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Abstract: In light of recent extreme weather events, it is imperative to explore innovative methodolo-
gies for promptly and accurately measuring various meteorological parameters. The high spatial
and temporal variability in precipitation often surpasses the resolution capabilities of traditional rain
gauge measurements and satellite estimation algorithms. Therefore, exploring alternative methods
to capture this variability is crucial. Research on the correlation between signal attenuation and
precipitation could offer valuable insights into these alternative approaches. This study investigates
(a) the feasibility of the classification of precipitation rate using signal power measurements in cellular
terminals and (b) the impact of atmospheric humidity as well as other meteorological parameters on
the signal. Specifically, signal power data were collected remotely through a specialized Android
application designed for this research. During the time of analysis, the power data were processed
alongside meteorological parameters obtained from the meteorological station of the Physics Depart-
ment at the University of Ioannina gathered over one semester. Having in mind the radio refractivity
of the air as a fascinating concept affecting the way radio waves travel through the atmosphere, the
processed results revealed a correlation with signal attenuation, while a correlation between the latter
and absolute humidity was also observed. Moreover, a precipitation rate classification was attained
with an overall accuracy exceeding 88%.

Keywords: microwave; RSSI; measurements; remote; meteorological parameters

1. Introduction

As a matter of fact, the climate can exhibit outspread variations even inside the same
country or area of interest, so rainfall measurements and predictions are always of high
interest. The potential consequences of insufficient monitoring include significant disasters,
such as flooding or droughts. Consequently, observation systems, models, and devices
of high precision are needed for proper real-time estimation of precipitation [1]. As part
of Earth’s water cycle, the latter is acknowledged to impact all residents in a given area
of interest.

It is widely known that meteorological measurements and estimations are based on
various equipment that ranges from a simple rain gauge to a satellite system. Notably,
rain gauges provide important data relevant to surface rainfall. Also, radar technology
can supply quantitative precipitation estimation (QPE) for vast areas. In addition to the
mentioned schemes, satellite measurements contribute more and more to a global profile
of predictions. This technology becomes more and more mature while evolving into a
vital solution in the absence of gauges or radars [2]. Recently, efforts have been made to
incorporate signal power loss measurements into the existing techniques for estimating
precipitation [3].
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Inductively to the previous facts and techniques, many nations (Netherlands, France,
Germany, and Israel among them) have utilized commercial microwave links (CMLs) in
their cellular networks for acquiring vital information about their regional spatial and
temporal properties of rainfall. Many attempts have been made for the creation of models
relating signal attenuation to precipitation [4]. Various CMLs (also known as opportunistic
wireless sensor networks—OWSNs) have been utilized by scientists to acquire measure-
ments between base stations (fronthaul/backhaul communications). In this way, a large
system of sensors can be established. As an example, we can refer to China, as reported
in [5], where 5G stations number over one million while showing the extent of CML-based
measurement technology integration for the particular area of rainfall estimation. CMLs
have found widespread application in numerous studies dedicated to rainfall sensing. In
various investigations conducted in the Netherlands, CMLs that range from a few tens to a
few thousands were utilized for rainfall sensing [6–8] and the subsequent creation of rainfall
maps [9,10]. One study leveraged data from 70 CMLs [11]. It explored long-term rainfall
monitoring methodologies in Israel, whereas another study delved into rainfall maps
through a smart-city wireless network, investigating both empirical and recurrent neural
network approaches [12]. In Germany, data from thousands of CMLs were used for training
convolutional neural networks to detect rainfall-specific attenuation [13]. Additionally,
researchers utilized data from thousands of CMLs across Germany for rainfall estimation,
while considering the wet antenna effect [14]. Another study focused on hourly precipita-
tion sums (based on CMLs) during a flood event in Germany [15]. In Brazil, an analysis
of the correlation between rain and power measurements from 145 CMLs was conducted,
utilizing the RAINLINK open-source algorithm [16]. Also, a study from the Netherlands
explored potential enhancements to the same algorithm [17]. A novel retrieval algorithm
demonstrated the capability of microwave links to monitor urban rainfall in France by
utilizing data from 25 CMLs [18]. Collaboration between researchers from Germany and
the Czech Republic led to the amalgamation of CML data from both, with the production of
transboundary rainfall maps [19]. The challenges of such an endeavor are discussed in [20].
Rainfall estimation via CML measurements has been studied in West Africa, involving the
usage of over 1000 CMLs for data collection, as presented in a preliminary analysis [21].
The same research team utilized data from 100 CMLs to generate rainfall maps [22]. In
Lebanon, a research team employed CML data to train a low-complexity neural network
for rainfall estimation [23]. In the Republic of Korea, datasets from multiple research paper
publications were examined using different ITU-R models, thus training an artificial neural
network for rain attenuation scaling based on both frequency and polarity [24].

