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Abstract: In order to satisfy the requirements of modern online security assessment of power systems
with continuously increasing complexity in terms of structure and scale, it is desirable to develop
a power system dynamic security region (DSR) analysis. However, data-driven methods suffer
from expensive model training costs and overfitting when determining DSR boundaries with high-
dimensional grid features. Given this problem, a distributed feature selection method based on grid
partition and fuzzy-rough sets is proposed in this paper. The method first employs the Louvain
algorithm to partition the power grid and divide the original feature set so that high-dimensional
features can be allocated to multiple computational units for distributed screening. At this point, the
connections between features of different computational units are minimized to a relatively low level,
thereby avoiding large errors in the distributed results. Then, an incremental search algorithm based
on the fuzzy-rough set theory (FRST) is used for feature selection at each computational unit, which
can effectively take into account the intrinsic connections between features. Finally, the results of all
computational units are integrated in the coordination unit to complete the overall feature selection.
The experimental results based on the IEEE-39 bus system show that the proposed method can help
simplify the power system DSR analysis with high-dimensional features by screening the critical
features. And compared with other commonly used filter methods, it has higher screening accuracy
and lower time costs.

Keywords: grid dispatch; dynamic security region; distributed feature selection; support vector
machine; Louvain algorithm; fuzzy-rough sets

1. Introduction

The past decade has witnessed an increasing deployment of renewable energy re-
sources and grid interconnection, which results in an extremely complex dynamic behavior
of power systems [1]. The traditional security and stability analysis method (i.e., the
point-wise method) involves numerous simulations under pre-selected faults to judge
whether a power system is secure/insecure or stable/unstable, which is difficult to meet
the requirements of modern online security assessment of power systems [2,3]. For the sake
of quickly and intuitively obtaining a holistic evaluation of the current operating state of
power systems with information such as security margins and optimized control directions,
Wu et al. introduced the concept of security region (SR) [4].

The concept of SR addresses problems from the perspective of regions and describes a
region in which a power system can operate securely as a whole. Based on the difference
between static stability analysis and transient stability analysis, an SR can be classified into
a steady-state security region (SSSR) or a dynamic security region (DSR) accordingly [5]. A
conventional DSR is defined as a set of operating points in the pre-fault power injection
space that can guarantee the transient stability of power systems. Previous research has
proved its topological characteristics of internal connectivity, no void, compact boundaries,
and no knot, which can be approximated by hyperplanes [6]. These characteristics have
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laid the foundation for the practical application of conventional DSRs, resulting in two
kinds of boundary determination methods represented by direct and data-driven methods.

Direct methods search for a critical injected power of power systems for a given
fault based on the transient energy function (TEF) [7–9], extended equal area criterion
(EEAC) [10,11], etc., and then employ a sensitivity analysis to solve the analytical expression
of DSR boundaries. Although these methods are fast and clear in physical interpretation,
they cannot be applied to electronic power systems because of the limitations of TEF and
EEAC (e.g., non-scalability and conservatism) [12]. In contrast, data-driven methods can
effectively compensate for the deficiency in this aspect, which obtains an approximate
hyperplane of the DSR boundaries on a large number of samples by fitting [13,14] or
classification [15,16] techniques. Although the process of generating samples brings extra
time costs, it can be computed offline first and then matched online in practice. Therefore,
these methods have become mainstream methods for determining DSR boundaries in
engineering [17].

For actual grid dispatching, it is not enough to only consider the power injection of
each node in a power system, but also the power transmissions of certain branches or
critical sections [18]. This makes the data-driven methods suffer from expensive model
training costs and overfitting when dealing with massive grid operation features. Therefore,
it is necessary to screen for critical features in advance [19].

