations posed by noise interference in complex environments and the
narrow focus of existing diagnosis methods for jointless track circuit faults, an innovative approach
is put forward in this study. It involves the application of the continuous wavelet transform (CWT)
for signal preprocessing, along with the integration of a deep belief network (DBN) and a genetic
algorithm (GA) to improve the least-squares support vector machine (LSSVM) model for intelligent
time–frequency fault diagnosis. Initially, the raw induced voltage signals are transformed using
continuous wavelet transformation resulting in wavelet time–frequency representations that combine
temporal and spectral information. Subsequently, these time–frequency representations are fed into
the deep belief networks, which perform semi-supervised dimensionality reduction and feature
extraction, thereby uncovering distinct fault characteristics in the track circuit. Finally, the genetic
algorithms are employed to improve the kernel function and penalty factor parameters of the
least-squares support vector machine, thus establishing an optimal DBN-GA-LSSVM diagnostic
model. Experimental validation demonstrates the effectiveness of the proposed time–frequency
intelligent network model by leveraging the advantages of deep belief networks in hierarchical
feature extraction and the superior performance of the least-squares support vector machine in
addressing high-dimensional pattern recognition problems with limited samples. The achieved
accuracy rate on the testing dataset reaches an impressive 99.6%. Consequently, this comprehensive
approach provides a viable solution for data-driven track circuit fault diagnosis.

Keywords: fault diagnosis; jointless track circuit; continuous wavelet transform; least-squares support
vector machine; genetic algorithm

1. Introduction

In recent times, high-speed railways have swiftly emerged as the favored mode of
transportation due to their wide distribution and convenient travel. To guarantee the
secure functioning of railway networks, the real-time, accurate, and efficient diagnosis and
timely detection of high-speed railway system faults has emerged as an imminent issue
in need of resolution. As the fundamental element of a railway signal system, the track
circuit can accurately represent the real-time running state of the railway in a lightweight
way. Within this framework, it is of great strategic significance to realize the real-time
and accurate detection and preemptive identification of track circuit faults for reducing
maintenance costs, improving operation efficiency, and ensuring the driving safety of
high-speed railway networks.

ZPW-2000A is a widely used jointless frequency-shift track circuit technology. Through
a variety of sensors connected to the track, such as transformers, receivers, and attenu-
ators, ZPW-2000A can transmit multi-dimensional signals from the track in real time to
achieve the functions of occupancy inspection, broken rail inspection, and ground vehicle
communication. However, once the track circuit fails, the field technicians usually need to
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rely on a frequency-shift test table to test the data from the attenuator, the cable simulation
network disk, and the cable, or use a microcomputer monitoring system to test the data
from each part.

