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Abstract: To ensure the aggregation of a high-quality global model during the data-sharing process
in the Internet of Vehicles (IoV), current approaches primarily utilize gradient detection to mitigate
malicious or low-quality parameter updates. However, deploying gradient detection in plain text
neglects adequate privacy protection for vehicular data. This paper proposes the IoV-BDSS, a novel
data-sharing scheme that integrates blockchain and hybrid privacy technologies to protect private
data in gradient detection. This paper utilizes Euclidean distance to filter the similarity between
vehicles and gradients, followed by encrypting the filtered gradients using secret sharing. Moreover,
this paper evaluates the contribution and credibility of participating nodes, further ensuring the
secure storage of high-quality models on the blockchain. Experimental results demonstrate that our
approach achieves data sharing while preserving privacy and accuracy. It also exhibits resilience
against 30% poisoning attacks, with a test error rate remaining below 0.16. Furthermore, our scheme
incurs a lower computational overhead and faster inference speed, markedly reducing experimental
costs by approximately 26% compared to similar methods, rendering it suitable for highly dynamic
IoV systems with unstable communication.

Keywords: blockchain; federated learning; secret sharing; privacy-preserving; Internet of Vehicles

1. Introduction

The Internet of Vehicles (IoV) seamlessly integrates Vehicle-to-Vehicle (V2V), Vehicle-
to-Road (V2R), and Vehicle-to-Infrastructure (V2I) communications by employing onboard
equipment as the communication medium [1–3]. IoV represents a comprehensive network
that facilitates wireless communication and data sharing among vehicles, individuals, and
road infrastructure. Its versatile capabilities encompass traffic flow forecasting, vehicle
position monitoring, dynamic data exchange, route selection and planning, and optimal
driving experiences [4,5]. In the dynamic context of motion, vehicles continually generate
diverse data types, including multimedia data, intricate driving trajectories, and real-time
traffic information [6]. The abundance of data can result in communication congestion and
potential redundancy [7]. Consequently, concerns regarding single points of failure and
privacy breaches hinder users from actively participating [8]. Given these issues, current
approaches to utilizing a centralized server for data collection become impractical [9,10].
Traditional machine learning approaches may not be well suited for highly dynamic IoV
systems that are characterized by unstable communication [11].

Federated Learning (FL) has emerged as a privacy-preserving approach, ensuring
both the availability and privacy of original data. Integrating FL with IoV offers various
advantages, such as increased efficiency, improved privacy, decreased response time, and
enhanced practicability [12,13]. The central server updates the global model by utilizing
the collected local models, while the private data are stored locally. This approach can solve
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specific security concerns linked to the transmission of original data, but it does introduce
a reliance on third-party aggregators, thereby exposing itself to potential attacks, such as
single points of failure, data tampering, and privacy breaches. The balance among these
issues holds paramount importance in realizing a harmonious fusion of FL and IoV.

Blockchain provides decentralized and tamper-resistant functionality to IoV through
various methods, such as data encryption, timestamps, and distributed consensus [14,15],
effectively enhancing security and privacy within the IoV. By eliminating centralized
management in traditional IoV systems, blockchain reduces reliance on cloud-based data
storage and management, enabling any two entities (e.g., individuals, RSUs, and vehicles)
to engage in peer-to-peer transactions, sharing, and communication. Directly maintaining
vehicle services and transactions through blockchain facilitates significant reductions in
operating costs and system risks. Establishing robust trust relationships among initially
untrusted entities enhances the credibility of vehicle data through reliable verification,
consequently reducing the possibility of fraud and false data dissemination. Nodes in
the blockchain review uploaded models and securely store them in immutable ledgers,
using cryptographic technology to enhance the security and privacy within this IoV system.
Smart contracts facilitate the deployment and execution of predefined rules or scripts. In
conclusion, integrating blockchain into an IoV system enhances the security, reliability,
and credibility of data, reduces system costs, and enables rapid sharing and exchange
of vehicle information among multiple entities [16,17]. This solution not only mitigates
the risk of training nodes sharing malicious and redundant data but also ensures the
security and quality of the model. Moreover, it achieves dynamic selection and control of
blockchain nodes, resolving concerns of privacy breaches during task allocation processes.
This, ultimately, enhances the throughput and efficiency of the IoV system [18,19].

Figure 1 illustrates that the integration of Federated Learning (FL) and blockchain is
commonly used for data sharing in the Internet of Vehicles (IoV) [20–22]. However, there
exists a potential vulnerability whereby training nodes can upload malicious models.
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Although vehicles undergo verification upon participating in an FL task, complete
trust cannot be guaranteed. Vehicles have the potential to engage in malicious behavior
during the training process. If each vehicle utilizes the initial model obtained from the
roadside unit, there is the possibility of intentionally tampering with a certain proportion
of training results or submitting incorrect gradients [23], thereby increasing the likelihood
of data misclassification and results manipulation [24]. As a result, false and invalid traffic
information may manifest in the IoV system. Some scholars have used gradient detection
to identify models that deviate significantly from normal models by calculating the dis-
tance. This method effectively filters out malicious model updates to prevent potential
damage. However, this assumes that the central aggregator can clearly observe updates
during gradient detection, without considering the potential risk of privacy breaches for
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participating users. Previous studies [25] have shown that in the presence of an unsecured
edge computing wireless communication channel, when a node uploads parameters to the
RSU in plain text, external adversaries can still launch inference attacks on parameter up-
dates, inferring the original training data (e.g., gradient and weight). Consequently, private
information about these vehicles [26] or sensitive data on the model updates [25] (e.g., the
original distribution of the training data) could be compromised. Moreover, because of the
curious and dynamic nature of each vehicle, there is a possibility that it may intentionally
attempt to access the private information of other vehicles. In an IoV system characterized
by unstable communication, intermittent disconnections may occur, which can negatively
impact the aggregation of the global model.

In this paper, we propose IoV-BDSS, a new data-sharing scheme that distinguishes
itself through its expert incorporation of blockchain and federated learning techniques.
This scheme enables the filtration and sharing of data within an Internet-of-Vehicles (IoV)
environment. The primary contributions of this study are presented as follows:

• We designed an innovative data-sharing scheme for the IoV, employing a secret-sharing
algorithm based on the Chinese remainder theorem as an alternative to homomorphic
encryption. Our proposed scheme significantly mitigates the computational overhead
related to encrypting and decrypting training results.

• To optimize the training effectiveness and efficiency, we innovatively utilized the
Euclidean distance to select vehicles that exhibit high data similarity to the task issuer.
Furthermore, we improved the Multi-Krum algorithm and integrated it with the secret-
sharing algorithm to achieve ciphertext-level filtering of toxic parameter updates. This
integration helps optimize the training process further.

• We implemented assessment mechanisms to evaluate the contribution of RSUs and
the credibility of vehicles, further ensuring the reliability of training. Furthermore,
coupled with the improved consensus mechanism, this enables the secure storage of
high-quality models on the blockchain.

• Our proposed scheme was implemented utilizing FISCO BCOS as the underlying
distributed framework for the IoV, coupled with FL deployment. Performance valida-
tion was conducted using two real datasets. The experimental results demonstrate its
effectiveness in ensuring the protection of private data, and our model outperforms
other advanced approaches in terms of the overall performance.