The essence of feature selection problems is to find a minimal subset of features for
the system under consideration that maintains or improves the decision-making ability
of data. Currently, the corresponding solution methods in power systems can be mainly
classified into the filter, wrapper, and embedded methods according to whether they are
related to the data-driven model of the subject. The wrapper methods construct an objective
function based on the decision-making accuracy of the data-driven model in the test set,
and iteratively search for an optimal subset of features with an intelligent optimization
algorithm [20–23]. The embedded methods embed feature selection into the process of
training the data-driven model [19,24,25]. Although both of these methods are effective in
screening for critical features in data, they have the disadvantages of slow feature selection
efficiency and easy overfitting of the model, respectively. Therefore, they are unsuitable for
a power system DSR analysis with high-dimensional features [26]. In contrast, the filter
methods are much simpler and more efficient. They only rely on the information attached
to features to evaluate the screened feature subset and are independent of the data-driven
model [27–32]. However, most of the existing filter methods, such as Relief [33], Fisher
Score [34], and Mutual Information [35], ignore the intrinsic connection between features,
which leads to redundant feature selection results. In addition, there are also studies such
as [36] that combine the filter and wrapper methods to screen features in two steps, but this
might lead to further slowdowns in selection.

To effectively and efficiently screen for critical features in a power system DSR anal-
ysis, a better filter feature selection method needs to be developed that can address the
above shortcomings. The fuzzy-rough set theory (FRST) provides us with an attractive
idea [37]. It uses discernable sample pairs of features to describe the implicit information
in data, which helps to take into account the intrinsic connection between features during
feature selection. Furthermore, inspired by [38], it is desirable to allocate high-dimensional
features to multiple computational units (assuming that computer resources are divided
into computational units and coordination units) for distributed screening. This can further
improve the overall efficiency of the method. Considering that grid features within the
same electrical partition usually have a much stronger connection to each other, while grid
features between different electrical partitions are relatively less connected, adopting a grid
partition-based method to divide features will be more in line with engineering practice
than the Pearson correlation coefficient-based method in [38].

In summary, a distributed feature selection method based on grid partition and fuzzy-
rough sets is proposed, which consists of two parts: partitioning the power grid and
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dividing the original feature set by the Louvain algorithm, and realizing feature selection
based on the FRST. The main contributions in this paper are summarized as follows:

(1) Considering the need for actual grid dispatching, extend the definition of DSR in
power systems from the power injection space to the Cartesian product of the power
injection space and power transmission space (referred to as the power space). Mean-
while, considering the changes in topological characteristics brought about by the
extension, introduce a support vector machine (SVM) with a Gaussian kernel function
to approximate the boundaries of the extended DSR.

(2) Propose a distributed feature selection method based on grid partition and fuzzy-
rough sets that can be applied to a power system DSR analysis with high-dimensional
features. On the one hand, electrical partition by the Louvain algorithm can allocate
the original feature set to multiple computational units for screening, while the
connection between different feature subsets is minimized to a relatively low level,
thereby avoiding large errors in the distributed results. On the other hand, feature
selection based on the FRST is not only efficient but can also effectively take into
account the intrinsic connections between features and, thus, improve the screening
accuracy.

The remainder of this paper is organized as follows: Section 2 extends the definition of
DSR for power systems and introduces the SVM method for approximating the extended
DSR boundaries. Section 3 proposes a distributed feature selection method for screening
critical DSR features. A case analysis was carried out and the experimental results are
presented to substantiate the proposed method in Section 4. Finally, Section 5 draws the
conclusion.

2. Power System Dynamic Security Region
2.1. Extension of Dynamic Security Region

In actual dispatching work, grid dispatchers are often concerned about the power
transmissions of certain branches or critical sections, in addition to the power injection of
each node in the power system. A conventional DSR is defined in the power injection space,
which cannot help dispatchers identify potential problems on the branches quickly. Hence,
to perform online real-time security monitoring, assessment, and control more scientifically
and efficiently, this paper first extends the definition of DSR to the power space, which can
be formulated as follows:

Ωd(i, j, F) ≜ {y|xτ(y) ∈ R(y)} ∩ Y (1)

where Ωd denotes the DSR of the power system; F is a given fault; i and j are the pre-fault
and post-fault system topology, respectively; xτ(y) represents the system state at the instant
of fault clearing τ; R(y) represents the region of attraction (ROA) of the equilibrium point
xs(y) determined by the power vector y; and Y is the set of all y that satisfies the constraints
of the power flow equations, the upper and lower limits of node-injected power, and the
upper and lower limits of branch-transmitted power.

Y = {y|g(y) = 0, ymin ≤ y ≤ ymax} (2)

where g(y) = 0 is the power flow equation, and ymin and ymax are the limit vectors of the
power vector y.