Advancements in deep learning have led to the effective integration of artificial intel-
ligence algorithms in system health diagnosis and prognosis [1]. When applied to track
circuits, these algorithms contribute to the development of intelligent and lightweight
diagnostic technology. Within the realm of track circuit fault diagnosis, scholars from
both national and international backgrounds have put forth numerous novel approaches
based on neural networks, data mining, and algorithm optimization. They are dedicated to
integrating artificial intelligence with fault diagnosis technology, aiming to enhance the
precision and promptness of fault diagnosis. Bruin T D et al. [2] proposed a recurrent neural
network with long-term and short-term memory, and realized fault diagnosis after training
the network with real track data. Zhao et al. [3] analyzed the dynamic response of a seamless
track circuit within a complex electromagnetic environment, and proposed a method rooted
in the finite-difference time domain to effectively handle the transmission line component.
To address the nonlinear equation in the track circuit, the Thevenin theorem and the state
variable method were employed, thereby offering a theoretical foundation for analyzing the
interference in track circuits. Recognizing the impact of various stochastic and uncertain
factors, such as adverse operating conditions, intricate equipment configurations, and the
diverse causes of faults in track circuitry, Zang et al. [4] introduced the set pair analysis
theory. Drawing upon the methodology of set pair analysis, the uncertainty degree was ex-
pressed through mathematical framework, and the connection number expression between
the indices and the running state was systematically described. Through this systematic
approach, a comprehensive and precise evaluation of the state of the track circuit was suc-
cessfully achieved. The efficiency of this diagnostic method is limited by expert technology
and space–time constraints, which leads to difficulty in obtaining real-time early warnings
of railway operation faults, and thus it is challenging to fulfill the requirements needed
for accurately repairing fault states. Lu et al. [5] proposed an intelligent diagnostic model
grounded in convolutional neural networks to swiftly anticipate fault data. Gou et al. [6]
employed the continuous wavelet transform for preprocessing fault signals, reducing the
training difficulty of neural networks. Cao et al. [7] devised a fault diagnosis technique
for track circuits, employing least-squares support vector machines. In comparison to
backpropagation neural networks, this classifier, grounded in least-squares support vector
machines, demonstrates superior diagnostic accuracy while requiring less training time.
Additionally, a portion of researchers are devoted to enhancing the accuracy and inter-
pretability of deep learning models. Zheng et al. [8] improved the predictive accuracy and
robustness of deep belief networks through a genetic algorithm-optimized particle swarm
optimization algorithm (GAPSO). Chen et al. [9] devised a hybrid approach that integrates
quantitative and qualitative methodologies, harnessing the synergistic advantages of a
neural fuzzy system. By harmoniously merging the intrinsic strengths of fuzzy logic and
neural networks, this approach significantly amplifies the accuracy and precision of track
circuit fault diagnosis. Li et al. [10] suggested a fault diagnosis methodology that integrates
a rough set theory reduction model with Bayesian network structure learning. Through
the dual driving forces of data and knowledge, the accuracy of neural networks is sub-
stantially enhanced. Gao et al. [11] combined least-squares support vector machines with
particle swarm optimization, further improving the accuracy of fault diagnosis through the
optimization of kernel function parameters. With the continuous emergence of these new
approaches, real-time, thorough, and precise diagnosis of track circuit faults is gradually
being realized. Meanwhile, fault diagnosis in other fields also has referential significance,
such as high-speed trains [12–15] and centrifugal pumps. Ahmad S et al. [16] extracted
fault-related discriminant features from kurtogram images. Ullah N et al. [17] proposed a
fault diagnosis framework based on wavelet coherence analysis and deep learning.

Track circuit fault diagnosis steps are generally divided into signal processing, feature
extraction, and fault classification. Signal processing refers to the use of various signal anal-



Electronics 2024, 13, 859 3 of 16

ysis methods to analyze and process the state signals collected during circuit operation. The
CWT can obtain the characteristic signals of fault information [18]. For feature extraction
and pattern classification, the deep learning algorithm uses the super feature extraction
ability of the deep neural network model, and then uses the classification model to classify
the sample data, which is the frontier processing method of fault diagnosis. However, the
existing deep learning methods also have defects. For example, Zhang K et al. [19] used
one-dimensional convolution for fault feature extraction. These methods directly process
one-dimensional vibration time-series signals without considering the frequency-domain
information in the signals. Therefore, this paper uses the CWT to perform time–frequency
domain processing on track circuit signals and convert one-dimensional signals into two-
dimensional time–frequency images. In order to promote the development of track circuit
diagnostic technology and achieve more efficient and accurate fault diagnosis, an inte-
grated fault diagnosis framework, named DBN-GA-LSSVM, is designed in this study. This
framework employs a DBN for hierarchical feature learning to extract features from fault
signals preprocessed by the wavelet transform. An LSSVM is utilized as the classification
layer for fault classification to further enhance the performance of the LSSVM, which
employs a genetic algorithm to improve the penalty factor and kernel function. The CWT
captures instantaneous features of signals through time–frequency domain analysis, the
DBN extracts advanced feature representations through deep learning, the GA optimizes
parameters through global searches, and the LSSVM deals with nonlinear relationships.
This fusion method overcomes the limitation of traditional methods in complex circuit fault
diagnosis, and improves the modeling and optimization performance of the time-varying
and nonlinear characteristics of the system. Overall, this method brings a new perspective
and efficient solution to the field of uninsulated track circuit fault diagnosis.

2. Track Circuit Fault Diagnosis Network Design
2.1. Overview of the DBN-GA-LSSVM Diagnosis Framework

The proposed framework for the fault diagnosis of the time–frequency intelligent
track circuit is depicted in Figure 1 of this paper. The framework is segmented into four
components and is executed in accordance with the subsequent steps.

