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Abstract: In recent years, computer vision tasks have gained a lot of popularity, accompanied by the
development of numerous powerful architectures consistently delivering outstanding results when
applied to well-annotated datasets. However, acquiring a high-quality dataset remains a challenge,
particularly in sensitive domains like medical imaging, where expense and ethical concerns represent
a challenge. Generative adversarial networks (GANs) offer a possible solution to artificially expand
datasets, providing a basic resource for applications requiring large and diverse data. This work
presents a thorough review and comparative analysis of the most promising GAN architectures. This
review is intended to serve as a valuable reference for selecting the most suitable architecture for
diverse projects, diminishing the challenges posed by limited and constrained datasets. Furthermore,
we developed practical experimentation, focusing on the augmentation of a medical dataset derived
from a colonoscopy video. We also applied one of the GAN architectures outlined in our work to a
dataset consisting of histopathology images. The goal was to illustrate how GANs can enhance and
augment datasets, showcasing their potential to improve overall data quality. Through this research,
we aim to contribute to the broader understanding and application of GANs in scenarios where
dataset scarcity poses a significant obstacle, particularly in medical imaging applications.

Keywords: generative adversarial networks; annotated dataset; augmentation; medical imaging;
computer vision

1. Introduction

It is largely acknowledged that generative adversarial networks (GANs) [1] were a
major breakthrough in the field of artificial intelligence. The idea behind GAN was first
introduced in 2014 by Ian J. Goodfellow and his team and years later it remains one of the
most relevant and promising methods used to tackle generative problems in computer
vision and many other fields. GANs are great for generating all sorts of data, not only
images. It is also used for generating text, tabular data, music and audio, 3D models, etc.
It is also the first architecture developed in the field of Deep Learning that was able to
produce such high quality results on most datasets they were trained on, no matter the
domain. In this work, we will provide a comprehensive overview of the most widely
recognized and commonly used advancements and approaches that have emerged since
the inception of the GAN framework.

The GAN is composed of two parts: the generator and the discriminator. The generator
generates new instances of data. The discriminator evaluates the authenticity of the
generated data. At the beginning of the training the generator will not produce good
images, but the discriminator will give feedback to the generator and it will improve. In
order to be able to evaluate the authenticity of the generated data, the discriminator is
trained on real data. Then, the discriminator receives the image from the generator, and
it assigns a probability of the generated image being real. Basically, the discriminator
is a standard CNN used for classification, it checks if the generated data falls into the
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real or fake category. The way the generator works is opposite to the discriminator. The
discriminator downsamples the image in order to obtain that probability, meanwhile, the
generator takes its input and upsamples it as much as possible to become a good enough
piece of data. Both networks try to optimize their specific loss function. During the training
process, both networks change and influence one another. Hence the name “Adversarial”,
the networks compete in fooling each other. The final goal is to make a generator good
enough to approximate its generated distribution to the distribution of the real images.
The original paper shows results for the MNIST dataset [2] and CIFAR-10 [3], both of
which consist of simple images. MNIST is a dataset that contains 60,000 small images with
handwritten digits. The size of each image is 28 × 28 pixels, the digit itself is white and the
background is black. Since the image is so small and contains only two colors, the authors
of the paper [1] used noise as input for the generator Network. Using random noise as
input for the generator of a GAN is a common way to generate data. However, depending
on the complexity and specificity of more advanced tasks, a more sophisticated approach
may be necessary [1].

For some scenarios, using random noise can be sufficient. The GAN Generator will
take this noise and generate corresponding synthetic data. However, there are situations
where it is necessary to provide more meaningful or structured inputs to the generator. For
example, when generating realistic images, adding random noise can lead to inconsistent
or blurry results. Instead, it may be beneficial to provide the generator with a latent vector.
We will explore the various inputs used for the generator in the specialized literature.