There is a distinct scientific interest in employing CMLs for rainfall estimations, with a
prevailing emphasis on frequencies exceeding 10 GHz [25]. Despite the predominant focus
on higher frequencies, a limited number of studies focused on exploring the area of lower
frequencies. In West Africa, a CML operating at 7 GHz was used for rainfall monitoring
during a monsoon season [26]. Power loss measurements from an experimental setup
operating at 2 GHz led to the creation of a rain estimation model in Greece [27]. Data from
SmartBro subscribers, at 5 GHz, were employed in the Philippines for the development
of a rain alarm system [28]. Studies focusing on frequencies below 10 GHz, or even lower
than 5 GHz, often combined cellular terminals for signal power measurements. The rain
attenuation caused to the GSM frequency of 1.8 GHz was investigated by using cellular
terminals in Taiwan [29]. Furthermore, in Italy, a cellular terminal was utilized to explore
the impact of rainfall on a 4G/LTE signal, and a probabilistic neural network was trained
for rain classification [30]. A detection model for wet/dry classification was trained while
it was based on cellular terminal measurements at 2 GHz in China [31].

Concerning the influence of meteorological parameters beyond rainfall on signal
power, limited research has been conducted, particularly for frequencies below 10 GHz.
In Sweden, a research team delved into the correlation between the performance of IEEE
802.15.4 links and various meteorological factors such as temperature, absolute humidity,
precipitation, and sunlight [32]. Similarly, in Finland, IEEE 802.15.4 links operating at
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the 2.4 GHz ISM frequency were utilized to investigate the effects of temperature and
relative and absolute humidity on signal power [33]. A study conducted by researchers in
Germany addressed, among other factors, the impact of vegetative growth, temperature,
relative humidity, and absolute humidity on the received signal strength of IEEE 802.15.4
links [34]. Researchers from Croatia and Portugal utilized a LoRa-based system while
employing deep-learning techniques to explore the correlation between signal strength and
soil humidity [35]. Additionally, researchers from Germany and Tunisia investigated the
influence of temperature and humidity on signal power measurements in indoor sensor
networks operating at 868 MHz [36]. Last but not least, researchers in Italy analyzed signal
strength measurements in LoRaWAN networks, aiming to establish a correlation with
temperature and absolute humidity [37].

Research on rainfall estimation through signal propagation over the last decade has
mainly focused on the utilization of signal data originating from backhaul cellular mi-
crowave links, with microwave frequencies ranging from 10 GHz to over 35 GHz [38]. On
the other hand, significant research gaps exist in the literature at the lower microwave
frequencies [39]. Specifically, the application of mobile cellular terminals’ signal power,
expressed by RSSI, for either the detection or the classification of precipitation is a subject
of contemporary research [25,30]. To the best of the authors’ knowledge, this is the first
reported case of simultaneously harnessing the RF power level of cellular terminals for
rain classification with temperature, atmospheric pressure, humidity, and radio refractivity
while furthermore processing a wealth of data. This paper aims to investigate the correla-
tion between received signal strength and precipitation, along with other meteorological
parameters such as the temperature, atmospheric pressure, relative humidity, absolute
humidity, and radio refractivity of the air. This study utilized a cellular terminal for power
measurements in the 4G/LTE frequency of 2630 MHz, using a specialized Android applica-
tion, developed for this study. A trained classification tree model categorized precipitation
rates into five distinct categories, along with the presented comparison with several other
models. Consequently, the present work aims to contribute to the aforementioned research
gap. Furthermore, it is estimated that signal data from cellular terminals with backhaul of
the cell phone networks in combination with conventional rain measurement methods will
lead in due course to more accurate weather forecasts. The rest of this paper is organized
as follows: Section 2 describes the measurement setup, the experimental data, and the
meteorological data. The experimental results are presented in Section 3, followed by a
discussion in Section 4 and the conclusions in Section 5.

2. Measurement Setup and Data
2.1. Measurement Site

It is known that meteorological parameters such as precipitation and humidity show
strong spatial variability, mainly during extreme events. Therefore, the measurement site
was chosen to be as near as possible to the meteorological station of the University of Ioan-
nina. Before the measurement results, we needed the meteorological and signal parameter
values over the location that had been selected under specific boundary conditions. The
brief measurement workflow, found in Figure 1, describes the processes following the
insertion of AMS location and weather parameters until the results. The final measure-
ments and the raw data were accessed online and collected for offline analysis and signal
processing. The automatic meteorological station (AMS) of the University of Ioannina
is located within the university campus. Figure 2 shows its location on the map. The
geographical coordinates of 39◦37′11′′ N latitude and 20◦50′48′′ E longitude, as well as the
station altitude, are shown in Table 1.
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Figure 2. Map illustrating the locations of the automatic meteorological station of the University of
Ioannina (AMS, shown in blue), the base transceiver stations in the vicinity of the university (BTSs,
shown in red), and the cellular terminal (CT, shown in green).
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Table 1. Geographical coordinates, altitude, and distance metrics for the meteorological station and
its surrounding base transceiver stations.