As can be seen, the extended DSR determines a set of all points in the pre-fault
power space that can ensure the transient stability of the power system after a given
fault has occurred. In an engineering application, grid dispatchers need to determine
the corresponding extended DSR for each fault in the pre-selected fault set. It has been
shown that for a given fault type, fault duration, and system topology before and after the
fault, this set is uniquely determined, and it has the topological characteristics of internal
connectivity, no void, compact boundaries, and no knot.
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The mapping relationship between DSR and ROA is shown in Figure 1.
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Figure 1. The mapping relationship between DSR and ROA. y and y′ are the points inside and outside
the DSR, respectively; xs and x′s are the equilibrium points of the corresponding ROA after a given
fault has occurred; and xτ and x′τ are the system states at the instant of fault clearing.

2.2. Approximate Boundaries of Extended Dynamic Security Region

The essence of a power system DSR analysis is to determine its boundaries. For
a conventional DSR defined in the power injection space, the boundaries can be easily
approximated by one or a few hyperplanes [6]. However, after the extension, they might
be curved because of the internal electrical connection between the node-injected power
and branch-transmitted power. Given this property, in this paper, we introduce an SVM
with a Gaussian kernel function to approximate the boundaries of the extended DSR.

SVM is an effective tool for two-group classification problems [39], and its basic
principle is shown in Figure 2. It uses a convex optimization technique to find the optimal
discriminant surface based on the linear discriminant function as follows:

f (x) = wTϕ(x) + b (3)

where w and b are the normal vector and displacement term of the hyperplane, respectively;
x represents the sample data; and ϕ(x) is a mapping function that maps the non-linearly
classifiable input x to a very high-dimension feature space so that they can become linearly
classifiable.
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Under an ideal condition (where the post-mapping sample data are completely linearly
classifiable), the optimal values of w and b can be obtained by solving the following
optimization problem:{

min 1
2∥w∥2

s.t. yi
(
wTϕ(xi) + b

)
≥ 1, i = 1, 2, · · · , n

(4)

where yi is the actual class of sample i, and n is the number of sample data.
However, there are often some outliers, resulting in the post-mapping sample data

not being completely linearly classifiable because of the existence of system noise and
measurement errors in practice. At this time, for the sake of classification accuracy, the
optimization objective and constraints in Equation (4) can be modified by introducing
relaxation variables:

min 1
2∥w∥2 + C

n
∑

i=1
εi

s.t.
{

yi
(
wTϕ(xi) + b

)
≥ 1 − εi

εi ≥ 0
i = 1, 2, · · · , n

(5)

where ε is a relaxation variable, and C is a penalty parameter that implies the importance of
the outliers. It should be noted that increasing C can improve the classification performance
of the discriminant surface on the training samples, but it also brings the risk of overfitting
and additional training time costs.

When we solve the above optimization problem by the Lagrange function and Karush–
Kuhn–Tucker (KKT) Conditions [40], it will involve the operation ϕ(xi)

Tϕ
(
xj
)
, which is

very difficult to solve since the dimension of ϕ(·) is too high and even infinite. An effective
approach is to construct a kernel function:

k
(
xi, xj

)
= ϕ(xi)

Tϕ
(
xj
)

(6)

k
(
xi, xj

)
= exp

(
−
∥∥xi − xj

∥∥2

2σ2

)
(7)

where Equation (7) is the Gaussian kernel function employed in this paper, and σ > 0 is
the width, which is trained as a hyperparameter together with the penalty parameter C.

Once we obtain the discriminant surface, it is possible to classify the new data accord-
ing to the following decision rule: if f (x) > 0, it is taken as a positive class; and if f (x) < 0,
it is taken as a negative class.

3. Distributed Feature Selection for Dynamic Security Region

To avoid expensive model training costs caused by a large number of grid features
when approximating the boundaries of the extended DSR by SVM, as well as the decrease
in decision-making ability caused by wrong feature selection results, this paper proposes
a distributed feature selection method based on grid partition and fuzzy-rough sets. The
framework is shown in Figure 3.

First, for a given fault and system topology, grid dispatchers perform the Latin hyper-
cubic sampling simulation on a power simulation software, such as BPA (version 5.0) or
DSP (version 2.3.11), to construct sample data suitable for the DSR analysis. Each sample
should contain information such as active and reactive power injections of nodes, active
and reactive power transmissions of branches, and whether the system can return to a
stable state after the fault.
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At the same time, the power system is abstracted into an undirected weighted net-
work, where the weights of the edges between the nodes are measured by the inverse
of the electrical distance. The smaller the electrical distance, the stronger the electrical
connection between the nodes, and the larger the corresponding weights of the edges. The
Louvain algorithm is employed to partition the above network in a bottom-up manner, and
the corresponding grid-partition result is selected based on the available computational
resources (i.e., the number of computational units).