The pioneers of generative models were hidden Markov models (HMMs) and Gaussian
mixture models (GMMs). In the 1950s, they were developed to produce sequential pieces
of data. In the field of natural language processing (NLP), recurrent neural networks
(RNNs) alongside long short-term memory (LSTM) were a breakthrough and were able
to model longer dependencies, allowing for longer sentence generation. In 2013, the
variational autoencoder (VAE) was introduced, but its disadvantage compared to the GAN
is that it produces blurred and unclear images. The focus of this paper, the GAN, was
introduced in 2014 and was a breakthrough because it could generate high-quality images.
In 2015, diffusion models were introduced [4]. The basic principle of diffusion models is
incorporating noise into the existing training data and then reversing the process to restore
the data. In 2017, transformers were proposed, first with applications in NLP and later
with applications in computer vision as well. In 2021, stable diffusion was introduced, and
it is an important model for text-to-image translation [5]. In this work, we will keep our
focus on GANs and their evolution with the purpose of providing a strong technical and
practical guide for future research in this field.

The focus of this paper is on how GANs can be used to solve medical data related
problems; however, it’s important to mention that GANs have proven to be versatile and
powerful tools in various domains like image/video editing [6], generating original data for
entertainment industry, image-to-image translation, text-to-image translation, image/video
quality enhancer, face aging [7], and human pose generation [8] for security applications.
In the software industry for editing photos and videos, GANs can be used to improve
the resolution of older images or those taken from a very far distance, such as images
from space. Style transfer methods can be employed to create new scenarios. There are
GANs specifically developed for video editing effects, like changing the background or
adding/removing objects from a frame. In the entertainment industry, GANs can be
utilized for the automatic generation of characters or backgrounds [9]. Additionally, we
can transform simple sketches into more detailed objects and use them in design related
productions (cartoons, games, etc.). For this industry, GANs that generate images based
on text can be helpful, rapidly creating characters or objects suitable for the intended
scene. Generating the appearances of specific individuals based on age and body pose
can be useful in security-related issues. As we’ll see in the next section, we can use
the discriminator for one-class classification problems. For instance, in cases of banking
fraud, where most transactions in existing datasets are valid, the discriminator can be very
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useful in identifying transactions that stand out and fit into the category of fraudulent
transactions [10].

2. Related Work
2.1. DCGAN—Deep Convolutional GAN

The idea of a deep convolutional GAN was introduced one year after the publication
of the original GAN idea. It is similar to the original GAN, but it introduces the use of a
deep convolutional network instead of a fully connected network. As mentioned before,
CNNs are great when working with images because they look better for spatial correlations.
This is making the DCGAN a better option to use when generating images compared to
the original GAN [11].

2.2. WGAN—Wasserstein GAN

WGAN was introduced in 2017 and received its name from the Wasserstein loss that
it is using. They propose the use of the Wasserstein distance (the effort that it takes to
transform one distribution into another) instead of the Jensen–Shannon divergence to
compare the distributions of the generated data and the training data. The authors call the
discriminator a “critic”. WGAN uses weight clipping in order to enforce the 1-Lipschitz
constraint. To ensure the validity of the Wasserstein distance calculation, WGAN enforces
the 1-Lipschitz constraint on the critic (also known as the discriminator in a GAN). The
Lipschitz constraint ensures that the critic’s output does not change dramatically with small
changes in the input. This constraint helps stabilize the training process and improves
the quality of the generated samples. The critic must satisfy the Lipschitz constraint. To
enforce the 1-Lipschitz constraint, WGAN uses weight clipping. Weight clipping involves
limiting the values of the weights in the critic to a predefined range, typically by setting
a threshold. This prevents the weights from growing too large and helps ensure that the
critic’s output remains within a reasonable range. However, it’s worth noting that weight
clipping has some limitations and can lead to issues. Overall, the 1-Lipschitz constraint,
enforced through weight clipping in WGAN, is a technique used to stabilize the training
process and improve the convergence of the Wasserstein GAN model. The authors of the
work in [12] emphasize that by using this loss, they obtained better stability in training and
that it solves common problems like vanishing gradients and mode collapse.