The following sections of this paper are organized as follows: Section 2 presents the
related work; Section 3 describes the system architecture; and Section 4 introduces the
overall process of the IoV-BDSS in detail. Then, Section 5 analyzes the security of the
system, while Section 6 conducts simulation experiments and evaluates the performance.
Finally, Section 7 presents the conclusion of the full text.

2. Related Work

Federated learning has shown successful applications in the Internet of Vehicles (IoV),
including accurate predictions in domains like heavy vehicle driving status forecasting
and unmanned drone lighting status monitoring [27]. However, the current IoV system
still encounters challenges related to the privacy of vehicle information, despite notable
advancements in these applications [16]. To address these challenges, the integration
of blockchain and federated learning emerges as a critical component within the IoV. A
Blockchain-Based Federated Learning (BFL) system was proposed by Pokhrel et al. [16],
enabling updates for local on-vehicle machine learning via a consensus mechanism, elimi-
nating the necessity of the centralized coordination of data or other entities. Chai et al. [20]
introduced a federated learning framework that facilitates data sharing, leveraging a hier-
archical blockchain, utilizing Roadside Units (RSUs), and implementing a two-layer Proof
of Knowledge (PoK) consensus mechanism, all while formulating the transaction process
as a multileader and multiparty game.

Previous schemes aimed at protecting data privacy and defending against poisoning
attacks primarily utilized centralized anomaly detection, Secure Multiparty Computation



Electronics 2024, 13, 714 4 of 23

(MPC) [28], Homomorphic Encryption (HE) [29], and Differential Privacy (DP) [30]. HE
guarantees that the encrypted computation results are identical to the original ones, thereby
enhancing computation task security. However, because of the high computation and com-
munication requirements and the assumption that all participating nodes are reliable [29],
it is not appropriate for highly mobile IoV. In contrast, DP has lower computation and com-
munication overheads. It adds noise to the original data, making it challenging for attackers
to reverse engineer stolen results and access the original data. Additionally, DP-AFL [30] is
a federated learning algorithm used for vehicular networks that incorporates Local Differ-
ential Privacy (LDP) into the training process, avoiding the security threats of centralized
aggregation through a distributed asynchronous update scheme. Wang et al. [31], on the ba-
sis of Local Differential Privacy (LDP), randomized local model parameters and proposed a
Reinforcement Learning (RL)-based incentive mechanism to encourage high-quality model
parameters sharing by drones in dynamic systems. However, Differential Privacy (DP)
disturbance is irreversible and may significantly affect training accuracy while performing
poorly in Byzantine attacks. Some scholars later proposed machine learning algorithms
based on secret sharing [28], which can securely output results for untrusted parties without
revealing the original data in the absence of a trusted third party. The most commonly
used secret-sharing scheme is Shamir [32], it has additive homomorphism, meaning that
the sum of the shares of two secrets is equal to the share of the sum of the secrets, and low
computational complexity, making it appropriate for the gradient aggregation process in
FL. However, this scheme requires both the secret distributor and participating nodes to be
honest and trustworthy.

Although the aforementioned schemes have successfully computed the aggregation
results and demonstrated resilience against inference attacks, they remain susceptible to
poisoning attacks. To mitigate this concern, Lu et al. [33] put forth an architecture that
combines federated learning and hybrid blockchain. The objective of this architecture is
to minimize transmission overhead and safeguard the privacy of data providers. They
introduced a novel consensus mechanism named PoQ to mitigate the impact of malicious
updates. However, identifying malicious nodes solely after the completion of training
may entail supplementary computational expenses for retraining the global model, and
the absence of a mechanism to eliminate these malicious nodes could result in irreversible
deterioration of model accuracy. Bulyan’s [34] cross-comparison scheme is well suited
for nodes with independently and uniformly distributed data, although it does come
with the drawback of high computational complexity. Trim Mean [35] utilizes statistical
methods to compare local gradients, demonstrating effectiveness solely in scenarios in
which the node data are independently and uniformly distributed. In the aggregation
process, Multi-Krum [36] can identify and eliminate malevolent users, thereby ensuring that
the proportion of malicious models remains within an acceptable threshold. Biscotti [37]
guarantees data privacy by employing PoF consensus and Verifiable Random Functions
(VRFs), while achieving secure aggregation through differential privacy and the Shamir
algorithm. Nonetheless, this centralized verification method encounters challenges related
to single points of failure and compromised accuracy.

There is currently a lack of a holistic and decentralized solution available to effectively
mitigate inference attacks and poisoning attacks in the Internet of Vehicles (IoV). To strike a
balance between development and user privacy requirements, it is crucial to conduct more
comprehensive research. These efforts not only facilitate the enhancement of trust but also
promote continuous technological advancements.

3. System Model and Security Objectives
3.1. System Model

Figure 2 illustrates that the IoV-BDSS consists of five main components:
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(1) Task Issuer: The task issuer creates a training model based on its needs and releases
Federated Learning (FL) tasks through the blockchain. As more and more vehicles join and
contribute to FL tasks, the task issuer gradually obtains an ideal model.

(2) Roadside Unit (RSU): RSUs are wireless devices installed on roadsides or specific
locations to serve as crucial intermediaries between task issuers and nearby vehicles. They
play a vital role in facilitating communication among these entities. RSUs are primarily
responsible for distributing FL tasks, filtering out malicious parameters, decrypting, and
aggregating the training models. Additionally, RSUs can operate as miner nodes within
the blockchain. Multiple RSUs engage in a competitive process to validate the accuracy of
the aggregated results, and the winning RSU, acting as the miner, subsequently records
the validated global model on the blockchain using a consensus mechanism. Equipped
with computing and storage capabilities, each RSU possesses a pair of public and private
keys. Once the number of vehicle nodes uploading training results reaches the threshold of
secret sharing, an RSU can restore the master key and decrypt the training results.

(3) Certification Authority (CA): The CA is responsible for generating, distributing,
and maintaining secret keys, as well as registering vehicle identities. Once it has generated
the master key and secret share, the CA encrypts and distributes them to the relevant
parties. Vehicles participating in the FL task employ the master key provided by the CA
to encrypt their training results before sending them to the RSUs. This ensures that the
training data remain secure and protected during transmission and storage. In summary,
the CA is responsible for managing the security of the FL process, ensuring that only
authorized vehicles have access to the model and that the data are encrypted using a
secure key.

(4) Vehicle: As a mobile edge computing device, the vehicle is mainly responsible for
data collection, storage, and preprocessing. In each round, it downloads the global model
and employs it to train local data. Additionally, it assists the RSU in the filtering process
and calculates the Euclidean distance among neighboring vehicles. Then, using the master
key provided by the CA, it encrypts the training results before uploading them to a nearby
RSU. The training process is reiterated until the global model reaches the desired accuracy.

(5) Blockchain: The blockchain in this system is primarily constructed and maintained
by distributed RSUs, which are the default configuration of the consortium chain and do
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not allow external registration. These RSUs are classified into two types: miner nodes and
ordinary nodes. Miner nodes possess write permissions, generate new blocks, and oversee
the consensus process. Ordinary nodes do not have write permission but contribute to
the system. Miner nodes are selected from ordinary nodes based on their contribution,
which is evaluated using the accuracy deviation value of the aggregated results. Nodes
with higher contributions will be designated as miner nodes. Consensus is reached solely
among miner nodes during the verification process of a new block, without disseminating
consensus messages to all ordinary nodes. Thus, this approach reduces communication
overhead and enhances the consensus efficiency of the IoV system.