The electrical distance can be computed as follows:

Dij = Zii + Zjj − 2Zij (8)

where Dij denotes the electrical distance between node i and node j, and Zii, Zjj, and Zij
are the elements of the corresponding position in the node impedance matrix.

Then, the constructed sample data are divided based on the grid-partition result. The
connection between features belonging to different partitions is minimized to a relatively
low level so that they can be distributively screened based on the FRST without causing
a large impact on the screening accuracy. It should be noted that allocating the above
screening process to different computational units can effectively reduce the overall time
costs of the proposed method.

Concerning the allocation of features to different computational units, we can first
assign a partition to each computational unit. Then, the node-injected power and branch-
transmitted power corresponding to the nodes and branches contained in the partition are
the features that the computational unit responsible for screening.

Finally, the feature selection results of all computational units are integrated in the
coordination unit to complete the overall feature selection of the power system.

3.1. Louvain Algorithm

Considering the excessive computation of centralized feature selection when dealing
with high-dimensional grid features, it is desirable to allocate the original feature set
to multiple computational units for distributed screening. When dividing the feature
set, we must ensure a maximum connection of features within the same partition and
a minimum connection of features between different partitions. This helps reduce the
difference between distributed and centralized feature selection results. Therefore, this
paper uses the Louvain algorithm to partition the grid electrically.

The Louvain algorithm is a heuristic partition method based on modularity opti-
mization proposed by Blondel et al. [41], which can quickly and accurately find modular
partitions in a large-scale network. The higher the modularity, the tighter the connec-
tions between nodes within a partition and the sparser the connections between nodes in
different partitions. The specific partition process is shown in Figure 4.
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The algorithm can be divided into two phases in each iteration: modularity optimiza-
tion and network aggregation. The modularity optimization phase first assigns a different
partition to each node of the network and then tries to separate each node from its current
partition and reassign it to the partition to which a neighboring node belongs. If the gain of
modularity is positive, the corresponding node assignment result is retained; otherwise,
the node stays in the original partition. This first phase stops when a local maximum of
modularity is attained, i.e., when no node reassignment can improve the modularity.

Based on the partition result in the first phase, the second phase aggregates the nodes
within the same partitions to obtain a new network. The weights of the edges between
new nodes are given by the sum of the weights of the edges between partitions, and the
weights of the self-loops of new nodes are given by the sum of the weights of the edges
inside the corresponding partitions. Once the network aggregation phase is completed,
it is then possible to reapply the first phase of the algorithm to the resulting undirected
weighted network and to iterate until the modularity of the network is unchanged.

The modularity and the gain of modularity can be computed as follows:

Q = ∑
p∈P

Σp
in

2m
−
(

Σp
tot

2m

)2
 (9)

∆Q =

Σp
in + 2kp

i,in

2m
−
(

Σp
tot + ki

2m

)2
−

Σp
in

2m
−
(

Σp
tot

2m

)2

−
(

ki
2m

)2
 (10)

where Q denotes the modularity of the network under the current partition result; P is a set
that includes all the current partitions; ∆Q denotes the gain of modularity resulting from
reassigning node i to partition p; Σp

in and Σp
tot are the sum of the weights of the edges inside

partition p and the sum of the weights of the edges connected to the nodes in partition
p, respectively; m is the sum of the weights of all edges in the network; and kp

i,in and ki
represent the sum of the weights of the edges from node i to other nodes in partition p and
the sum of the weights of the edges attached to node i, respectively.

3.2. Fuzzy-Rough Set Theory

The traditional rough set theory (RST) is an effective tool for dealing with uncertain
and incomplete data. It is capable of removing redundant and irrelevant features from the
data while keeping the decision-making ability of the data intact [42]. However, since this
theory is developed based on the indistinguishable relation, which is an equivalent relation,
it is necessary to discretize data when applying them to power systems with real-valued
features [43–45]. This may cause serious information loss and affect the result of feature
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selection. Given this problem, Dubois et al. [46] extended the RST to the FRST with the
incorporation of the fuzzy theory.