Mode collapse in generative adversarial networks (GANs) refers to a situation where
the generator of the GAN fails to capture the full diversity of the true data distribution
and instead produces limited variations or replicates a few specific modes of the data.
In other words, mode collapse occurs when the generator generates similar or identical
samples, regardless of the diversity present in the training data. For example, for the
MNIST dataset, which contains digits from 0 to 9, the generator tends to produce digits
from only two classes: 1 and 8. Mode collapse can be problematic because it leads to a
lack of diversity in the generated samples. Instead of capturing the full complexity and
variation of the real data distribution, the generator may focus on a subset of modes or
produce repetitive outputs. This can result in low-quality or unrealistic generated samples
that do not represent the full range of the desired data distribution. Because the generator
is overfitting, the discriminator does not improve, so the generated data remains limited to
a small number of classes.

Vanishing gradients can hinder the training process and lead to slow convergence
or poor performance in GANs. When the discriminator is too good, the generator does
not have any chance to improve. When the gradients are too small, they do not provide
sufficient information to guide the generator in improving its generated samples. As a
result, the generator may struggle to learn and adapt effectively to produce better-quality
samples. The vanishing gradient problem is particularly challenging in GANs, because
of the adversarial nature of the training. The generator and discriminator constantly try
to outperform each other, and if the discriminator’s gradients diminish, the generator’s
updates become less informative and effective.
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Wasserstein loss tackles both problems. If the critic is not getting stuck in local
minimum, it is forcing the generator to try something new when it is stabilizing and
returning outputs from only a few classes. Also, Wasserstein loss is a good indicator for
the quality of the image. As the number of epochs increases, the value of the loss function
decreases, proving a better alignment of the generated distribution to the original one used
for training.

The Critic maximizes this difference, while the target of the generator is to minimize it.
The lower the difference, the better the quality of the generated data.

The downside of the WGAN and Lipschitz Constraint is that the quality of the output
is very dependent on the hyperparameter c used in weight clipping. In the context of
weight clipping in Wasserstein GAN, the hyperparameter “c” represents the threshold or
maximum value to which the weights of the critic (discriminator) network are clipped.
Setting “c” too small can lead to gradient vanishing or hinder the learning process, while
setting it too large may result in weak enforcement of the Lipschitz constraint, allowing the
critic to produce unstable or inaccurate gradients. Finding the optimal value for “c” often
requires experimentation and empirical observation to strike a balance between stability
and effective training in WGAN [12].

To overcome this problem, [13] proposed the use of a gradient penalty. In WGAN,
the gradient penalty is applied by adding a regularization term to the loss function. The
regularization term encourages the gradients of the critic’s output with respect to the
input samples to have a consistent and controlled magnitude. Specifically, during training,
random interpolations are generated between pairs of real and generated samples. These
interpolations are used to calculate the gradients of the critic’s output, with respect to the
interpolated points. The gradient penalty term is then computed as the norm (e.g., L2
norm) of these gradients. The objective is to encourage the gradients to have a magnitude
of 1, indicating Lipschitz continuity [13].

2.3. cGAN—Conditional GAN

cGAN was introduced in order to control the type of image that we want to generate.
For example, for the MNIST dataset we cannot control the generation of a specific digit
with the methods presented so far. cGAN emerged as a solution to address the challenge of
understanding the connection between the random input provided to the generator and
the actual characteristics present in the training images. Without this, we would not be able
to influence specific features that would generate a specific result.

In conditional GAN architecture, we will provide both the generator and the discrimi-
nator with some additional information to generate images of specific classes. Compared
to the original GAN, we provide some additional information for the generator and also
provide the same information to the discriminator. That information is a set of fake class
labels. We also provide the discriminator with the real labels for the training data. The
advantage of cGAN is that we have more control over what we generate, and convergence
is faster. cGAN architecture is the foundation for some very important image to image
translation architectures like Pix2Pix and CycleGAN [14].