3.2. Security Objectives

(1) Ensuring the Accuracy of Global Models: To guarantee the accuracy of the global
model, our proposed scheme incorporates the Multi-Krum algorithm and a consortium
chain. By using a smart contract, we calculate the Euclidean distances between models
and implement a secret-sharing algorithm to filter out malicious updates at the ciphertext
level. Subsequently, we employ a vehicle node selection algorithm based on the Euclidean
distance to choose vehicles that closely match the data of the task issuer. We evaluate the
contribution of each RSU node by assessing the deviation value of accuracy within the
models. RSUs that contribute more are designated as miner nodes and are responsible for
storing high-quality models on the blockchain. If all participating nodes diligently adhere
to the protocol process, the task issuer can, ultimately, obtain a precise model.

(2) Ensuring the Privacy of Filtered Models: Privacy is a significant concern in our
scheme, especially regarding the filtered results after removing malicious parameters.
To address this, we encrypt these parameter updates using a secret-sharing algorithm,
ensuring that plaintext forms are not directly transmitted to RSUs. This prevents external
adversaries from inferring the intermediate parameters and sensitive local data of vehicle
nodes based on the ciphertext updates, thereby preserving data privacy. Importantly, both
vehicles and RSU nodes will refrain from disclosing private data unless explicitly disclosing
the training results. Throughout the collaborative training process, other participating
vehicle nodes cannot access original data either directly or indirectly. By leveraging the
threshold secret-sharing algorithm, even if a limited number of training vehicles engage in
collusion, RSU nodes can algorithmically reconstruct the initial secret, providing robustness
in IoV environments facing unstable communication.

4. Details of Our Proposed Scheme

In this section, we provide a comprehensive outline of the IoV-BDSS workflow. Table 1
below summarizes the main notations used in our proposed scheme.

Table 1. Summary of main notations.

Acronym Description

NV The number of vehicles
Vi The i-th vehicle
NR The number of RSUs
Rj The j-th RSU
t The current training round

GM0 The initial global model
GMt The global model for the t-th round
LU t

i The local update of Vi for the t-th round
CertVi The identity of the i-th vehicle
Ra, Rb The honesty and malicious thresholds
Repst The reputation threshold of an FL task
Repi The reputation of a vehicle
MRj The aggregated model of the j-th RSU

Cont
Rj

The contribution score of the j-th RSU
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4.1. System Initialization

(1) RSU Public–private Key Pairs Generation: The RSU randomly selects two large
prime numbers, represented as p and q. It then calculates the public modulus: mR = p × q.
The number of binary digits of mR is equal to the length of the RSA key LRSA. According to
the values of p, q, and mR, the RSU can calculate the Euler’s number, r, using the following
formula: r = φ(mR)= φ(p) × φ(q) = (p − 1) × (q − 1). It selects an integer, eR, that
satisfies the condition eR < r, gcd(eR, r)= 1. Next, the RSU can calculate the modular
inverse element, dR, such that eR × dR ≡ 1(mod r). The j-th RSU (j ∈ [1, NR]) possesses
a public–private key pair, expressed as {PkR, SkR}. Here, PkR = (mR, eR) is the public
key, whereas SkR = (mR, dR) is the private key. Lastly, the RSU sends the PkR to the CA
and securely stores the corresponding SkR.

(2) Vehicle Training Nodes Selection: In order to improve the efficiency and effective-
ness of the training process, we propose an algorithm based on the concept of Euclidean
distance. The implementation process is illustrated in Algorithm 1, which is implemented
as a smart contract on the consortium chain. The algorithm aims to select vehicles with high
data similarity to the task issuer, which forms a training group and assigns them FL tasks.

Algorithm 1: Vehicle Selection Contract

Similarity Calculation:
Input: Task =

{
Re, D =

(
Dq

1 , Dq
2 , · · · , Dq

n

)}
, Xi = (X1, X2, · · · , XNV );

Output: Vi = (V1, V2, · · · , Vm);
Initial_List[ ] = {0}, v = s = 0,

for i = 1; i < NV + 1; i ++ do
for j = 1; j < n + 1; j ++ do

v =
(

Dq
1 − Xi1

)2

s = s + v
end for
Similarity(issuer, Vi) =

√
s

Similarity(issuer, Vi) → Initial_List[ ]
end for

Rank(Initial_List[ ])
Select the first m vehicles from Initial_List[ ] to form Vi = (V1, V2, · · · , Vm)

Credibility Verification:
Input: Vi = (V1, V2, · · · , Vm), Repst, Repi;
Output: TrainingGroup_List

for each Vi ∈ (V1, V2, · · · , Vm) do
if Repi > Repst

then TrainingGroup_List.add(Vi);
else Remove this vehicle Vi
end if

end for
return TrainingGroup_List
End of Algorithm

Initially, the task issuer submits an FL task to the blockchain and stipulates that the
total number of vehicles in the training group is represented by m. Upon receiving this
FL task, denoted as Ta =

{
Re, D =

(
Dq

1 , Dq
2 , · · · , Dq

n

)}
, the smart contract responsible for

forming the training group is activated. Here, Re represents the specific requirements of the
FL task Ta, D =

(
Dq

1 , Dq
2 , · · · , Dq

n

)
represents the data requirements for the vehicle training

nodes, Xi =
(
Xi1, Xi2, · · · , XiNV

)
represents the local data summary of each vehicle, and
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n denotes the number of feature items in the similarity calculation. The data similarity
between each vehicle and the task issuer is calculated using Formula (1):

Similarity(issuer, Vi) =

√(
Dq

1 − Xi1

)2
+
(

Dq
2 − Xi2

)2
+ · · ·

(
Dq

n − Xin

)2
(1)

Once the calculation of the data similarity between all vehicles and the task issuer is
completed, the smart contract arranges the similarity values in descending order to select
the top m vehicles to form a training group. To further select trustworthy vehicles for task
training, Algorithm 1 also performs credibility verification on these vehicles. The details of
this verification process will be introduced in the fourth part of this section. Each vehicle
Vi ( i ∈ [1, Nm]) also utilizes the RSA-based method to generate a public–private key pair
{PkV, SkV}. The public key is PkV = (mV, eV), and the private key is SkV = (mV, dV).

Subsequently, Vi acquires the timestamp RTi and utilizes it to sign its identity CertVi ,

generating SigRTi

(
CertVi

)
. It sends

{
PkV, SigRTi

(
CertVi

)}
to the CA for identity registra-

tion. Upon receiving this registration request, the CA performs initial checks on the validity
of the RTi to ensure that it is within an acceptable time range. The CA then examines the
validity of the CertVi . Finally, the CA stores

{
PkV, SigRTi

(
CertVi

)}
of each vehicle in this

FL task that has successfully registered. This process ensures that only authorized vehicle
nodes are allowed to participate in the training task.