1. The creation of a ZPW-2000A track circuit voltage simulation model, implemented
in the Simulink software MATLAB R2022a, is initiated. This model is utilized to
reflect the fault modes of the track circuit, and a corresponding voltage fault dataset
is generated.

2. The initial dataset undergoes continuous wavelet transformation to unveil the time–
frequency characteristics inherent in the voltage signals.

3. The DBN model is utilized to extract distinctive features from the wavelet spectro-
grams, while the LSSVM is employed as a classifier for fault diagnosis.

4. Optimization of the LSSVM parameters is achieved through the application of a
genetic algorithm (GA), and the refined model’s effectiveness is assessed using an
independent test set.

2.2. Generation of the Dataset
2.2.1. Modeling of the ZPW-2000A

The ZPW-2000A track circuit is composed of two integral segments: the primary track
and the secondary track. Spanning from the transmission point to the reception point,
this track circuit configuration encompasses essential components, including a transmitter,
transmission cables, matching transformers, rails, tuning units, hollow coils, compensating
capacitors, and receivers, as illustrated in Figure 2. The electrical insulation section consists
of two types of tuning units, TU1 and TU2, a hollow coil SVA, and a segment of rail. The
compensating capacitance on the main track is the capacitance of the main track. The
impedance ZTU1, ZTU2, and ZSVA correspond to the equivalent impedances of tuning units
TU1, TU2, and the hollow coil SVA, respectively.
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The occurrence of failure in track circuits can be inferred by the variations in voltage
levels within the circuit. However, some faults may require on-site judgment from mainte-
nance personnel based on their own experience. In this study, a comprehensive analysis
of the causes and consequences of faults in various track circuit equipment is conducted,
resulting in the identification of 20 typical track circuit faults; the patterns of these faults
and their respective impacts are presented in Table 1.
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Table 1. Typical fault classification table of a track circuit.

Fault Number Failure Mode Failed Part

F1 normal -

F2 the sending voltage is large
transmitterF3 the sending voltage is small

F4 the analog network capacitance is small
transmitting cableF5 the analog network inductance is small

F6 SPT cable fault

F7 matching transformer fault transmitter matching
transformer

F8 TU1 failure
transmitter tuning areaF9 SVA failure

F10 TU2 failure

F11 the ballast resistance is large
rail lineF12 the ballast resistance is small

F13 compensation capacitor fault

F14 TU1 failure
receiver tuning areaF15 SVA failure

F16 TU2 failure

F17 matching transformer fault receiving-end matching
transformer

F18 SPT cable fault
seismic cableF19 the analog network capacitance is small

F20 the inductance of the analog network is small

2.2.2. Time–Frequency Visualization of the CWT

The continuous wavelet transform (CWT) is a mighty time–frequency analysis method
that provides a comprehensive analysis of signals at different scales [20]. The voltage
signals in railway circuits can be regarded as one-dimensional time series, with the am-
plitude corresponding to each sampling point represented on the y-axis, and the time or
sampling points represented on the x-axis [21]. Different sections of the railway circuit
employ carrier signals of varying frequencies. Railway circuits are typically subjected
to complex operating environments, affected by factors such as temperature variations,
humidity, and electromagnetic interference. These factors give rise to complex nonlinear,
non-stationary, and stochastic characteristics in the signals, thereby increasing the difficulty
of fault diagnosis. Traditional approaches that directly feed voltage signals into neural
networks encounter challenges in capturing inherent features, leading to constraints on the
precision and adaptability of fault diagnosis. To overcome this limitation, the present study
adopts the continuous wavelet transform (CWT) to preprocess the raw voltage signals. This
application aims to unveil the time–frequency characteristics embedded within the signals
while mitigating the impact of noise signals. Consequently, this methodology enhances the
efficacy of fault diagnosis in railway circuits.

By utilizing variable windows to transform the signals, the CWT offers different
resolutions at different time periods and frequencies, enabling better capture of local time–
frequency characteristics in the signals [22]. This makes the CWT suitable for capturing
induced voltage non-stationary signals in railway circuits, where time and frequency
variations are present.