2.4. Pix2Pix—Image to Image Translation

Pix2Pix architecture was developed in order to generate the translation of an image to
a new image with a different style applied to it. For example, we can leverage the model to
generate an image with identical features to a daytime photograph, transforming it into a
nighttime scene. Or we can take a real picture obtained from a certain height and transform
it into a map style image. This type of model requires a paired dataset. The generator
takes a real image and some noise as input in order to produce an outcome with a desired
style applied. Let us take, for example, the process of making an edge diagram for a real
image scenario. The generator would take the edge map as input and try to generate the
real image. The discriminator is going to take both the generated image and the edge
map as input. The generator loss is a pixel-wise loss. This loss measures the similarity
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between the generated image and the target image at the pixel level. It encourages the
generator to reproduce the fine details and structural information accurately. Reference [15]
mentions the L1 loss, which is a mean absolute error (MAE), which computes the pixel-wise
differences between the generated and target images. The discriminator loss looks at the
real loss and generated loss. The real loss is a sigmoid cross-entropy loss of the real image
and an array containing only 1′s. The generated loss is a sigmoid cross-entropy loss of the
generated image and an array containing only 0′s. The total loss is the sum of the real loss
and the generated loss [16].

2.5. CycleGAN

Unlike Pix2Pix we do not need to use paired datasets. In Pix2Pix we need data from
both categories in order for the model to understand how to correlate and translate them.
CycleGAN applies the learned style from one dataset to the other dataset. For example,
if we want to perform translation from edges to images, we need a dataset that contains
images with edges and a corresponding dataset that includes the real image of that item.
What makes CycleGAN unique is its ability to utilize unpaired data, meaning we can have
a dataset of castle images and another dataset featuring a specific painting style. By the end
of the process, we can successfully apply the painting style to the castle images, despite the
fact that the images were never paired together at any point.

The generating process begins with an input image from either domain A or domain
B. For instance, if we have a photograph of a horse, it belongs to domain A. To transform
the input image into the target domain, we pass it through generator A (GA). GA takes
the input image and generates an image in the target domain, which is domain B in this
case. The output image produced by GA possesses the style and characteristics of domain
B. If we desire to revert the image back to its original domain, we can use generator B (GB).
By passing the image generated by GA through GB, GB takes the generated image from
domain B and transforms it back to domain A. The resulting image should ideally resemble
the original input image of the horse photograph. Therefore, by utilizing generators GA
and GB, we can seamlessly translate an image from one domain to the other. For example,
starting with a horse photograph in domain A, GA can generate an image in domain B that
resembles a zebra painting. Then, by passing this generated image through GB, we can
obtain an image back in domain A that closely resembles the original horse photograph.
This is also called cycle consistency loss.

The discriminator process is also made up of two parts. The first discriminator receives
as input the generated image and outputs a classification matrix. The second discriminator
receives real data from domain B as input and outputs a classification matrix. In the end
we apply least squares loss between the two classification matrices. The first discriminator
encourages the first generator to translate the input into fake images as indistinguishable
as possible from images in domain B and vice versa for the second discriminator and the
second generator. This creates a consistent cycle, hence the name of the architecture.

CycleGAN is a great option when dealing with unpaired data, but if paired data
is available, Pix2Pix architecture is preferred because it is faster in training. The results
are realistic only when the style translation is made between objects with a similar shape
or features. Also, the results are very good in tasks that include texture, style, or color
changes [15].

2.6. ProGAN—Progressively Growing GAN

T. Kerras and his team from NVIDIA introduced the ProGAN architecture in 2017 and
its purpose was to generate faces of people that do not exist in the real world. The name
of the architecture comes from the fact that they progressively increase both the generator
and the discriminator. The layers of the network are organized in the form of a pyramid.
The latent vector starts from a low resolution and increases with every layer. For the
experiments they used a dataset of images with celebrities of size 1024 × 1024 pixels and
the generated results were very good. Naturally, the generated faces bear a resemblance
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to the individuals present in the training dataset. The generated results can be controlled
if different features are specified, for example we can control the direction the person is
looking at [17].