(3) Master Key and Secret Share Generation: The CA employs the AES key generation
function to create a master key: K = KeyGen(LAES), and LAES is the AES key length. It
randomly chooses m mutually prime integers, aI = {a1, a2, · · · , am}, as the modulus and
computes the Formula (2) with the assistance of K:

bi= K(mod ai) (2)

Each vehicle’s secret share is represented as Si = (bi, ai) in the subsequent text.
(4) Encrypted Distribution of Master Key and Secret Shares: Using the PkR = (mR, eR),

CA encrypts each Si resulting in the secret share ciphertext, CSi , obtained using Formula (3):

CSi = (Si)
eR(mod mR) (3)

Subsequently, the CA employs PkV = (mV, eV) to encrypt the K, and acquires the
master key ciphertext, CK, using Formula (4):

CK = (K)eV(mod mV) (4)

Finally, the CA distributes CSi and CK to the vehicles in this training group, while the
RSU transmits the GM0 and Re to the vehicles within its coverage area.

4.2. Local Model Training

In the initial iteration, each vehicle receives CSi and CK from the CA and simulta-
neously accesses the GM0 and Re issued by the RSU to commence training. In the t-th
iteration, each vehicle downloads the global model, GMt−1, from the previous round
for training.

(1) Find the Euclidean Distance: To address the issue of vehicles potentially uploading
erroneous or low-quality parameters, we enhanced the FL by integrating Multi-Krum [36,37].
Before encrypting and uploading the training results, it enables us to find Euclidean
distances between gradients, identifying gradients that deviate significantly from normal
gradients as malicious. Distributing calculation tasks to each vehicle not only reduces
the computational burden on the RSUs but also improves the filtering efficiency. From
a security aspect, each vehicle receives a set of ciphertexts and lacks the private keys of
others. This effectively prevents the explicit determination of the distances between a given
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vehicle and other vehicles. Algorithm 2 illustrated the procedure for filtering out updates
and generating the list of legitimate vehicles, with the detailed steps described below:

Algorithm 2: Filtering Contract

Find Euclidean Distance:
Input: Enc_PkV

(
LUt

i
)
, Enc_PkV

(
−LUt

i
)
, PkV

Output: Dissum_i
(1) for j = 0 to Nm; j ̸= i do

Enc_disi[j] = Enc_PkV
(
LUt

i
)
× Enc_PkV

(
−LUt

i
)

= Enc_PkV

(
ut

i − ut
j

)
;

(2) PkV → Blockchain → SkV
(3) for j = 0 to Nm; j ̸= i do

Disi[j] = Dec(Enc_disi[j]);
Euclidean_Dis[j] = ∥Disi[j]∥2

(4) Euclidean_Dissum_i = ∑j∈[0,m],j ̸=i Euclidean_Disi[j]
(5) SigSkV

[Euclidean_Dissum_i]&Enc_PkV
(
LUt

i
)
→ RSU

Parameter Filtering:
Input: the set of the Euclidean_Dissum_i
Output: Selection_List

(1) SortDis = AScendSort(Euclidean_Dissum_i)
(2) Selection_Dis = SortDis.subset[0, m − z]
(3) for i = 0 to Nm do

if Euclidean_Dissum_i ∈ Selection_Dis
then Selection_List.add(i);

return Selection_List

In the t-th iteration, the local update of Vi is denoted as LU t
i . Vi first encrypts LU t

i and
−LU t

i using its own public key, PkV, resulting in Enc_PkV
(
LU t

i
)

and Enc_PkV
(
−LU t

i
)
;

Next, it signs Enc_PkV
(
−LU t

i
)

using its own private key SkV, generating SigSkV
Enc_PkV[(

−LU t
i
)]

. The signature is shared to other vehicles in the training group for verification
purposes. Upon receiving the broadcast messages from other vehicles, each vehicle node
initially performs identity verification, then it uses Enc_PkV

(
LU t

i
)

and Enc_PkV
(
−LU t

i
)

as inputs to execute the Find Euclidean distance defined in Algorithm 2. Then, this contract
sends PkV to Vi to obtain the corresponding SkV. It decrypt and find the distance. Here,
m denotes the number of vehicles, z represents the number of malicious vehicles. To
calculate the quality score for each local model, we sum the Euclidean distances between
each vehicle’s local model and its m-z-2 closest local models:

score(i) =∑
i → j
i ̸= j

∥∆wT
i − ∆wT

j ∥
2

where i → j signifies that the local model, ∆wT
i , is among the m-z-2 closest local models

to the ideal local model, ∆wT
j . Finally, the m-z local models exhibiting the lowest quality

scores are selected as the Legal_Dis for aggregation. This filtering contract calculates
Euclidean_Dissum_i, which corresponds to the total sum of Euclidean distances between the
vehicle and all other vehicles. Then, Vi signs the Euclidean_Dissum_i using its own private
key, and sends SigSkV

[Euclidean_Dissum_i], along with Enc_PkV
(
LU t

i
)
, to RSU.

(2) Legal Vehicle List Generation: The RSU use the output Euclidean_Dissum_i derived
from Algorithm 2. It then verifies the identity of each vehicle and chooses m-z models that
are in proximity to others while disregarding the remaining models. Lastly, the filtering
contract appends the identities of vehicles with retained local models to the Selection_List
set, thereby creating the final list of legal vehicles.
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(3) Uploading Encrypted Training Results: the m-z vehicles identified in the legal list
utilize SkV = (mV, dV) to recover the K through Formula (5) using CK:

K =(Ck)
dV(mod mV) (5)

Lastly, Vi encrypts the training result using K, resulting in C i
t = Enck

(
LU i

t

)
. It then

sends both the ciphertext of training result C i
t and the secret share ciphertext CSi to RSU.

4.3. Global Model Update and Blockchain Consensus

(1) Reconstruction of the Secret Share and Master Key: The RSU receives the CSi and
C i

t transmitted by vehicles in the legal vehicle list. Using CSi and SkR, the RSU then restore
the Si according to Formula (6):

Si =
(
CSi

)dR(mod mR) (6)

If the number of secret shares satisfies the requirements of (t, n) threshold, the RSU
applies the reconstruction algorithm to restore the current round’s K using more than t
secret shares. If the number of secret shares is inadequate (indicating more than t vehicles
have exited), the current round of reconstruction fails, and the system proceeds to the next
round of global iteration. The secret reconstruction algorithm follows these steps:

First, t secret shares are selected, denoted as St = {Si+1, Si+2, · · · , Si+t}. Then, the
modulus product N1 is calculated using modulus ai+1 according to Formula (7):

N1= ai+1 × ai+2 × · · · ×ai+t (7)

The modulus equation set is derived using Formula (2) and denoted as Formula (8):
K ≡ bi+1(mod ai+1)
K ≡ bi+2(mod ai+2)

...
K ≡ bi+t(mod ai+t)

(8)

The modulus equation set (8) and the modulus product N1 are utilized to calculate the
master key using Formula (9):

K =
i+t

∑
j=1

bj ×
N1

aj
×

(N1

aj

)−1


aj

(mod N1) (9)

(2) Decryption and Aggregation of Training Results: The RSU decrypts the C i
t using

the K and obtains the local update LU i
t for each vehicle, denoted as LU i

t = DecK

(
C i

t

)
.

Subsequently, utilizing all the received local training models and calculating Formula (10),
the RSU can aggregate the model parameters denoted as MRj

(
Rj ∈ NR

)
:

MRj =
M

∑
i=1

1
M

LU i
t (10)

Finally, the RSU distributes MRj to all of the vehicle nodes in the current training
group, thereby marking the completion of the model training.