The CWT dissects the original signal into a sequence of wavelet series, denoted as
φa,b(t). This dissection is achieved by manipulating the wavelet basis function, φ(t),
through translations and scalings. In this context, a defines the scale parameter, deter-
mining the localization of the wavelet time–frequency window within the frequency do-
main. On the other hand, b governs the transformation, determining the placement of
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the time-domain wavelet time–frequency window. The expression of continuous wavelet
transformation is as follows:

φa,b(t) =
1√
|a|

φ

(
t − b

a

)
(1)

For the induced voltage signal u(t), the CWT expression is as follows:

Wu(a, b) =
1√
|a|

∫ ∞

−∞
u(t)φ∗

(
t − b

a

)
dt (2)

In this context, Wu(a, b) represents the wavelet coefficient; φ∗ represents the conjugate
of the wavelet basis function.

Through the application of the CWT, the original time-domain signal undergoes a
transformation into the scale-domain representation. Equation (3) gives the conversion
relationship between scale and frequency:

fu =
fc × fs

a
, (3)

within this equation, fu denotes the signal frequency, fs represents its sampling rate, and fc
signifies the central frequency of the wavelet.

Based on Formula (3), the frequency distribution corresponding to the signal’s scale
can be determined, culminating in the acquisition of the wavelet time–frequency graph
for the signal. This diagram vividly portrays the temporal and spectral characteristics
of the signal, effectively illustrating its frequency–time–amplitude relationship. In this
study, feature extraction hinges on the wavelet time–frequency representation of the signal,
facilitating the exploration of anomaly detection in track circuit voltage.

Taking the rail-in voltage as an example, the time-domain signal diagram of the rail
voltage can be obtained through Formulas (1)–(3), as shown in Figure 3. The sampling rate
is 2500 Hz, and the sampling time is 10 ms.
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2.3. Deep Belief Network

Due to the lack of actual fault data in the field of track circuitry, the diagnosis model
must be able to effectively extract the data feature changes involved in the problem under
certain data conditions. A DBN well solves the problem of feature extraction pre-learning
and deep network training being prone to falling into local optimal solutions. A DBN
effectively overcomes problems such as the slow training speed of top-level classifiers, the
insufficient feature extraction of neural network data, and the forward pre-training and
supervised reverse tuning methods’ tendencies to fall into local extremum.
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A deep belief network (DBN) is a probabilistic generative model composed of layered
hidden units, including restricted Boltzmann machines (RBMs) [23]. Figure 4 depicts
the typical configuration of a DBN. The RBM comprises a visible layer (v) and a hidden
layer (h), with bidirectional connections between the units of each layer. The neurons
within each layer operate independently, where the visible layer neuron can be expressed
as v = {v1, v2, · · · , vn}, and the hidden layer neuron as h = {h1, h2, · · · , hm}. The joint
probability density function between the input layer neuron v and the hidden layer neuron
h is expressed as follows:

E(v, h) = −∑n
i=1 viai − ∑m

j=1 hjbj − ∑n
i=1 ∑m

j=1 hiviwij j, (4)

among which wij represents the connection weight between the visible layer unit i and
the hidden layer unit j, while ai and bj denote the offsets of the visible and hidden layer
units, respectively.
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The DBN method is employed for fault feature extraction in the track circuit, involving
two main stages: pre-training and fine-tuning. During pre-training, various types of track
circuit fault data undergo unsupervised training in layer one of the RBM of the deep
confidence network. The trained model’s output serves as the input to subsequent layers,
and layer by layer, greedy learning continues until the output layer yields track circuit
fault characteristics.

The fine-tuning phase incorporates supervised learning, where the output results are
compared with label data. The error backpropagation algorithm is utilized to reverse-train
the DBN, optimizing its parameters. The DBN’s advantage lies in its ability to extract
advanced features through layer-by-layer training, further enhancing model parameters
in the fine-tuning stage with supervised learning. This approach effectively extracts valu-
able feature information from track circuit fault data, providing crucial support for fault
diagnosis and prediction.
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2.4. Least-Squares Support Vector Machine

To address the classification conundrum of high-dimensional data with limited sam-
ples, this paper uses the LSSVM [24] as the DBN top-level classifier model. The LSSVM
technique utilizes the least-squares method to convert the inequality constraints of sup-
port vector machines (SVMs) into equality constraints. This transformation results in the
training process being streamlined into solving linear equations, effectively simplifying
the algorithm’s complexity. Firstly, the following classification problem-solving equation
is established:

min
ω,b,e

F(ω, b, e) =
1
2

ωTω +
1
2
γ∑m

i=1 e2
i , (5a)

s.t. yi

[
ωT φ(xi) + b

]
= 1 − ei, (5b)