2.7. StyleGAN

StyleGAN is the state-of-the-art method for generating new images. It is also the
work of T. Kerras and the other team members from NVIDIA. StyleGAN is based on
ProGAN. It employs a distinct generator architecture inspired by style transfer, specifically
adaptive instance normalization. This architecture enables the model to learn high level
features, such as facial positions, hairstyles, beards, and various other characteristics. In
StyleGAN the latent vector is mapped to an intermediate latent space that controls the
generator through adaptive instance normalization. Multiple improvements and versions
are available for StyleGAN. The most recent one is called StyleGAN3 [18].

2.8. SRGAN—Super Resolution GAN

Super resolution GAN tackles the challenge of estimating a higher resolution image
from a low resolution version. It uses a perceptual loss function consisting of an adversarial
loss and a content loss. The discriminator is trained to distinguish between original
low resolution images and super-resolution generated images. Moreover, the authors
proposed the use of a content loss based on perceptual similarity, rather than pixel space
similarity. The generator uses residual blocks and skip connections. This is meant to keep
the information from previous layers, so that the network could choose more features
adaptively. The input used for the generator is the low-resolution image. The used loss
function is the perceptual loss function. The perceptual loss function is made up of two
parts: content loss and adversarial loss. The content loss measures how much of the original
content is going to get lost during training. When we perform super resolution, new pixels
need to be added to the image. The neural network needs to produce new pixels from the
image. When this happens, we can lose some context from the original image. New pixels
need to be added to the image and they should be related to the original image, that is what
the content loss indicates [19].

2.9. ESRGAN—Enhanced SRGAN

It is an improvement compared to the original SRGAN. There are some changes in the
architecture and loss function. A new deep neural network model instead of the residual
blocks was adopted. A relativistic average GAN [20] is used instead of the vanilla GAN.
The perceptual loss is also improved before applying the activation functions. The ESRGAN
produces less blurry and better quality images than SRGAN [21].

2.10. MedGAN

MedGAN appeared as a solution to the problem that not enough medical data is
available for experiments. The authors of [22] indicate that accessing medical databases
can be difficult, particularly due to the sensitive nature of the data. Furthermore, the
authors highlight that large medical organizations, which have access to such databases,
often demand significant financial resources for their use. medGAN is to accomplish two
important objectives. The first one is to preserve the privacy of the patients, so that it would
be practically impossible to gain knowledge about real people from the synthetic data. The
second one is to produce data of a good enough quality, so that the models trained on
synthetic data could perform as well as the ones trained on real data.

The particularity of the medGAN architecture is that an encoder–decoder model was
added. The discrete real data input is encoded into a continuous embedding vector. Then,
the decoder is used to convert back to a discrete representation of the input in the data
space. Both the encoded input data as well as some random noise are put through that
decoder. Then, the discriminator takes the data provided by the decoder as well as the
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real data and decides the probability of the data being true or false. For the autoencoder,
cross-entropy loss is used.

Different GAN architectures were experimented with to see which one would pro-
vide the best dimension-wise probability distribution. MedGAN showed the best perfor-
mance [22].

2.11. Synthesizing Electronic Health Records Using Improved Generative Adversarial Networks

The proposed method in [23] is supposed to obtain better results than medGAN. The
goal of this research is to provide a privacy-preserving solution that enables data sharing,
analysis, and research involving electronic health records (EHRs) without violating patient
privacy regulations or exposing sensitive information. By generating synthetic EHR data
that closely resembles real patient records, the authors aim to facilitate various applications,
such as medical research, predictive modeling, and healthcare analytics. They propose
two variations of the medGAN: Wasserstein GAN with gradient penalty (WGAN-GP), and
boundary-seeking GAN (BGAN).