In the FRST, the structure of data can be written as a decision table (U, A ∪ D), where
U is a nonempty set that includes all the samples; A is a set of real-valued features that
describe the samples; and D is the decision attribute.

Instead of the indistinguishable relation in the RST, the FRST uses a fuzzy similarity
relation (FSR) to assess the similarity between samples:

RB(x, y) = mina∈BRa(x, y) (11)

Ra(x, y) = 1 − |a(x)− a(y)| (12)

where RB(x, y) and Ra(x, y) are the FSR between sample x and sample y on feature subset
B ⊆ A as well as feature a, respectively, and a(x) is the feature a value of sample x.

Suppose there are r different decision classes in the data, then U can be divided
into r different sets U/D = {D1, D2, · · · Dr} accordingly. The fuzzy upper and lower
approximation of sample x on feature subset B and decision class Di are defined as follows:

BDi(x) = supy∈Umin(RB(x, y), Di(y)) (13)

BDi(x) = infy∈Umax(1 − RB(x, y), Di(y)) (14)

where Di(y) = {1, y ∈ Di; 0, y /∈ Di}. Then, the fuzzy positive region of sample x on feature
subset B is defined as follows:

PosB(x) = supDi∈U/DBDi(x) (15)

The fuzzy positive region is an important measure in the FRST regarding whether
there is a change in the decision-making ability of the data before and after feature selection.
When the feature subset B satisfies the following conditions, it can be considered as a
feature selection result of A:

∀x ∈ U, PosB(x) = PosA(x) (16)

∀a ∈ B, ∃x ∈ U, PosB−{a}(x) < PosA(x) (17)

It should be noted that the feature subset that satisfies the above conditions is not
unique. The number of features may fluctuate widely from case to case. For the sake of
minimizing the number of screened features, this paper employs an incremental search
method based on discernable sample pairs. The specific flowchart is shown in Figure 5.
It should be noted that although the sequence of selecting different features from the set
A − B has an impact on the results, i.e., there is no guarantee that the subset of features
obtained by this method is optimal, it can guarantee a relatively optimal result.

Discernable sample pairs are the key to take into account the intrinsic connections
between features and measure whether the added features can improve the decision-
making ability of the selected feature set, which can be computed as follows:

ψ(B) = ∪a∈Bψ(a) (18)

ψ(a) = {(x, y)|min(Ra(x, y), λ(x, y)) = 0, D(x) ̸= D(y)} (19)

λ(x, y) = max(PosB(x), PosB(y)) (20)

where ψ(B) and ψ(a) denote the discernable sample pairs of feature subset B and feature
a, respectively, and D(x) and D(y) are the decision classes of sample x and sample y,
respectively.
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Suppose RedD(A) is used to represent all possible feature selection results of the
data (U, A ∪ D), then the definition and the computational formula of the core feature set
CoreD(A) are, respectively, as follows:

CoreD(A) = ∩RedD(A) (21)

CoreD(A) = {a ∈ A|∃(x, y) ∈ ψ(a), s.t. (x, y) /∈ ψ(A − {a})} (22)

The convergence condition of the method is as follows:

ψ(B) = ψ(A) (23)

∀a ∈ B, ψ(B − {a}) ̸= ψ(A) (24)
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4. Examples

To demonstrate the effectiveness and efficiency of the proposed distributed feature
selection method, we selected the IEEE 39-bus system [47] for application in this paper. This
system consists of 10 generators, 39 nodes, and 46 branches. In the DSR analysis, 54 power
injections of nodes and 184 power transmissions of branches need to be considered. The
schematic of the IEEE 39-bus system is shown in Figure 6.
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numbers.

For a better distribution of the constructed sample data throughout the feature space,
we first performed stratified random sampling in the range of 75% to 125% of the original
load and power generation level by the Latin hypercubic sampling method. The power
flow calculation and transient stability calculation of each sample were carried out using
the simulation software DSP of the China Southern Power Grid Electric Power Research
Institute (CSG EPRI). In particular, the generator on node 31 was taken as the swing
machine in the power flow calculation. A three-phase short circuit with a duration of five
waveforms was set to occur at the end of branches 14–15 in the transient stability calculation.
Finally, we obtained 435 stabilization sample data and 565 destabilization sample data.