(3) Evaluating RSU Contributions: In this section, to incentivize active participation
from multiple RSUs in collaborative model training to acquire an accurate training model,
we evaluate the contribution of each RSU using the accuracy deviation value. RSUs that
make greater contributions are subsequently elected as miner nodes through a consensus
mechanism, enabling them to record the aggregated results on the consortium chain.



Electronics 2024, 13, 714 11 of 23

Each RSU first aggregates its own model MRj

(
Rj ∈ NR

)
and, subsequently, transmits

its model MRm(Rm ∈ NR&m ̸= j) to other RSU nodes while receiving the model set {MRm}
broadcasted by them. Each RSU then trains and validates MRj using {MRm}, resulting in
the accuracy set {AccRm}. The accuracy deviation value is computed using Formula (11) to
measure the comparative quality advantage of this RSU in relation to other RSU nodes:

acct
Rj
=1 +

∑Rm∈NR/Rj

(
AccRj − AccRm

)
|NR| − 1

(11)

By considering its historical contributions, the RSU updates its contribution score for
the current round using Formula (12) based on acct

Rj
:

Cont
Rj
=

1 + acct
Rj

1 + e
−acc(Cont−1

Rj
×acct

Rj
)

(12)

(4) Blockchain Consensus Mechanism: Enhancing consensus efficiency facilitates the
completion of FL tasks at a faster rate. By considering RSU’s historical contributions,
we incorporated a consensus based on the delegated Byzantine fault-tolerant algorithm
(dBFT) [38] in this paper. The dBFT is a consensus developed based on the PBFT. In
comparison to other consensuses, like PoW and DPoS, it provides the flexibility to replace
miner nodes without the need for a fixed miner group and exhibits superior performance.
Hence, we employ this consensus to construct a flexible consortium chain that ensures
efficient and reliable federated learning. Unlike PoS, DPoS, and PBFT, which sequentially
select leader nodes, the dBFT provides higher fairness by offering each node an equal
opportunity to be selected. The steps of this mechanism are illustrated in Figure 3.
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After the completion of the contribution calculation, the RSU with the highest score
will be declared as the miner node. The miner node then generates a block encompassing
global models and the contribution score for the current round. The block format adheres
to the following structure:

Block =
{

Head, MRj , trans, Cont
Rj

}
.

Here, Head represents the block header, and trans denotes the transaction information.
Following dissemination by the miner node, this new Block is then distributed to the

remaining ordinary nodes for verification. The ordinary nodes validate the correctness of
the Head and tra, as well as comparing their Cont

Rj
with that of the miner node. In the case

that the miner node’s contribution score exceeds that of the ordinary node, the ordinary
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node must acknowledge the miner node’s contribution in the current round. Otherwise,
the CA will select a new miner node from the pool of ordinary nodes. Once the verification
is successful, the ordinary node sends a confirmation message to the miner node. When the
miner node receives confirmation messages from at least two-thirds of the ordinary nodes,
it confirms the legitimacy of the Block. The miner node then signs, broadcasts, and stores
this new Block in the blockchain to ensure its immutability.

4.4. Vehicle Credibility-Based Incentive Mechanism

This paper presents an incentive mechanism based on vehicle credibility, aiming to
encourage active participation and high-quality data contribution from vehicles in the
training group. By integrating the Multi-Krum algorithm and reputation-based incentive
protocols [39], the filtering results are leveraged to evaluate the credibility of vehicles. The
credibility score can serve as an important indicator for evaluating vehicle reliability and
guiding an incentive mechanism that ensures the fairness of collaborative training. Finally,
the credibility score is recorded on the blockchain, enabling data tamper-proofing and
nonrepudiation. The specific steps are illustrated in Figure 4.
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(1) Credibility Initialization: Each vehicle initializes its own credibility, Repi, which is
stored in the CA along with its public key and identity certificate. Repi is an integer that
belongs to the finite set [0, Rmax], where Ra and Rb represent the trustworthy threshold
and malicious threshold within this credibility set. If a vehicle node’s credibility satisfies
Repi ≥ Ra, it is considered trustworthy and its credibility is initialized to Ra. If Repi ≤ Rb,
the vehicle is deemed untrustworthy, and its identity certificate is revoked by the CA.

(2) Credibility Verification: The task issuer needs to assess the benefits of the global
model and allocate task rewards for the training task. This approach serves to incentivize
vehicles in the training group to upload high-quality parameters while also qualifying the
contribution of each vehicle to the global model. Additionally, the task issuer establishes
the credibility threshold, Repst, according to training task requirements.

Vehicles will be deemed qualified to participate in an FL task only if their credibility
meets the condition Repi ≥ Repst. The sensitivity of the global model being trained impacts
the selection of the credible threshold: a higher threshold is required for highly sensitive
global models, while a smaller threshold can be set for models with low sensitivity and a
need for more data samples. During the vehicle training node selection phase, Algorithm
1 verifies that the credibility of the vehicles meets or exceeds the credibility threshold to
ensure that credible vehicles participate in the training task.

(3) Credibility Update: After successfully passing the verification and joining the
group, vehicles begin local training and transmit the latest models to RSUs. During each
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iteration, vehicles uploading illegal parameters are recorded. Upon receiving the Selec-
tion_List from Algorithm 2, RSUs update the credibility of each vehicle using Formula (11):{

Repi = Repi + 1, i ∈ Selection_List
Repi = Repi − 1, i /∈ Selection_List

(13)

Once the FL task is completed, the miner node will upload the credibility of the vehicles
to the blockchain. All task issuers can select well-performing vehicles to participate in FL
tasks by querying their credibility. If a vehicle’s credibility falls below the set threshold, the
contract will remove the vehicle from the training group.

(4) Contribution-Based Reward Mechanism: This mechanism commences by initializ-
ing the contribution score of each vehicle to 0. The contribution of the vehicle is represented
by Contrii, which is calculated using Formula (12):{

Contrii = Contrii + 1, Repi > Repst
Contrii = Contrii, Repi ≤ Repst

(14)

The reward calculation based on Contrii is performed using Formula (13):{
Rewardi= 0, Contrii= 0

Rewardi =
(

Contrii/∑Contrii≥ 2t
3
Contrii + 1

)
×Rewardi, Contrii> 0

(15)

5. Security Analysis
5.1. Ensuring Accuracy of the Global Model

(1) Implementation of the Multi-Krum Algorithm: One of our main strategies involves
deploying the Multi-Krum algorithm, which is tightly integrated with the consortium chain
via smart contracts to discern the disparities among gradients. This method enables us
to detect parameters deviating from normal gradients, identifying them as malicious and
excluding them. The filtering results serve as a trustworthiness metric for evaluating the
behavior of vehicles involved in the collaborative training process. This enhancement of
trust proves indispensable in the subsequent training processes, facilitating the selection of
exceptionally reliable vehicles for participation.

(2) Node Selection Algorithm Based on Euclidean Distance: Leveraging the principles
of Euclidean distance, we designed a vehicle selection algorithm to optimize training
efficiency. This selection algorithm proficiently selects a few highly matching vehicles that
exhibit significant compatibility. Subsequently, this process further ensures the efficient
acquisition of an accurate global model within our system.