In the proposed medWGAN, an improved generative network called WGAN-GP is
employed, instead of the general GAN. The remaining structure is the same as that of
medGAN. The authors of the WGAN-GP model made a claim that the previous version of
Wasserstein GAN (WGAN) allowed for stable training, but produced low-quality samples
or failed to converge in certain scenarios due to the use of the weight-clipping technique.
To address these problems, they introduced an alternative weight-clipping method called
gradient penalty, which involves penalizing the gradient norm of the discriminator (critic),
with respect to its input. The WGAN-GP model shows improved performance compared
to various GAN architectures, including the standard WGAN. Therefore, in this study,
the hypothesis was that applying medWGAN to generate synthetic EHRs would result in
superior performance compared to employing the original medGAN [13].

medBGAN is proposed as an alternative model to medGAN, achieved by replacing
the traditional GAN with a new algorithm called BGAN. A generator is trained to match
a target distribution that progressively converges to the true data distribution as the
discriminator is optimized. The objective can be understood as training the generator to
generate samples that reside on the decision boundary of the current discriminator during
each update. Consequently, the GAN trained using this algorithm is referred to as BGAN.
This algorithm enhances effective performance for both discrete and continuous variables
and exhibits qualitatively superior performance compared to conventional GANs. Similar
to medWGAN, it is expected that medBGAN will deliver high performance in generating
synthetic EHRs. Their results show that medBGAN performed the best [23].

2.12. AMD-GAN

The authors of [24] present the difficulty in detecting fundus diseases, particularly in
the context of retinal imaging, using scanning laser ophthalmoscopy (SLO) images with an
ultra-wide field.

A primary obstacle encountered in the approach of an artificial intelligence-based
solution is the persistent issue of limited available data. Usually, a method based on
GANs could be used to augment the dataset, but in this case, a constraint specific to this
medical concern and its associated image data type lies in the inefficacy of GANs. The
small size of salient objects within SLO images causes the GAN difficulties in extracting
high-level features.

To overcome these problems, the authors of [24] proposed a method called AMD-
GAN. The method uses a generator and a discriminator. The generator has two parts: an
attention encoder (AE) and a multi-branch (MB) structure. The encoder network uses real
data and random Gaussian noise as input. The AE and generation modules help extract
details from low-level information and generate features at different scales. The AE is
made of the following layers: convolution, batch normalization, ReLU, and maxpooling.
An attention mechanism is used to combine these extracted features from real data with
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features generated at the same scale. The fake images are generated from a random
Gaussian noise input. The random noise is passing through three pairs of upsampled
residual blocks followed by the AE module, and after this, passing through another three
upsampled residual blocks (RU block). This output (the fake generated data) along with
the real data is then passed to the discriminator. The RU block is made of the following
layers: batchnorm, ReLU up-sampling, 3 × 3 conv, batchnorm, ReLU, 3 × 3 conv. The loss
used by the generator is described in Equation (1).

The discriminator (used as a classifier in this problem scenario) uses a multi-branch
structure based on a ResNet-34 backbone model to capture rich high-level features. The
authors added a deep-wise asymmetric dilated convolution (DADC) [25] block to refine
high-level features and speed up training with fewer parameters. The loss used by the
discriminator is described in Equation (2).

To generate good fake images, the authors use adversarial loss which tries to maximize
the probability of real images being recognized as real and generated images being con-
sidered fake. To ensure that the generated images not only look real but are also correctly
classified, the authors use a classification loss. The classification loss is different for real
and fake data. To ensure that the generated images capture the overall content information
of the input images, they also use the mean square error (MSE, or L2 norm) between the
generated images and the real images. This is called the content loss. The final loss is made
of the previously mentioned losses, and they propose the use of two coefficients α and
β (which are set between 1 and 10 in their experiments) to control the classification and
content losses.