At the same time, we computed the weight matrix of the nodes according to Equa-
tion (8) and partitioned the system electrically by the Louvain algorithm, as mentioned
in Section 3.1. After partitioning twice, the algorithm converged. The modularity change
curve and grid-partition result for each partition are shown in Figure 7.

As can be seen, the IEEE-39 bus system can be effectively decomposed into multiple
modular partitions with the Louvain algorithm. When the grid-partition result is like
Figure 7b, the overall modularity of the system is maximized at 0.1538.

Then, we divided the constructed sample data based on the above grid-partition
results and the available computational resources (this example assumes that there are
three computational units for convenience of analysis) so that the high-dimensional features
were allocated to the respective partitions to which they belonged for distributed screening.
The number of features in each partition is shown in Table 1.
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Table 1. The number of features in each partition.

Partition Node Power Injections of
Nodes

Power Transmissions
of Branches

1 3, 15−24, 26−27, 33−35 28 80
2 1−2, 9, 25, 28−30, 37−39 14 42
3 4−8, 10−14, 31−32 12 62

Total 54 184

In the next step, centralized feature selection and distributed feature selection were
carried out based on the FRST, as mentioned in Section 3.2. Meanwhile, to show the impact
of the DSR analysis before and after the feature selection, the SVM method mentioned in
Section 2.2 was used to determine the DSR boundaries of the IEEE-39 bus system. When
training the SVM model, we randomly selected 700 samples as the training samples and the
remaining 300 samples as the test samples; we set the logarithm of the penalty parameter C
in Equation (5) and the width σ in Equation (7) to change in the range [−10, 10] in a step of
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0.1, and we employed 5-fold cross-validation to select the value that made the model most
accurate. The experimental results are described below.

Figure 8 shows the projection results of the DSR constructed on the original feature set
for the 2D power injection space and the 2D branch transmission space. From the results
presented in Table 2, it can be seen that the decision-making accuracy (i.e., DSR analysis
accuracy) based on the screened feature set exceeds the decision-making accuracy based
on the original feature set by 1.34%, both for centralized and distributed feature selections.
In addition, compared to the centralized method, the screened feature set obtained by
the distributed method has one more power transmission of the branches, but the time
consumed is 3.0636 s less, and the performance is improved by 84.16%. It should be noted
that decision-making accuracy is an important measure of whether a screened feature set
is good or bad. It is related to whether the grid dispatchers can accurately identify the
security and stability of the power system after a given fault has occurred. Therefore,
decision-making accuracy based on screened feature sets should be the primary criterion
to follow when comparing the performance between different feature selection methods.
Then, we compared the time cost to show their scalability (ability to be applied to large-scale
systems). Furthermore, the centralized method theoretically obtains more accurate results
than the distributed method, but this should be expressed as fewer screened-out features,
as shown in this paper. Therefore, it is reasonable that the decision-making accuracies of
the screened feature sets obtained by the centralized and distributed methods are the same,
as shown in Table 2.

Table 2. Comparison of DSR analysis accuracy before and after feature selection.

Power
Injections of

Nodes

Power
Transmissions

of Branches
Time Costs (s) DSR Analysis

Accuracy (%)

Before Feature
Selection 54 184 - 91.33

After
Centralized

Feature Selection
22 36 3.6404 92.67

After
Distributed

Feature Selection
12 + 5 + 5 = 22 14 + 16 + 7 = 37 0.5768 92.67
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Decision-making accuracy can be computed as follows:

Acc(%) =
ncorrect

ntest
× 100 (25)

where ntest denotes the number of test samples, and ncorrect denotes the number of samples
with correct decisions in the test samples.

This study also selected several other typical filter feature selection methods for a
comparative analysis, including the Relief, Fisher Score, and Mutual Information methods.
It should be noted that these filter methods only provide an evaluation index of each
feature, so we needed to select a certain number (58 just like during the centralized feature
selection) of top-ranked features as the results. The specific results are shown in Table 3.

Table 3. Comparison of the proposed method and other commonly used filter methods.