(3) Contribution Assessment and Assignment of Miner Nodes: We assess the con-
tribution scores of all RSUs based on the accuracy deviation value. The RSU nodes that
demonstrate substantial scores are designated as miner nodes, responsible for writing
high-quality models to the blockchain. This methodology comprehensively evaluates the
contribution of the RSUs, ensuring the correctness and high quality of the final aggrega-
tion results.

5.2. Protecting the Privacy of Filtering Results

(1) Secret Sharing of Local Model: In order to protect the privacy of the filtering results,
we implemented the secret-sharing algorithm in our scheme. After training the model
using local data and filtering malicious updates, the parameter updates are encrypted
rather than being transmitted in plaintext. This ensures that external adversaries cannot
infer the intermediate parameter and local data from the ciphertext updates.

(2) Enhanced Robustness via Threshold Secret-Sharing Scheme: Significantly, the use
of the threshold secret-sharing scheme ensures robustness even in scenarios involving
collusion attacks or node disconnections. The RSU nodes can reconstruct the original secret,
providing robustness to the IoV system in unstable communication environments.

Detailed results and information can be found in Table 2.
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Table 2. Security comparisons of data-sharing schemes.

Index/Scheme Name [40] [41] [42] Ours

Decentralized Management —
√

—
√

System Security —
√

—
√

Privacy of Data and Models —
√ √ √

Robustness of Global Model —
√ √ √

Nodes Exist Resilient — — —
√

6. Implementation and Analysis
6.1. Experimental Environment Configuration

The experimental hardware configuration includes an Intel Core i7-8700K processor
(intel, Santa Clara, CA, USA), GTX 1080T GPU, and 16.0 GB of RAM, running in the
Ubuntu 20.04 LTS environment. We utilized FISCO BCOS as the framework, an open-
source consortium blockchain platform. Through its provided interface, transactions and
smart contracts could be examined. The underlying blockchain and consensus process was
implemented using Python (v3.6.3), with smart contracts written in C++. The vehicular
federated learning environment was constructed using Python (v3.6.3) and TensorFlow
(v2.4.2) for local training and global aggregation. Data collection and blockchain updates
were simulated using the OMNET (v5.5.1), integrated with the Simulation of Urban Mobility
(SUMO-v1.3.0). To simulate the communication among system nodes, we adopted the
Krauss model [43]. During simulation, nodes were observed to move at speeds from 20 to
100 km/h on bidirectional roads within a simulated area of 2.5 km × 2.5 km.

(1) Experimental Model: We adopted the VGG16 image classification model as the
global model for federated learning. The VGG16 model consists of eight layers in total,
with the first 13 layers being convolutional layers and the last 3 layers being fully connected
layers. In the vehicular federated learning environment, the parameters of the VGG16
model were set as follows: learning rate of 1 × 10−3 dropout rate of 0.2, and each vehicle
performed local training with a batch size of 64, while the RSU performed verification with
a batch size of 32.

(2) Datasets: The MNIST dataset [44] consists of 60,000 training samples and 10,000 test
samples, each of which is a 28 × 28 grayscale image. This dataset contains 10 classes,
representing handwritten digits from 0 to 9, paired with their corresponding labels. The
CIFAR-10 dataset [45] is a collection of color images, which comprises 50, 000 training
samples and 10, 000 test samples. Each sample is a 32 × 32 RGB image, and this dataset
encompasses 10 types of universal objects, such as “aircraft”, “dog”, and “car”. These two
datasets can represent the medium-complexity data collected by in-vehicle local devices,
which simulate the image information obtained in real time during driving. They serve as
benchmark test data for various FL algorithms designed for mobile edge scenarios.

(3) Node Configuration: As shown in Table 3, we used a configuration of 40 system
nodes to simulate data sharing in the IoV. This system scale more precisely replicates the
intricacies of the IoV, facilitating the assessment of performance and effectiveness in data-
sharing schemes during large-scale deployments. Here, 20% represents the RSUs, while the
remaining 80% represents the vehicle nodes. This distribution more precisely mimics the
real-world prevalence of RSUs and vehicle nodes, which is a crucial factor in assessing the
effects of data sharing and model aggregation among different node types. Moreover, the
increased number of vehicles guarantees more frequent local updates, thereby enhancing
the reliability and accuracy of the aggregation algorithm. To ensure fairness, equivalent
values are configured for the nodes’ parameters in these schemes.

(4) Comparative Schemes:
FL [40]: This centralized federated learning approach lacks validation and protection

of intermediate parameter updates. It relies on a central server to distribute and aggregate
the global model. The accuracy of the global model in this scheme serves as the baseline.

BPFL [41]: This scheme replaces the central aggregator with a consortium chain in the
traditional IoV system and applies homomorphic encryption (HE) to protect gradients. Its
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global training effect is comparable to that of centralized FL. This scheme enhances the
Multi-Krum algorithm to implement gradient detection and filtering, which aligns with
our approach. We chose the BPFL as the baseline for comparing with the secret sharing
proposed in this paper, allowing us to analyze the computational overhead and global
accuracy associated with the encryption and decryption processes.

Madi’s FL [42]: This scheme extends the concept of centralized FL and incorporates
homomorphic encryption (HE) and verifiable computing (VC) technology, ensuring both
privacy protection and verifiability. The experiments with the Fashion MNIST demonstrate
the effective accuracy guarantee of the global model.

Table 3. Nodes’ parameter settings.

Parameter Name Parameter Value

Number of Task Issuer 1
Total Number of System Nodes 40

Total Number of Vehicles 32
Total Number of RSUs 8

6.2. Experimental Results

(1) Model Accuracy: We evaluated the impact of our scheme on the model’s accuracy.
Subsequently, the average accuracy for each scheme was calculated, and the experimental
results are illustrated in Figure 5.
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Figure 5. Model accuracy comparison: Simulations were conducted on the MNIST and CIFAR-10
datasets using four schemes. Among them, FL and Madi’s FL schemes do not utilize blockchain, while
the BPFL and our proposed scheme are based on blockchain and federated learning. The BPFL uses
homomorphic encryption to safeguard intermediate gradients, whereas we utilize a secret-sharing
algorithm. The comparison presented in Figure 6 demonstrates the influence of our proposed scheme,
which employs blockchain and secret sharing, on the accuracy of the global model.

On the MNIST, these four schemes were trained for 50 rounds, with the BPFL achieving
the highest accuracy of 95.56%. Despite our solution not achieving the utmost accuracy, it
proved comparable to the BPFL. It is worth noting that our solution displayed a consistently
stable accuracy growth curve, resulting in an optimal average accuracy. For the CIFAR-10
dataset, all schemes were trained for 00 training rounds, converging around the 50th epoch.
Both our solution and the BPFL scheme realized the highest global model accuracy, with a
mere 2.32% disparity.
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With an increase in the number of training epochs, the accuracy of the global model
steadily improves across all four schemes. Notably, FL and Madi’s FL schemes exhibit
a consistent upward trend in global model accuracy, whereas the accuracy of the global
model in the two blockchain-based federated learning schemes fluctuates during the
training process. Moreover, during the initial stages of model training, the blockchain-
based schemes achieve higher accuracy for the global model. This can be attributed to the
verification of global model accuracy in FL and Madi’s FL schemes being conducted by
a central aggregator, which utilizes a more concentrated dataset distribution for accuracy
evaluation, resulting in a stable upward trend. Both the BPFL scheme and our scheme
select intermediate gradients with higher accuracy for aggregation through validation
nodes and models, resulting in higher accuracy for the global model in the early stages of
training. The validation process for the global model in the BPFL scheme and our scheme
involves utilizing local datasets from committee members or validation nodes. This leads
to variations in the dataset used for each validation process, resulting in fluctuations in the
accuracy of the global model observed in the experimental results.