γ > 0, i = 1, 2, · · · , m, (5c)

where e is the deviation vector; γ represents the weight, also known as the penalty factor;
ω is the weight coefficient vector of the LSSVM; yi is the category label; b is the threshold;
φ is a kernel function, which makes the samples linearly separable in higher-dimensional
space. The Lagrange function is introduced to solve the maximum condition of this function,
and the classification formulation of the LSSVM is as follows:

y(x) = sign
[
∑m

i=1 αiyiK(x, xi) + b
]
, (6)

where x is the track circuit fault feature vector extracted using the DBN; K(x, xi) represents
the kernel function, and specifically, the radial basis kernel function is selected in this paper,
and its definition is given in Formula (7), where σ2 is the kernel function parameter.

K
(
xi, xj

)
= exp

(
−
∣∣∣∣xi − xj

∣∣∣∣2σ2
)

, (7)

Because the classification accuracy of an LSSVM model is greatly affected by penalty
factor γ and kernel function parameter value σ2, the penalty factor γ controls the penalty
error beyond the error sample; the larger the penalty factor γ is, the stronger the adaptability
is, and the more over-fitting is prone to occur. The smaller the γ is, the lower the complexity
of the model is, and the more prone it is to under-fitting. The kernel function parameter σ2

affects the dimension of the output space. The traditional LSSVM method usually uses a
fixed γ, while a GA can optimize the selection of the most suitable kernel function to adapt
to different data patterns and problems. The genetic algorithm can find the optimal solution
in the parameter combination through global search and optimization in the parameter
space to improve the performance and effect of the LSSVM model.

2.5. Genetic Algorithm

The genetic algorithm (GA) is based on the principle of “survival of the fittest”, akin
to the fundamental concept elucidated in Darwin’s theory of evolution. As with other
evolutionary algorithms, a GA employs fundamental operators such as selection, crossover,
and mutation [25], known for their global optimization performance and robustness. In
this paper, a GA is employed to acquire the improved kernel function and penalty factor
parameters of the LSSVM. The accuracy of classification in the test set serves as the metric
for fitness evaluation in acquiring the optimal parameters of the LSSVM. Figure 5 shows
the algorithm optimization flow chart.
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3. Experiment
3.1. Experimental Setup and Evaluation Index

In this experiment, a Simulink model is employed to simulate the track circuit, utilizing
six selected monitoring variables as the original feature set: M1 (transmitted voltage), M2
(cable output voltage at the transmitter), M3 (rail surface voltage at the transmitter end),
M4 (rail surface voltage at the receiver end), M5 (cable input voltage at the receiver), and
M6 (rail input voltage). Table 2 presents the field-test data in comparison to the calculated
results, where E1 represents the absolute error, and E2 denotes the relative error. The
track circuit simulation model developed in this study exhibits high accuracy, with a
maximum relative error of 4.80% observed at the rail surface voltage of the sending end
when comparing the simulation results to field-test data.

Table 2. Comparison of field-test data and simulation results.

Feature Simulative Value/V Measured Value/V E1/% E2/%

M1 104 104 0 0
M2 34.28 34.65 0.37 1.07
M3 2.97 3.12 0.15 4.80
M4 2.61 2.61 0 0
M5 20.19 20.51 0.32 1.58
M6 2.3 2.24 0.06 2.60