Lgenerator = Ladversarial + αL f ake data
classi f icaation + βLcontent (1)

Ldiscriminator = −Ladversarial + αLreal data
classi f icaation (2)

2.13. One-Class Classification Using Generative Adversarial Networks

The work in [26] presents a way to improve one-class classification using GANs. One-
class classification has very important applications like: fraud detection since fraudulent
transactions are relatively rare compared to legitimate ones, detecting anomalies in network
traffic, which can help identify potential cyber threats or attacks and early disease detection.
According to [27], there are three types of OCC classifiers: trained with positive examples
only, trained with positive and unlabeled data, trained with positive samples and some
artificially generated outliers. The authors of [26] focus on the third type of OCC classifier.
They introduce an OCC architecture named OCC-GAN. The GAN’s discriminator is very
useful in a scenario like this because it can distinguish real from fake, meaning it can
be used for identifying outliers. During training, the generator steps up, autonomously
creating artificial outliers, eliminating the need for manual outlier set construction.

To optimize their GAN model, they modified the discriminator’s final layers, trans-
forming its output into categorical judgments. Utilizing a softmax function, they mapped
the output to possibilities of being a target or an outlier. The discriminator then computes
losses based on these probabilities. The adversarial training strategy encourages the genera-
tor to create more lifelike data, boosting the discriminator’s performance. The authors also
introduced a novel OCC index, the classification recall index (CRI), to overcome deficiencies
in existing criteria. They replaced the CNN architecture with a dense block structure, pre-
venting gradient vanishing, strengthening feature connections, and ultimately improving
the model’s performance.

The OCC-GAN architecture is similar to the original principle of GAN. The primary
modification involves adapting the traditional GAN structure to prioritize an effective
Discriminator for distinguishing targets and outliers accurately.

Both the generator and discriminator are divided into dense blocks and transition
layers. The feature flow within a dense block is maintained through a concatenation layer,
for feature extraction. Dense blocks include a bottleneck structure with a fixed output
channel of 32 (to reduce the parameters), keeping the feature map resolution constant. The
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OCC-GAN employs three dense blocks and three transition layers in both the generator
and discriminator. At the end, the feature map is converted into a binary vector and the
largest value for a category is used as the classification result. Mean square error loss (MSE)
is used instead of binary cross-entropy loss (BCE), facilitating the translation of output
possibilities into explicit categories.

In Table 1 we can observe a summarization of the previously discussed GANs and
their main scenario of use.

Table 1. Summarizing GANs architectures and their main purpose of use.

GAN Architecture Use Case

DCGAN [11] Improvement over the original GAN. Image generation.

WGAN [12,13] Improved stability in training and solved the vanishing gradient problem.

cGAN [14] Base idea for Pix2Pix and CycleGAN. Enables control over generated images.

Pix2Pix [16] High quality results for image translation with paired dataset.

CycleGAN [15] Does not require paired data. Translates image styles between domains.

ProGAN [17] Used for generating realistic faces, progressively growing both Generator and Discriminator.

StyleGAN [18] Generates very high-quality images and offers control over data.

SRGAN [19] Increases data resolution quality.

ESRGAN [21] Produces less blurry and better-quality images compared to SRGAN. Improvements in architecture
and loss function.

MedGAN [22] Addresses limited availability of medical data for experiments, preserves privacy in medical data,
generates high-quality synthetic data.

medWGAN, medBGAN [23] Improves stability and performance in generating synthetic Electronic Health Records (EHRs).

AMD-GAN [24] Specifically designed for retinal imaging challenges, utilizes Attention Encoder and Multi-Branch
structure for feature extraction.

One-Class Classification
GAN [26]

Improves one-class classification. Introduces a One-Class Classification GAN architecture with
modified Discriminator layers for categorical classification.