In conclusion, the BPFL scheme achieves the highest accuracy by conducting a hash
function verification and setting parameter retention ratios after completing the train-
ing process. Our proposed scheme achieves comparable accuracy to the BPFL but with
smoother growth. Before training, we employ a vehicle node selection process based on
similarity, which results in optimal average accuracy. As a result, our proposed scheme does
not compromise the accuracy of the global model and meets the fundamental requirements
of the framework design.

(2) Evaluation of Average Training Time: To evaluate the model training performance
of our proposed scheme, we conducted experiments to measure the time required for each
round, using the MNIST dataset for 50 rounds of training and the CIFAR-10 dataset for
100 rounds. Subsequently, the average time spent in each training round was calculated,
with the duration taken for a single entity to complete its computational task recorded to
measure the running time. Both the RSU and vehicles executed computational work in
parallel. The experimental results are illustrated in Figure 6.

Figure 6 reveals the minimal differences among the four schemes when applied to the
MNIST dataset. Specifically, the average time consumed by training in our scheme was
1.3 s higher than the original FL, accounting for 5.18%. Moreover, it was 1.1 s lower than
the BPFL, representing a decrease of 4%, and 2.3 s lower than the Madi’s FL, accounting
for 8.01%. For the CIFAR-10 dataset, our proposed scheme’s training time increased by
3.6 s compared to the original FL, accounting for 17.40%. However, it decreased by 6.9 s
compared to the BPFL, accounting for 22.12%. And it decreased by 8.6 s compared to
the Madi’s FL, accounting for 26.14%. The time consumption gap between our proposed
scheme and the original FL remained at 20%. Although the overall time consumption was
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higher than that of the original FL, the utilization of the secret sharing and the malicious
model filtering, as presented in this paper, may have an impact on efficiency. Moreover, the
training time in our scheme was significantly lower than that of both the BPFL and Madi’s
FL, which employed homomorphic encryption, with the difference reaching up to 26%.

Our research adopted secret sharing over homomorphic encryption, providing a more
efficient alternative that reduces computing overhead while ensuring the privacy of the
global model. Therefore, our scheme is suited for the IoV scenarios characterized by limited
computing power and constrained network communication.

(3) Evaluating Blockchain Consensus: to evaluate the performance of our consensus
mechanism, we initially compared the dBFT with several mainstream mechanisms and
further validated the advantages of our proposed mechanism, as shown in Table 4 and
Figure 7.

Table 4. Performance comparison of the consensuses.

Indicator PoW PoS DPoS PBFT dBFT

Byzantine-fault Tolerance
√ √ √ √ √

Higher Fairness
√ √

—
√ √

Eventual Consistency — — — —
√

Low Computing Cost —
√ √ √ √

Low Transaction Latency — — —
√ √Electronics 2024, 13, x FOR PEER REVIEW  18  of  24 
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In terms of fairness, the dBFT randomly selects the leader nodes, which is more
equitable than the PoS, DPoS, and traditional PBFT, which select leader nodes in a sequential
manner. This allows every node to have an equal chance of being selected. Fairness plays
a crucial role for the participating nodes in the training process discussed in this paper.
Here, each RSU can be chosen as a miner node with accounting rights, ensuring their
computing resources are put to meaningful use. In terms of computational consumption,
unlike POW, dBFT allows nodes on the blockchain to obtain accounting rights without
requiring a significant number of computational resources. This results in higher block
generation efficiency by selecting miner nodes to achieve consensus. Once consensus is
reached, the Block becomes irreversible and there is no possibility of forks. Compared to
the PBFT, the dBFT does not require verification from all nodes on the blockchain, leading
to a shorter communication time.

Considering that the Byzantine-fault tolerance rate of the dBFT is one-third, the miner
nodes are categorized as positive miners and negative miners. We define the number of
negative miners as Nneg; only when Nneg satisfies the condition Nneg < (NMiner−1 )

3 can a
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new Block be successfully verified and recorded on the blockchain, where NMiner represents
the number of miner nodes in total. Then, we define the following Formula (16):

Neg =
q=0

∑
Nneg

(
NMiner

q

)
θq(1 − θ)NMiner−q (16)

Here, the parameter θ represents the probability of becoming a negative miner, with
θ ∈ [0.1, 0.3] representing the security probability of the miner nodes pool. In this
experiment, we set the values of θ to 0.1, 0.2, and 0.3, respectively, as shown in Figure 7.

The security probability of the dBFT process decreases as θ increases. Additionally, as
the size of the miner node pool increases, the security of the system also increases. This is
because the number of positive miners participating in block validation increases with the
size of the miner node pool. The larger the size of the miner node pool, the more secure
the consensus process in this paper becomes. When a sufficient number of miner nodes
participate in the dBFT, this ensures reliable validation for generating new blocks.

(4) Validation of the Vehicle Selection Algorithm: To validate the efficacy of the vehicle
selection algorithm, we conducted experiments by varying the number of selected vehicle
training nodes. We then applied the algorithm to both the MNIST and CIFAR-10 datasets
for testing purposes, with a comparison of the model accuracy presented in Figure 8.
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CIFAR-10 datasets with 8, 16, and 24 training nodes, respectively. The term “Training Group” refers
to the nodes selected by this algorithm, while “Randomly Selected Nodes” represents the training
nodes not chosen by this algorithm.

We carried out 50 rounds of training on the MNIST dataset, as depicted in Figure 8a.
It is evident that the vehicle selection algorithm was utilized, the global model eventually
achieved a stable accuracy. However, the necessary training rounds to achieve this stable
accuracy varied. The algorithm-based selection of vehicles, using the concept of Euclidean
distance, demonstrated high accuracy from the beginning, with the model quickly converg-
ing within approximately 20 rounds of training. Conversely, randomly selected vehicles
demonstrated extremely low initial accuracy, and it took longer to reach maximum accuracy,
typically requiring about 40 rounds.

Then, we performed 100 rounds of training for the CIFAR-10 dataset, as depicted in
Figure 8b. By employing the algorithm-based selection of vehicles, stable convergence was
achieved within 35 rounds. In contrast, utilizing randomly selected nodes did not lead to
stable convergence even after approximately 65 rounds. Additionally, it can also be seen
from Figure 8b that a smaller number of training nodes selected by the algorithm results in
faster convergence of the accuracy rate. This outcome can be attributed to the enhanced
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correlation between each vehicle and the task issuer, resulting in quicker convergence of
the accuracy rate. Hence, the results of the two comparative experiments demonstrate that
this selection algorithm significantly enhances the speed and effectiveness of training.

(5) Evaluating Resistance to Poisoning Attacks: To evaluate the robustness of our
scheme against poisoning attacks, we conducted experiments using the label inversion
attack in [46] to generate poisoning samples. The labels of the training samples were altered
while maintaining their original features, with poison sample ratios set at 10%, 20%, and
30% respectively. These manipulated samples were then assigned to designated attackers,
and the outcomes were compared against the FL [40] without any poison samples. We then
conducted a comparative analysis between our approach and three advanced algorithms
specifically designed to mitigate Byzantine attacks.