Spot Geographical Coordinates Distance from AMS (km) Altitude (m)

AMS * 39◦37′10.5′′ N 20◦50′48′′ E 0 487
BTS + 1 39◦36′21.7′′ N 20◦50′32.7′′ E 1.5 482
BTS 2 39◦36′50.3′′ N 20◦50′48.3′′ E 0.6 485
BTS 3 39◦37′59′′ N 20◦51′00′′ E 1.5 477
BTS 4 39◦37′24.7′′ N 20◦51′53.1′′ E 1.6 477
BTS 5 39◦37′56.5′′ N 20◦52′12.8′′ E 2.5 506
BTS 6 39◦38′17′′ N 20◦48′50.3′′ E 3.5 769

* Automatic meteorological station; + base transceiver station.

As shown in Figure 2, there are six (6) base transceiver stations (BTSs) in the wider
weather station area. The selection criteria of the BTSs were, on the one hand, (a) a distance
smaller than 1.5 km from the AMS and, on the other hand, the possibility of placing a
cellular terminal (b) in a radius not greater than 250 m from the BTS to ensure the uniformity
of the precipitation (c) at the same height as the antenna with LOS between the BTS and
terminal (d) at a point protected and accessible by the research team. BTS 6 is located more
than 3.5 km from the AMS, outside the village of Marmara, at an altitude of 769 m. BTS 5 is
located at 2.5 km and at an altitude of 506 m. These two BTSs were excluded due to the
distance and the altitude difference from the AMS.

There were still four station options within a maximum radius of 1.5 km near the
AMS. Specifically, BTS 4 and BTS 3 were located approximately 1.5 km away from the
reference point. Regarding BTS 4, there was no possibility of placing a cellular terminal
that could meet criterion (c), as the antenna of BTS 4 was located on top of a stadium
projection tower at a height of more than 15 m. BTS 3 was excluded because it did not
meet criterion (d). BTS 2 was the ideal case, as it stood at the shortest possible distance.
On the other hand, BTS 2 did not meet criterion (d). During the debugging process,
measurements were also acquired near the AMS, but in this case, the terminal was paired
either with BTS 3 or BTS 6. Finally, it was possible to place a cellular terminal within the
BTS 1 radius while meeting criteria (b) and (c). The cellular terminal (CT), utilized for
measuring and logging Received Signal Strength Indication (RSSI) data, was positioned at
a fixed distance of 228 m from BTS 1 to which it was paired. BTS 1 is a typical multiband
base station transceiver operating at several frequencies (800/900/1800/2100/2600 MHz).
TBS 1 parameter details are shown in Table 2 [40]. It is important to note that a clear line
of sight (LOS) was maintained between the cellular terminal and the base station. LOS
ensured quality measurements as intervening obstacles could significantly impede signal
stability through reflections, absorption, shadowing, and other factors. Figure 3 includes a
ground-level picture illustrating the area between the cellular terminal and BTS 1.

Table 2. BTS 1 parameters.

Parameter Value

Location number code 1106093
Cell identifier 230153

Downlink frequency (MHz) 2630
Main lobe max. gain (dBi) 18.3

Power at input of the antenna (W) 6
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2.2. Cellular Terminal

The cellular terminal at the measurement site is a device running Android 8. While
several Android applications offer indications for the received signal strength (RSSI), the
challenge lies in finding one that provides sufficient RSSI logging capabilities and the
required information to identify the cell tower and the frequency used for communication
with the cellular terminal. The frequency variation depends on the cell tower that the
device pairs with. Therefore, a specialized Android application was developed to meet
the requirements of this study. The application logged RSSI data within text files at 10 s
intervals. Due to restrictions imposed by Android 8 and later versions on applications
running continuously in the background, the logging functionality of the application
was implemented as a foreground service. This approach minimized the likelihood of
termination by the Android system, enabling the application to remain active and log data
for extended periods. When the service was active, a notification appeared in the Android
device’s notification bar, alerting the user. The application is depicted in Figure 4.

As illustrated in Figure 4, the application displayed the latest RSSI value on the
screen, concurrently plotting the 30 most recent values. At the top left of the screen, the
Absolute Radio Frequency Channel Number (ARFCN) is shown, which was necessary for
determining the downlink carrier frequency used for reception by the cellular terminal.
Adjacent to this, four numbers are displayed, which were required to identify the cellular
tower that was linked to the device, by searching local databases. These numbers are,
namely, the Mobile Country Code (MCC), the Mobile Network Code (MNC), the Location
Area Code (LAC), and the Cell Identity (Cell ID). The MCC is a three-digit code uniquely
identifying a country in the International Mobile Subscriber Identity (IMSI). It is used to
assign a specific country to a mobile network. The MNC is a two- or three-digit code that,
when combined with the MCC, uniquely identifies a mobile network operating in a specific
country. It helps distinguish between different mobile carriers within a country. The LAC
is used to identify a location area within a mobile network. Location areas are groupings of
cells, and the LAC helps in managing and organizing the tracking of mobile devices as they
move between different areas. Lastly, the Cell ID is a unique number identifying a specific
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cell (transmitter/receiver) within a mobile network. Each cell in a network has a unique
Cell ID, allowing the network to pinpoint the location of a mobile device based on the cell
it is connected to. On the top right of the application, the network type is also displayed.
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Figure 4. The Android application when the RSSI logging service is (a) stopped or (b) running and
(c) the notification that appears in the Android device’s notification bar when the logging service
is active.