Power
Injections of

Nodes

Power
Transmissions

of Branches
Time Costs (s) DSR Analysis

Accuracy (%)

Relief 23 35 0.3047 91.67
Fisher Score 9 49 0.0042 89.67

Mutual
Information 4 54 39.7484 87.00

Proposed
Method 22 37 0.5768 92.67

As can be seen, although the Relief and Fisher Score methods have lower time costs,
one can observe the superiority of the proposed method in terms of decision-making
accuracy based on their screened feature sets, which is higher than other methods by 1%,
3%, and 5.64%. The Mutual Information method gives the worst results, not only in terms of
the highest time costs but also the lowest decision-making accuracy of 87%. In particular, its
extremely high time costs stem from computing the mutual information between features
and the decision attribute made by the nearest neighbor technique.

In summary, the proposed distributed feature selection method based on grid partition
and fuzzy-rough sets has the following advantages: (1) It can help simplify the power
system DSR analysis with high-dimensional features while screening for critical features,
and it demonstrates good practicality. (2) Compared to other commonly used filter methods,
it gains the highest screening accuracy with acceptable time costs. Furthermore, it should
be noted that the more computational resources available, the more groups the high-
dimensional features can be divided into based on the grid-partition results of the Louvain
algorithm, and the more efficient the feature selection becomes.

5. Conclusions

This paper proposes a distributed feature selection method based on grid partition
and fuzzy-rough sets for power system DSR analyses. The method consists of two main
parts: partitioning the power grid and dividing the original feature set by the Louvain
algorithm, and realizing feature selection based on the FRST. On the one hand, the Louvain
algorithm can quickly and accurately find modular partitions in a large-scale grid so that the
connection of the features between different partitions is minimized to a relatively low level.
At this point, the high-dimensional features can be allocated to multiple computational units
for distributed screening without causing a large impact on screening accuracy. On the other
hand, compared to other filter methods, the feature selection method based on the FRST can
effectively consider the intrinsic connections between features and avoid the redundancy
of results. The experiment results show the effectiveness and efficiency of the proposed
method. Our future research will focus on exploring a better method to approximate
the DSR boundaries and implementing it in real-world engineering applications with the
proposed feature selection method.
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Abbreviations/Nomenclatures
SR Security Region
SSSR Steady-state Security Region
DSR Dynamic Security Region
ROA Region of Attraction
TEF Transient Energy Function
EEAC Extended Equal Area Criterion
RST Rough Set Theory
FRST Fuzzy-rough Set Theory
FSR Fuzzy Similarity Relation
SVM Support Vector Machine
KKT Karush–Kuhn–Tucker Conditions
Variables
Ωd The DSR of the power system
F The fault to be studied
y The power vector to be studied or the class of sample
ymin The lower limit vectors of y
ymax The upper limit vectors of y
x The system state or the sample data
xτ(y) The system state at the instant of fault clearing τ

xs(y) The equilibrium point in the state space
R(y) The ROA of the power system
Y The set of y that satisfies the constraints
w The normal vector of the hyperplane
ϕ(x) The mapping function
b The displacement term of the hyperplane
n The number of sample data
ε The relaxation variable
C The penalty parameter

k
(

xi, xj

)
The kernel function

σ The width parameter in k
(

xi, xj

)
Dij The electrical distance between node i and node j
Zij The elements of the corresponding position in the node impedance matrix
Q The modularity of the network
∆Q The gain of modularity
Σp

in The sum of the weights of the edges inside partition p
Σp

tot The sum of the weights of the edges connected to the nodes in partition p
m The sum of the weights of all edges in the network
kp

i,in The sum of the weights of the edges from node i to other nodes in partition p
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ki The sum of the weights of the edges attached to node i
RB(x, y) The FSR between sample x and sample y on feature subset B
Ra(x, y) The FSR between sample x and sample y on feature a
BDi(x) The fuzzy upper approximation of sample x on feature subset B and decision class Di
BDi(x) The fuzzy lower approximation of sample x on feature subset B and decision class Di
Di(y) Determine whether y belongs to decision class Di
PosB(x) The fuzzy positive region of sample x on feature subset B
ψ(B) The discernable sample pairs of feature subset B
ψ(a) The discernable sample pairs of feature a
D(x) The decision classes of sample x
RedD(A) All possible feature selection results of the data (U, A ∪ D)
CoreD(A) The core feature set
Acc(%) The decision-making accuracy
ntest The number of test samples
ncorrect The number of samples with correct decisions in the test samples
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