The experimental results are presented in Figures 9 and 10. For the MNIST dataset,
the source label “1” was modified to the target label “8”, the source label “2” was modified
to “4”. For the CIFAR-10 dataset, the source label “dog” was modified to the target label
“horse”. To minimize the impact of irrelevant labels, binary classifiers were exclusively
trained using samples that only contained the source and target labels. Additionally, a
random selection of 500 test samples with the source label was conducted to determine
the success rate of the attack. The success rate is defined as the percentage of samples for
which the source label was predicted as the target label. Subsequently, we partitioned the
experimental dataset randomly into local datasets for each vehicle.
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CIFAR-10 datasets, where 10%, 20%, and 30% of poisoned samples were introduced, respectively.
The results were then compared with the original FL scheme without poisoned samples.

As shown in Figure 9, the poisoning sample ratio was 20%, and the error rate of our
approach on both datasets approached 0.1, gradually converging to the level of the FL
with no poisoning samples. However, as the poisoning sample ratio increased to 30%, our
approach stabilized below 0.16 during subsequent iterations. These findings suggest that
our approach can effectively mitigate poisoning attacks with a maximum ratio of 30%.

In order to further validate the performance of our proposed solution, we conducted
a comparative analysis by assuming an optimal scenario and comparing it against three
other advanced algorithms designed to mitigate Byzantine attacks.

Optimal Scenario: In real-world scenarios where it is impractical to predetermine
malicious vehicles, we assume that the RSU has prior knowledge of these malicious nodes.
This enables the RSU to autonomously filter out updates uploaded by malicious vehicles,
ensuring uninterrupted model training and ultimately resulting in an optimal algorithm
outcome. The optimal scenario is employed to assess the accuracy rate of our solution in
mitigating poisoning attacks.
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Krum [36]: This algorithm is utilized in distributed machine learning to evaluate the
similarity of gradient vectors based on the Euclidean distance. This approach effectively
eliminates vectors that deviate significantly, thereby eliminating harmful updates. The
calculation steps are as follows:

1. Calculate Euclidean distance: calculate the Euclidean distance dij between each user-
uploaded gradient LUt

i and the gradient LUt
j of the other user, dij = LUt

i − LUt
j .

2. Select the minimum distance: Identify the set of vectors closest to the vectors of the
other n−2f−2 users for each user i, where f represents the number of Byzantine nodes.
Denote this set of minimum distances as Disi, Disi =

{
di1, di2, · · · , di(n−2f−2)

}
.

3. Calculate the score: evaluate the quality score for each gradient vector by summing
the distances in its corresponding set of minimum distances, Disi, s(i) = ∑j∈Di

dij

4. Choose the best gradient: select the gradient vector with the lowest quality score as
the legitimate update for aggregation, LUt

best = argminis(i).

Multi-Krum [37]: The Multi-Krum algorithm executes the Krum algorithm multiple
times, with the calculation steps as follows:

1. For n users, where f is the number of Byzantine nodes (satisfying n−2f−2).
2. For each user i, perform the Krum to compute the score s(i) for its gradient vector.
3. Choose the gradient LUt

best with the lowest score as legitimate for aggregation.

Median: The dimensional median algorithm is employed for calculating the global
gradient by computing the median along each dimension:

∆GMj = median
{(

LUt
i
)

j, · · · ,
(
LUt

k
)

j

}
Here, ∆GMj represents the j-th dimension of the global model ∆GM, indicating the

median value of the local updates contributed by all nodes in the j-th dimension;
(
LUt

k
)

j

represents the j-th dimension of the local update LUt
k; and the function median{·} is utilized

to calculate the median value within a set or sequence of numbers.
Additionally, we conducted a comparative analysis of our approach with three other

advanced algorithms designed to mitigate Byzantine attacks, using the optimal scenario
as the baseline. In Figure 10a, we examined a scenario without any Byzantine nodes,
ensuring that each vehicle consistently shared accurate updates with the RSU throughout
each iteration. It is evident that both our approach and Multi-Krum showcased promising
aggregation performance, attaining an accuracy close to 96% and gradually converging
toward near-optimal levels. In contrast, the Krum and Median exhibited poor performance,
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deviating significantly from the optimal level. The experimental results under inversion
attack are presented in Figure 10b, revealing that our approach and the Multi-Krum showed
robust aggregation performance, maintaining an accuracy of over 91% and approaching
the optimal accuracy, while the Krum and Median performed poorly, achieving an accuracy
of approximately 84%.

In summary, our solution exhibits exceptional resilience when faced with poisoning
attacks at a rate of 30%. Our approach maintains a high level of accuracy when com-
pared to the optimal algorithm and three other advanced Byzantine attack mitigation
techniques. Consequently, our solution successfully eliminates harmful parameter updates
while meeting the fundamental requirements of the framework design.

(6) Analysis of Computational Complexity: We compared our approach with the three
advanced algorithms to evaluate its computational complexity in combating poisoning
attacks. Table 5 presents the parameters (Params), floating-point operations (FLOPs), and
inference time for each algorithm.

Table 5. Computational complexity.

Methods Params (106) FLOPs (106) Infer (ms)

Krum 0.28 132.73 5.08
Multi-Krum 0.47 237.58 15.13

Median 9.34 94.54 3.21
Ours 0.39 82.27 8.91

Compared to the Multi-Krum algorithm, our algorithm exhibited lower computational
complexity and faster inference speed. This is attributed to the introduction of the vehicle
similarity calculation at the initial stage, allowing for the selection of vehicle nodes highly
compatible with the data provided by the task issuer through Euclidean distance filtering.
Additionally, we implemented an evaluation mechanism for the RSU contribution and
vehicle credibility. The calculation of the RSU contribution is based on the precision
deviation between an RSU and others, indicating the quality advantage of this RSU node
relative to others, further ensuring the reliability of collaborative training. This, combined
with the enhanced consensus mechanism and on-chain storage, results in faster convergence
of our algorithm. Compared to the original Krum algorithm, although our algorithm has
slightly more parameters, Krum may result in misjudgments in the presence of only one
anomalous gradient, leading to the discarding of updates from honest clients. Therefore,
relative to the Krum and Multi-Krum algorithms, our algorithm performs better overall.
Compared to the Median algorithm, its faster inference speed is due to its reliance solely
on taking the median along dimensions, but it suffers from lower overall model accuracy.
In summary, our algorithm not only exhibits outstanding overall performance but also a
relatively faster inference speed, making it more suitable for highly dynamic IoV systems
with unstable communication.

7. Conclusions

This paper introduced the IoV-BDSS, a distributed training scheme for the Internet of
Vehicles (IoV), designed to tackle privacy protection and Byzantine attacks in data sharing.
Real image data and simulated label reversal attack scenarios were used to evaluate the
proposed approach through various performance tests, including accuracy, average time
overhead, consensus security assessment, and computational complexity analysis.

The experimental results demonstrate the robust resilience of our approach against
30% poisoning attacks, maintaining a test error rate below 0.16. Compared to similar
methods, our approach reduces computational overhead by approximately 26% while
preserving accuracy, thereby demonstrating its effectiveness and feasibility in achieving
data sharing, privacy protection, and accuracy assurance.
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