Pressing the “START LOGGING” button at the bottom of the screen initiates the RSSI
logging service. All the information displayed on the screen was updated every 10 s, and
it was then logged into text files, accompanied by a timestamp (Table 3). Each day, a new
file was created and named according to the date. This type of file stored in the device’s
internal storage had a visible path at the bottom of the screen when the logging service was
active. The precision of the RSSI measurements was device-dependent. In this study, the
cellular terminal exhibited 1 dB precision. Table 2 shows the contents of a text file where
some example raw data are stored, from 22 May 2023.

Table 3. One-minute timeframe of logged data from 22 May 2023.

RSSI Channel Network MCC MNC LAC CID Time

−78 2850 4G 202 5 4060 230153 19:41:44
−78 2850 4G 202 5 4060 230153 19:41:54
−78 2850 4G 202 5 4060 230153 19:42:04
−78 2850 4G 202 5 4060 230153 19:42:14
−78 2850 4G 202 5 4060 230153 19:42:24
−78 2850 4G 202 5 4060 230153 19:42:34
−78 2850 4G 202 5 4060 230153 19:42:44
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In the context of a 4G/LTE network, the frequency channel number is denoted as
E-UTRA Absolute Radio Frequency Channel Number (EARFCN). It can be employed
to determine the downlink carrier frequency utilized by a cellular terminal for receiving
data from a cellular tower, as specified in 3GPP TS 36.101, Chapter 5.7.3 [41], through the
following equation:

FDL = FDL_low + 0.1(NDL − NOffs-DL), (1)

where FDL represents the downlink carrier frequency in MHz, and NDL is the downlink
EARFCN. Additionally, FDL_low and NOffs-DL correspond, respectively, to the lowest fre-
quency and EARFCN values within the E-UTRA operating band determined by NDL. Both
FDL_low and NOffs-DL are obtained from the technical specification 3GPP TS 36.101 [41].

In this study, at the location of the measurement site where the cellular terminal was
placed, the EARFCN consistently had a value of 2850, corresponding to a downlink carrier
frequency of 2630 MHz.

2.3. Meteorological Parameters

The meteorological measurements used in the present work were recorded via the
automatic meteorological station of the University of Ioannina. Specifically, a piezoelectric
barometer (±1 hPa) which recorded atmospheric pressure (P), air temperature (T), relative
humidity (RH), and precipitation height (PH) values, an air temperature (±0.1 ◦C)–relative
humidity (±0.1%) sensor, and a tipping bucket rain gauge (±0.2 mm) were used. All
meteorological sensors were properly installed and maintained in order to provide reliable
measurements, representative of the greater region of the University of Ioannina. The
temporal resolution of the measurements was 30 min for atmospheric pressure, 15 min
for air temperature and relative humidity, and 5 min for precipitation height. The above
temporal resolution values were in agreement with the variability in the corresponding
parameters. Precipitation is a parameter presenting high frequency variations, and therefore
the temporal resolution of the corresponding measurements was the highest. On the
contrary, atmospheric pressure is not characterized by high frequency variations, and a
temporal resolution higher than 30 min would not have added significant information.
From the above parameters, saturation water vapor pressure (es), water vapor pressure (e),
absolute humidity (AH), and radio refractivity of the air (N) are calculated.

Specifically, the Clausius–Clapeyron equation is used for the calculation of es:

des

es
=

LMv

R
dT
T2 , (2)

where the constants L, Mv, and R are the latent heat, the molecular weight of water, and the
gas constant, respectively. The Clausius–Clapeyron Equation (2) expresses the dependence
of saturation water vapor pressure on air temperature. It is shown that es increases as T
increases, but this dependence is not linear. The physical meaning of the equation is that
saturation, in a warmer atmosphere, can be achieved for higher pressure (and therefore
higher concentration) of water vapor.