Aiming at the fault mode summarized in Table 1, after analyzing the monitoring param-
eters of the signal centralized monitoring system, this paper takes six voltage monitoring
quantities as the feature set of the track circuit fault data, which are sending/receiving
voltage, sending/receiving matching voltage, and sending/receiving track surface voltage.
Among these, the data sample under normal operating conditions of the track circuit can
be obtained through routine operation of the track circuit, and other fault samples need
to establish a simulation model for the track circuit to acquire the corresponding fault
sample data by changing the impedance value of the fault area. Since the track circuit fault
dataset has a range of different sizes, to further enhance the network’s data processing and
accelerate convergence, the dataset is uniformly normalized and preprocessed to make
the data distributed in the [0, 1] interval. The post-normalized track circuit data samples
undergo a partitioning process into distinct sets for comprehensive analysis and evaluation.
Specifically, the datasets are categorized into a training set, a validation set, and a testing
set. Dataset quality is critical to deep learning. For 20 types of faults, 50 sets of training data
are selected to ensure that the model has enough training samples for different types of
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faults and improve the model’s adaptability to various fault situations. A total of 1000 sets
of fault data further increase the diversity and coverage of the data. It is helpful for the
model to train various fault conditions, thus improving the robustness andaccuracy of the
model. Furthermore, 5 sets of validation data are chosen for each fault type, culminating in
a combined total of 100 sets. Lastly, for the testing phase, 10 sets of data are procured for
each type of fault, yielding a comprehensive total of 200 sets of fault data.

3.2. Time–Frequency Visualization of Continuous Wavelet Transformation

The CWT is used to extract time–frequency features from the original signal. Taking
the rail-in voltage as an example, the scale range of the CWT is set to 1~6, and the Morlet
wavelet function is selected as the basis function. The results of the transformation are
shown in Figure 6; the abscissa is time, and the ordinate is frequency. The time–frequency
features of 7800 original signals are extracted, respectively, and the time series is uniformly
converted into a time–frequency image with a size of 28 × 28 pixels, which can fully describe
the changes in signals in the time domain and frequency domain. Such representation
is conducive to the training of neural network models, which ultimately leads to the
improvement of convergence performance. Part of the feature extraction results are shown
in Figure 7.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 16 
 

 

of training data are selected to ensure that the model has enough training samples for 
different types of faults and improve the model’s adaptability to various fault situations. 
A total of 1000 sets of fault data further increase the diversity and coverage of the data. It 
is helpful for the model to train various fault conditions, thus improving the robustness 
andaccuracy of the model. Furthermore, 5 sets of validation data are chosen for each fault 
type, culminating in a combined total of 100 sets. Lastly, for the testing phase, 10 sets of 
data are procured for each type of fault, yielding a comprehensive total of 200 sets of fault 
data. 

3.2. Time–Frequency Visualization of Continuous Wavelet Transformation 
The CWT is used to extract time–frequency features from the original signal. Taking 

the rail-in voltage as an example, the scale range of the CWT is set to 1~6, and the Morlet 
wavelet function is selected as the basis function. The results of the transformation are 
shown in Figure 6; the abscissa is time, and the ordinate is frequency. The time–frequency 
features of 7800 original signals are extracted, respectively, and the time series is uni-
formly converted into a time–frequency image with a size of 28 × 28 pixels, which can fully 
describe the changes in signals in the time domain and frequency domain. Such represen-
tation is conducive to the training of neural network models, which ultimately leads to 
the improvement of convergence performance. Part of the feature extraction results are 
shown in Figure 7. 

0 2 4 6 8
time t/ms

200

400

600

800

1000

1200

fre
qu

en
cy

/H
z

2

4

6

8

10

12

14

 
Figure 6. Wavelet time–frequency diagram of voltage signals. 

 
Figure 7. Time–frequency diagram feature set. 

Figure 6. Wavelet time–frequency diagram of voltage signals.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 16 
 

 

of training data are selected to ensure that the model has enough training samples for 
different types of faults and improve the model’s adaptability to various fault situations. 
A total of 1000 sets of fault data further increase the diversity and coverage of the data. It 
is helpful for the model to train various fault conditions, thus improving the robustness 
andaccuracy of the model. Furthermore, 5 sets of validation data are chosen for each fault 
type, culminating in a combined total of 100 sets. Lastly, for the testing phase, 10 sets of 
data are procured for each type of fault, yielding a comprehensive total of 200 sets of fault 
data. 

3.2. Time–Frequency Visualization of Continuous Wavelet Transformation 
The CWT is used to extract time–frequency features from the original signal. Taking 

the rail-in voltage as an example, the scale range of the CWT is set to 1~6, and the Morlet 
wavelet function is selected as the basis function. The results of the transformation are 
shown in Figure 6; the abscissa is time, and the ordinate is frequency. The time–frequency 
features of 7800 original signals are extracted, respectively, and the time series is uni-
formly converted into a time–frequency image with a size of 28 × 28 pixels, which can fully 
describe the changes in signals in the time domain and frequency domain. Such represen-
tation is conducive to the training of neural network models, which ultimately leads to 
the improvement of convergence performance. Part of the feature extraction results are 
shown in Figure 7. 