Then, the definition equation of relative humidity is used for the calculation of water
vapor pressure (e):

e = RHes . (3)

Absolute humidity (AH) is calculated using the equation of state of ideal gas for
water vapor:

AH =
eMv

RT
(4)

Radio refractivity (N) is calculated using the following empirical formula [42]:

N =
77.7

T

(
P + 4810

e
T

)
, (5)
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where T, P, and e are in K, hPa, and hPa, respectively. As far as precipitation, for each
5 min interval, the corresponding precipitation rates (PRs) (mm/h) were calculated, and
these values were then used for the comparison between precipitation and signal power. A
picture of the meteorological station is included in Figure 5.
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3. Results
3.1. Precipitation Rate Classification through Signal Power

The initial focus of this study was to assess the impact of precipitation on the signal
power (RSSI) recorded by the cellular terminal. A moving average was calculated within a
5 min time window and applied to the RSSI data, which had a sampling rate of 10 s intervals.
The outcomes were subsequently compared to the precipitation rate (expressed in mm/h)
observed between May and November 2023. Illustrative instances of precipitation events
and their corresponding impact on the RSSI are presented in Figure 6. The precipitation rate
axis is inverted (with 0 mm/h being at the top) to enhance visualization while juxtaposing
with the RSSI measurements.
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Figure 6. Depiction of instances of five precipitation events (expressed in mm/h, shown in blue)
and their corresponding impact on the signal power measured by the cellular terminal (expressed in
dBm, shown in red) for dates (a) 28 May 2023, (b) 30 May 2023, (c) 03 June 2023, (d) 04 June 2023 and
(e) 17 October 2023.

The graphical representations in Figure 6 demonstrate that precipitation induces a
decline in signal power. Particularly noteworthy is the observation in Figure 6c, where the
precipitation also includes hail, resulting in a substantial signal power attenuation. Fur-
thermore, it is observed that the signal power did not promptly revert to pre-precipitation
levels following the cessation of precipitation. This could be attributed to the concur-
rent increase in humidity induced by precipitation events, which tended to persist over
extended durations.

While the illustrations in Figure 6 revealed a distinct power loss during precipitation
events, the 1 dB precision in RSSI measurements of the utilized cellular terminal did not
permit the precise specification of the precipitation rate based on the RSSI level. Therefore,
a classification approach was explored. The precipitation rate was categorized into the
following five classes:

1. No Rain, 0 mm/h;
2. Light Rain, 0 to 3 mm/h;
3. Moderate Rain, 3 to 15 mm/h;
4. Heavy Rain, 15 to 30 mm/h;
5. Very Heavy Rain, higher than 30 mm/h.

The signal loss (due to precipitation) was calculated by subtracting the RSSI values
during precipitation events from the average RSSI (observed over a 6 h period) preceding
the onset. Subsequently, a comprehensive dataset, comprising approximately 40,000 data



Electronics 2024, 13, 840 11 of 20

points that included power loss measurements and their associated precipitation rates, was
employed to train and test the prediction accuracy of a classification tree model. A subset
of 10% of the full dataset was reserved for testing the model. The model was trained using
the MATLAB Classification Learner app, which is a specialized tool designed for training
classification models.

A classification tree starts with a root node, symbolizing the entirety of the input
dataset. The root node was the first decision node that led to subsequent internal decision
nodes. At each of these nodes, a specific feature was evaluated, such as power loss in the
context of this study, and data were split based on a split criterion. This repeating process
created branches and leaf nodes, while the latter represented the final predicted classes.
The tree was built by optimizing features and decision thresholds to minimize impurity.
During classification, new data traversed the tree from the root to a leaf node, and the
predicted class was based on the majority class in that leaf node. A generic diagram of a
classification tree is illustrated in Figure 7.
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The classification tree trained in this study was a binary tree, where each decision node
always had a single parent node and two child nodes. Furthermore, the tree integrated the
Gini’s diversity index as the split criterion. The Gini index in a classification problem is
expressed as follows:

g(t) = 1 − ∑i p2(i|t), (6)

where t represents the node to which the split criterion is applied, i signifies the total
number of classes in the dataset, and p(i|t) denotes the probability of class i in node t.
The Gini index serves as a metric for quantifying impurity within a decision tree, yielding
values between 0 and 1. A Gini index value of 0 designates a pure node, indicating a node
exclusively comprising instances from a single class. Each power loss value at a given
node is a potential splitting candidate. For every candidate, two child nodes, a left and
a right one, are created. Subsequently, the impurity reduction, ∆I, is computed using the
following formula:

∆I = g(t)−
(

NL

N
g(tL) +

NR

N
g(tR)

)
, (7)

where tL represents the left and tR the right child node, NL and NR are the numbers of
observations in the left and right nodes, respectively, and N is the number of observations
in the parent node, t. Eventually, the applied split is the one that maximizes the impurity
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reduction [43–45]. Individual nodes cease further splitting in the case of a proposed split
leading to a child node with fewer than 10 observations or resulting in a leaf node containing
no observations at all. The model’s ability to accurately predict the class within which the
actual precipitation rate falls, based on power loss, is visually represented in the confusion
matrix of Figure 8.
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class based on power loss data and the true positive rates (TPRs) and false negative rates (FNRs)
related to each of the classes.