0 2 4 6 8
time t/ms

200

400

600

800

1000

1200

fre
qu

en
cy

/H
z

2

4

6

8

10

12

14

 
Figure 6. Wavelet time–frequency diagram of voltage signals. 

 
Figure 7. Time–frequency diagram feature set. Figure 7. Time–frequency diagram feature set.



Electronics 2024, 13, 859 11 of 16

3.3. DBN-Based Fault Diagnosis Results

In this experiment, the deep belief network (DBN) serves as the feature extractor for
fault signals. The input signals are the voltage time–frequency images obtained through
continuous wavelet transformation, as discussed in the preceding section. The output of
the DBN is a set of characteristic samples representing faults. The structure of the DBN
employed in this study consists of four layers: 784-128-64-20. Each layer is responsible
for learning features at different levels of abstraction. In order to optimize the weights of
the DBN, it utilizes a gradient descent optimizer known as Stochastic Gradient Descent
(SGD), in which the initial learning rate is specified as 0.01; during the training process,
1000 iterations are performed, with each iteration utilizing a batch size of 10 training
samples. The original dataset comprises 1000 sample sets, which are randomly shuffled
prior to training. In addition, 100 sample sets are reserved for validation, and another
200 sample sets are reserved for testing, ensuring a comprehensive evaluation of the
model’s performance.

In the presentation of the training results, it is evident that the DBN model trained with-
out wavelet transformation (as shown in Figure 8a) exhibits a relatively fast convergence of
training accuracy. However, it may suffer from unstable training accuracy. On the other
hand, the DBN model trained with wavelet-transformed time–frequency images as inputs
(as shown in Figure 8b) achieves a training accuracy of 93.96% after 1000 iterations. The
validation accuracy is 93.50%, and the testing accuracy is 92.00%, highlighting the excellent
performance of this model on both the training and validation sets. Further examination of
the confusion matrices (as shown in Figure 9a,b) allows us to compare the classification
performance of the DBN model with and without wavelet processing. The findings evince
that the DBN model trained with wavelet transformation exhibits clearer classification
results in the confusion matrix, indicating the positive role of wavelet transformation in
improving the model’s classification accuracy. This further confirms the effectiveness of
wavelet transformation in time–frequency image processing, enabling the DBN to capture
fault signal features more effectively and enhance its performance in fault-type classifi-
cation tasks. Therefore, this experiment not only emphasizes the DBN’s ability to extract
features in a layered manner but also underscores the crucial role of wavelet transformation
in fault signal processing. These findings provide strong support for the utilization of deep
learning in fault diagnosis, highlighting the significance of wavelet transformation.
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The high-level features extracted with the DBN serve as the input for establishing a
fault classification model using the LSSVM. The LSSVM uses the least-squares method to
transform the training process of an SVM into solving linear equations, which simplifies
the intricacy of the algorithm and performs well in dealing with small sample problems. In
Figure 10a,b, the output of the feature extraction layer of the DBN model obtained by using
the wavelet transform and not using the wavelet transform is shown, respectively, and
the t-SNE clustering algorithm is used for visualization. Obviously, before using wavelet
transformation, the feature extraction layer of the DBN fails to capture the abstract features
of data well. However, by introducing wavelet transformation, the model can more effec-
tively learn the spatio-temporal features in the data, thereby enhancing the performance of
the DBN-LSSVM classification model. In the visualization results in Figure 10, the outputs
of different DBN layers are displayed and t-SNE is applied to reduce the dimension and
visualization. With the superposition of the number of network layers, the visualization
results show a clearer and more compact classification effect.
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3.4. Genetic Algorithm Optimization for the LSSVM