It should be noted before continuing to the analysis that the term “rate” in a con-fusion
matrix refers to measurement factors. There are four kinds of factors, declared as TPR (true
positive rate), FPR (false positive rate), TNR (true negative rate), and FNR (false negative
rate). Generally, the best performance is linked to high values of the TPR and TNR, while
the FNR and FPR should be as low as possible.

According to the confusion matrix in Figure 8, the trained model exhibited an overall
accuracy of 88.4%. The matrix illustrates the model’s excellent performance in predicting
the absence of precipitation, that is, in events categorized under the “No Rain” class, where
the true positive rate (TPR) is 99.8%. For the other classes, namely, “Light Rain”, “Moderate
Rain”, “Heavy Rain”, and “Very Heavy Rain”, the model achieved correct predictions at
rates of 88.6%, 82.4%, 81.3%, and 90%, respectively.

The highest observed false negative rate (FNR) was 18.7%, related to the “Heavy
Rain” class. Within this misclassification, 7.1% of instances involved the model erroneously
predicting “Light Rain”, another 7.1% corresponded to the model incorrectly predicting
“Moderate Rain”, and the remaining 4.4% were related to the model falsely predicting
“Very Heavy Rain”. In all three cases, the true class (that the model should have pre-
dicted) was “Heavy Rain”. For the rest of the classes, “No Rain”, “Light Rain”, “Moderate
Rain”, and “Very Heavy Rain”, the false negative rates were equal to 0.2%, 11.4%, 17.6%,
and 10%, respectively.

These findings indicated that although predicting the exact precipitation rate based
on power loss measurements was a challenging endeavor, these measurements could be
effectively utilized for classifying precipitation rates with sufficient accuracy.
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For the purposes of convenience and thus serving as a quick methodology, a brief
summary of the whole procedure presented in this section follows:

1. Measurements were acquired between May and November 2023 (almost seven months).
2. Application of a 5 min moving average to the RSSI data.
3. The precipitation level was categorized.
4. The results of precipitation events showed that precipitation led to a decline in signal

power (attenuation).
5. After precipitation, the signal’s power levels did not revert to the previous state,

alluding probably to increased humidity.
6. Statistical approaches included a trained binary decision tree model with an overall

accuracy of over 88%.

The aforementioned decision tree model yielded the highest overall accuracy when
compared to four other commonly used classification models, namely, Support Vector
Machine (SVM) [46], K-Nearest Neighbors (KNN) [47], Adaptive Boosting (AdaBoost)
with decision trees as base learners [48], and Feedforward Neural Network (FNN) [49].
The SVM model employed a Gaussian kernel with a scale parameter of 0.25 to construct
a hyperplane for class separation. The KNN determined the class of data points based
on the majority class among their nearest neighbors, with Euclidean distance used as the
distance metric. AdaBoost with decision trees adjusted the weights of misclassified data
points over 30 boosting iterations with a learning rate of 0.1. The FNN consisted of a single
hidden layer with 25 neurons using the Rectified Linear Unit (ReLU) activation function for
classification. The overall accuracy of these models was 88.4% for the decision tree model,
81.4% for the SVM, 80.6% for the KNN, 85.5% for AdaBoost, and 76.4% for the FNN. A
comparison between all five models is shown in Table 4, which includes the TPR values for
each model and class, as well as the overall accuracy in each case.

Table 4. Comparison of the accuracy, based on the true positive rate (TPR), for the five trained models:
decision tree, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Adaptive Boosting
(AdaBoost), and Feedforward Neural Network (FNN).

Classification
Model

Decision
Tree

TPR (%)

SVM
TPR (%)

KNN
TPR (%)

AdaBoost
TPR (%)

FNN
TPR (%)Class

1. No Rain 99.8 91.3 99.8 93.9 90.1
2. Light Rain 88.6 75 100 81.3 73.7
3. Moderate Rain 82.4 76.5 74.5 80.9 65
4. Heavy Rain 81.3 78.6 42.8 82.8 72.8
5. Very Heavy Rain 90 85.7 85.7 88.5 80.1

Overall Accuracy (%) 88.4 81.4 80.6 85.5 76.4

3.2. Impact of Atmospheric Humidity and Other Meteorological Parameters on the Signal

The second focus of this study was to assess the influence of atmospheric humidity,
alongside other meteorological parameters, on signal power. Once again, we applied a
5 min moving average to the RSSI data. The correlation between the power loss, computed
from approximately 220,000 RSSI measurements, and various meteorological parameters
obtained from the meteorological station (at the University of Ioannina) was examined.
These parameters contained the temperature (T), relative humidity (RH), absolute humidity
(AH), atmospheric pressure (P), and radio refractivity of the air (N). Figure 9 depicts plots
for each of the studied parameters against all other parameters, organized in the format of
a correlation matrix. In each plot, the Pearson correlation coefficient is highlighted in red,
while the Spearman’s rank correlation coefficient is presented in blue.
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Figure 9. Graphical representation, in the form of a correlation matrix, depicting the correlation
between temperature (T), relative humidity (RH), absolute humidity (AH), atmospheric pressure (P),
radio refractivity of the air (N), and power loss. The corresponding Pearson correlation coefficients
are highlighted in red, while the Spearman’s rank correlation coefficients are presented in blue.

In Figure 9, there is a noticeable correlation between power loss and absolute humidity
(AH). It is apparent that an increase in absolute humidity resulted in a power loss increase.
The Pearson correlation coefficient stood at 0.82, with the Spearman’s rank correlation
coefficient showing a slightly stronger association at 0.86, indicating a monotonic relation-
ship between signal power and absolute humidity. Another substantial correlation was
observed between power loss and the radio refractivity of the air (N). Once again, signal
power loss increased with an increase in the radio refractivity of the air. In this instance,
both the Pearson’s and Spearman’s rank correlations coefficient stood at 0.77. Lastly, a
Spearman’s rank correlation coefficient of 0.52 implied that a potential correlation between
power loss and temperature (T) could not be ruled out. When compared to the remaining
meteorological parameters, power loss showed no other significant apparent dependence.
In Figure 10, the plots depicting the correlation between power loss and the AH, N, and T
are displayed separately.
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A brief presentation of the procedure and results is shown below for the understanding
of the impact of atmospheric humidity and other meteorological parameters on the signal:

1. Application of a 5 min moving average to the RSSI data.
2. Examination of the temperature (T), relative humidity (RH), absolute humidity (AH),

atmospheric pressure (P), and radio refractivity of the air (N).
3. Apparent correlation between power loss and absolute humidity (AH).
4. The signal power levels decreased with an increase in the radio refractivity of the air.

4. Discussion

The presented measurement setup utilized an affordable cellular terminal, costing a
few tens of euros. To cater to the specific requirements of our study, a specialized applica-
tion was developed. This application, equipped with RSSI logging functionality operating
as a foreground service, was seamlessly integrated into the cellular terminal. The collected
data, stored internally, were accessed remotely to ensure no interference with the measure-
ments. The frequency under consideration was 4G/LTE at 2630 MHz. Our investigation
confirmed the efficacy of utilizing measurements from the cellular terminal for precipita-
tion classification. Moreover, the experimental findings unveiled a noteworthy correlation
between signal power measurements and both the absolute humidity and radio refractivity
of the air. Additionally, preliminary observations hinted at a potential correlation with
temperature. To fortify and ensure the reliability of the presented findings, it is imperative
to gather additional data and explore enhanced methodologies and algorithms. This will
contribute to extracting stronger and even more secure conclusions.

4.1. Comparative Study

There is a scarcity of data concerning signal attenuation in comparison to rain and
other meteorological parameters for frequencies below 5 GHz. The majority of the few
existing studies on meteorological parameters, excluding precipitation, tend to focus on
the LoRa frequency of 864 MHz. This study contributes experimental data within the
4G/LTE frequency range of 2630 MHz. Table 5 juxtaposes this work with similar ones,
those examining frequencies below 5 GHz for rain estimation through measuring the signal
power of cellular terminals and those exploring other meteorological parameters in relation
to signal power measured across various setups.
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Table 5. Comparison between the present study and other related works.

Ref. Experimental Setup Frequency
Studied

Meteorological
Parameters

Precipitation
Classification

[29] Cellular terminals GSM
(1.8 GHz) Precipitation, wind speed -

[30] Cellular terminal 4G/LTE Precipitation No rain and three rain
classes

[31] Cellular terminal 2 GHz Precipitation Wet/dry

[32] Outdoor links IEEE 802.15.4
(2.4 GHz)

Temperature, absolute humidity,
precipitation, sunlight -

[33] Outdoor links IEEE 802.15.4 (2.4 GHz) Temperature, relative humidity,
absolute humidity -

[34] Outdoor links IEEE 802.15.4
(2.4 GHz)

Vegetative growth, temperature,
relative humidity, absolute

humidity
-

[35] Outdoor links LoRa
(868 MHz) Soil humidity -

[36] Indoor sensor network 868 MHz Temperature, relative humidity -

[37] Outdoor links LoRa
(868 MHz) Temperature, absolute humidity -

This study Cellular terminal 4G/LTE
(2630 MHz)

Precipitation, temperature,
atmospheric pressure, relative
humidity, absolute humidity,

radio refractivity

No rain and four rain
classes

As previously noted, there is a limited amount of research on the estimation of the
precipitation rate based on power loss for frequencies under 5 GHz. Three studies, which
are included in Table 5, have employed a similar approach to this study, utilizing RSSI
measurements from cellular terminals. The study presented in [29] was focused on distance
estimations based on RSSI measurements from mobile terminals, at the 1.8 GHz GSM band.
The accuracy of the estimations was evaluated under various precipitation conditions,
specifically heavy rain, extremely heavy rain, torrential rain, and extremely torrential
rain, in accordance with the standards established by the Central Weather Bureau, Taiwan.
In [30], RSSI measurements for a 4G/LTE signal were conducted using a mobile terminal. A
probabilistic neural network was trained to classify precipitation rates into four categories:
no rain, weak rain, moderate rain, and heavy rain. The model exhibited a high overall
accuracy of 96.7%. In [31], a 2 GHz link was established employing a cellular terminal, and
RSSI measurements were utilized to train a model for classification between dry and rainy
periods. The TPR of the predictions for dry periods was greater than 70%, while it was
greater than 60% for the rainy periods.