In this section, a well-trained DBN with the third layer exhibiting superior feature
extraction capabilities has been obtained. In this study, the DBN is utilized as a feature
extractor, with its high-level features serving as inputs to the LSSVM model, aiming to
enhance its performance. Furthermore, the efficacy of the LSSVM model is intricately tied
to the judicious selection of its parameters. A genetic algorithm, a powerful optimization
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method, is employed to explore the parameter space and identify optimal solutions. The
genetic algorithm’s parameters include an initial population size of 50, 100 iterations, a
mutation rate of 0.1, and a crossover rate of 0.4. The upper and lower boundaries for
the kernel function parameters are set at 0 and 0.6, respectively, while the regularization
parameters are bound between 0 and 10. Figure 11 illustrates the optimization process curve
of the genetic algorithm for the LSSVM. The classification accuracy after genetic algorithm
optimization reaches 99.6%. The optimized LSSVM parameters for the kernel function
and regularization are found to be 0.0258 and 8.817, respectively. Figure 12 illustrates
the confusion matrix of the fault diagnosis classification layer utilizing the optimized
LSSVM model on the testing dataset. Compared to the singular DBN model prior to
optimization, the optimized model exhibits improved recognition of fault characteristics
and fault classification. Moreover, the classification accuracy on the testing dataset achieves
a perfect score.
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3.5. Results of Fault Diagnosis Using DBN-GA-LSSVM

To conduct a thorough evaluation of the DBN-GA-LSSVM model’s overall perfor-
mance, a comparative analysis was undertaken against various fault diagnosis models on
a dedicated test set. The suite of diagnostic models we considered encompasses diverse
approaches, including deep belief networks, multi-layer perceptrons, convolutional neural
networks, and backpropagation neural networks. Essential performance metrics, such as
accuracy on the test set and associated training times, were scrutinized.

Table 3 vividly illustrates that the proposed DBN-GA-LSSVM model outshines its
counterparts in terms of classification accuracy. Capitalizing on the robust feature extraction
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capabilities of the DBN and the parameter optimization prowess facilitated by the GA for
the LSSVM, the model not only surpasses the accuracy of MLP and BP neural networks but
also exhibits a 1.8% accuracy improvement over the CNN model. Moreover, it achieves
these performance gains while significantly reducing the training time by a noteworthy 75%.

Table 3. Results of fault diagnosis from five models.

Model Accuracy/% Time/s

DBN 92.00 50.65
MLP 91.21 30.13
CNN 97.80 283.5

BP 91.31 28.33
DBN-GA-LSSVM 99.60 70.18

In this study, the accuracy and time required under the same training conditions
are used to evaluate the performance of the model. The training process of traditional
methods such as MLP mainly depends on the backpropagation algorithm and uses a fully
connected neural network structure. The method in this paper can effectively solve the
problem of gradient disappearance of the backpropagation algorithm, learn more-abstract
and high-level feature representation, improve the training effect and generalization ability
of the network, and thus improve the accuracy of track circuit fault diagnosis.

4. Conclusions

In light of the complexity of fault types and the low diagnostic precision in joint-
less track circuit systems, this study advances a fault diagnosis methodology rooted in
CWT data preprocessing, DBN feature extraction, and GA-LSSVM classification, utilizing
the electrical parameters of indoor and outdoor equipment collected with a centralized
monitoring system. The main conclusions are as follows:

• Using the CWT to preprocess the voltage signal data to obtain a wavelet video image is
helpful to better capture the dynamic characteristics of the signal, so that the induced
voltage signals in different states are easier to distinguish and more interpretable;

• Aiming at the problem of insufficient fault sample data of track circuits, a fault di-
agnosis model based on optimized DBN-LSSVM is proposed. The DBN exhibits a
good feature extraction ability, and the LSSVM has the advantage of solving high-
dimensional pattern recognition in the case of small samples, which reduces the
working time. The genetic algorithm makes the optimization parameters gradually
tend to be optimal with the increase in the number of iterations. Compared with the
traditional neural network, this method has better fault diagnosis performance;

• In terms of engineering verification, the proposed model can be applied to an actual
track circuit fault diagnosis system to further verify its applicability in practical en-
gineering. The research object of this paper is only the ZPW-2000 track circuit, and a
comparative study of 25 Hz phase-sensitive track circuits and high-voltage pulse track
circuits can be added in the future.
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Abbreviations

CWT Continuous wavelet transform
DBN Deep belief network
RBM Restricted Boltzmann machine
GA Genetic algorithm
LSSVM Least-squares support vector machine
MLP Multilayer perceptron
BP Backpropagation neural network
CNN Convolutional neural network
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