The remaining works in Table 5 focused on the correlation between additional meteo-
rological parameters and RSSI. This area of research has limited related works, especially
for frequencies under 5 GHz. In [32], the correlation between several meteorological pa-
rameters and signal power measurements, based on outdoor links operating at 2.4 GHz,
was explored. The meteorological parameters were temperature, absolute humidity, pre-
cipitation, and sunlight. The study concluded that temperature was the most dominant
correlation factor. Similarly [33], examined signal power measurements at 2.4 GHz from
outdoor sensor networks, identifying a correlation between signal power and absolute
humidity, as well as temperature, while relative humidity had a minor impact. Addition-
ally [34], investigated outdoor sensors operating at 2.4 GHz, with the considered parameters
being vegetative growth, temperature, relative humidity, and absolute humidity. This study
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observed a strong correlation between signal power and vegetative growth, temperature,
and absolute humidity. The remaining studies in Table 5 focused on the LoRa frequency
of 868 MHz. In [35], RSSI measurements were correlated with soil humidity. A Long
Short-Term Memory Neural Network was trained to estimate soil humidity based on signal
strength, achieving high accuracy. In the research presented in [36], an indoor sensor
network operating at 868 MHz was utilized for the exploration of the impact of both tem-
perature and absolute humidity on the RSSI. The study found a strong negative correlation
between the RSSI and temperature for receiver–transmitter distances greater than 5 m, and
a strong positive correlation was also observed between the RSSI and relative humidity.
Lastly, in [37], an outdoor LoRa sensor network was employed for RSSI measurements,
and a correlation was evident with temperature and absolute humidity.

The current study aimed to further explore the feasibility of estimating precipitation
and other environmental parameters utilizing signal strength measurements from cellular
terminals, particularly within the frequency range below 5 GHz, where similar research
is limited. Leveraging cellular terminals for this purpose offers significant convenience
owing to their widespread availability and accessibility. Notably, to the best of the authors’
knowledge, cellular terminals have not been previously employed for the estimation of
meteorological parameters beyond precipitation. Furthermore, the studies that utilize
cellular terminals for precipitation estimations are themselves limited.

4.2. Restrictions and Challenges

The principal advantage of backhaul wireless links lies in the pre-existing infrastruc-
ture. Nevertheless, leveraging received signal power data from cellular terminals has
the potential to surpass the benefits offered by backhaul links. Despite this, a common
drawback persists in both approaches, the suboptimal precision, typically ranging from
0.5 to 1 dB. This precision limitation hampers the accuracy of measurements. The applica-
tion of environmental sensing through signal power data from cellular terminals presents a
significant advantage in terms of expansive spatial coverage. However, it is essential to
acknowledge the current constraint that the device must be stationary, and the specific base
station linked to the device must always be known to generate useful data. This means,
in effect, that constant knowledge of the link distance and frequency is essential. Future
improvements in cellular terminal technology, particularly in measurement precision, could
potentially address these challenges, broadening the applicability of environmental sensing
in diverse settings.

5. Conclusions

The accurate estimation of precipitation and weather conditions in general is very
important in human life in many fields such as agriculture, water management, ecosystems,
climate research, disaster prevention, and health. This study contributes toward the global
scientific effort to develop efficient methods that allow the prediction of weather parameters
such as rainfall and humidity. The key characteristic of this work is that it utilizes already-
established mobile phone infrastructure that provides an effective and low-cost solution, not
requiring extra equipment or hardware other than smartphone devices. More specifically,
this study investigated the feasibility of estimating the precipitation rate and various
meteorological parameters through signal power measurements (RSSI) using a cellular
terminal, focusing on the 4G/LTE frequency of 2630 MHz. The experimental data presented
in this paper indicated that, although the limited precision in RSSI measurements by cellular
terminals prevented exact estimations of the precipitation rate, a viable classification became
achievable when precipitation rate classes were defined. This is substantiated by training a
classification tree model with preliminary experimental data, demonstrating good accuracy
in predicting precipitation rate classes based on signal power loss. Furthermore, concerning
other meteorological parameters, a preliminary analysis revealed a notable correlation
between signal power loss and the absolute humidity, as well as the radio refractivity of the
air. Moreover, a potential correlation with temperature could not be ruled out. The findings
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in this paper are encouraging, and future work may involve extended measurements in a
broader area with multiple terminals and employing various machine learning techniques.
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