3. Dataset and Methods

As an experiment, we focused on testing one type of the previously presented GAN
methods on a dataset containing medical images. The name of the dataset is CVC-
ClinicDB [28] and it is a dataset with 612 images with a resolution of 384 × 288, extracted
from the video of a colonoscopy. The dataset was created by the Computer Vision Center,
Barcelona, Spain, based on data from The Clinic Hospital of Barcelona. We chose to gener-
ate new enhanced resolution images, using different variations of the ESRGAN, with the
purpose of finding out how the distribution of the image would differ. First, we generated
an image with increased resolution, using the GAN, then, we resized the image to the
original size, and finally, we plotted the distribution of the image in comparison to the
original one. To do this, we plotted a histogram containing the frequency of the pixel values
from 0 to 256.

If we increase the size of an image using an ESRGAN and then resize it back to the
original size, the resulting image is not considered a completely new image. It is still
derived from the original image, but with enhanced resolution.

The purpose of using ESRGAN is to generate a high-resolution version of the input
image by extrapolating details and enhancing fine textures. However, when we resize the
image back to the original size, some of the details and textures that were added by the
ESRGAN may be lost or altered.
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In the context of a segmentation task, using the ESRGAN-enhanced and resized
image can have both advantages and limitations. The advantages include the potential for
improved segmentation accuracy, due to the increased resolution and enhanced details.
The enhanced textures and sharper edges produced by the ESRGAN have the potential to
improve the accuracy of object boundary detection.

However, it’s important to note the potential limitations, as well. The resized image
may not perfectly retain all the original details and may introduce artifacts or distortions
during the resizing process. Additionally, if the ESRGAN introduces any unrealistic or
inaccurate features, these could impact the computer vision task results.

We chose to employ a pretrained ESRGAN, due to several compelling reasons. Firstly,
pretrained models have already undergone extensive training on large-scale datasets, which
helps them capture rich and diverse features from the data. This pretraining phase enables
the model to learn complex patterns and representations that are beneficial for enhancing
the quality of our output.

Secondly, pretrained ESRGAN models have proved remarkable performance in single
image super-resolution tasks. By leveraging the knowledge and insights gained during their
training, we can leverage their ability to generate high-resolution and visually appealing
images from low-resolution inputs.

Moreover, employing a pretrained ESRGAN allows us to save significant computa-
tional resources and time. Rather than training a model from scratch, we can build upon
the existing knowledge encoded in the pretrained model, accelerating our development
process, and reducing the need for extensive data and computational requirements.

For our experiments, we first used an ESRGAN. Compared to the original SRGAN,
it contains a deep neural network that uses residual-in-residual dense blocks, instead
of the batch normalization layers. The idea is to generate some new images with their
resolution increased (1152 × 1536) and then resize them to the original dimension of
the image (288 × 384). The objective is to obtain similar looking images, so that the
discriminator is performing its role well, but we do not need the images to have exactly
the same distributions, hence the goal is to obtain some new data. It can be seen in
Figures 1 and 2 that the distributions of the original image and the generated image are
similar, but not identical.

Electronics 2024, 13, x FOR PEER REVIEW  11  of  18 
 

 

 

Figure 1. Original image histogram. 

 

Figure 2. Generated image histogram using ESRGAN. 

We also used the pretrained model Real-ESRGAN to generate the figures from the 

next chapter. Usually, a resolution model made for enhancing the resolution of images is 

trained on datasets containing good resolution  images/ground  truth  images and corre-

sponding images with diverse types of degradation. One challenge is to simulate the deg-

radation that happens in the real world, which can be caused by a lot of variables: camera 

blur,  sensor noise,  JPEG  compression,  sharpening artifacts,  image  editing, file  transfer 

over the Internet, etc. To overcome this, the authors of [29] introduced a high-order deg-

radation modeling process, with the purpose of simulating complex real-world degrada-

tions. 

The model was trained using DIV2K [30], Flickr2K [31], and OutdoorSceneTraining 

[32] datasets. The authors used the Adam optimizer and the loss was a combination of L1 

loss, perceptual loss, and GAN loss, with the following weights {1, 1, 0.1}. Some limitations 

are  twisted  lines and unpleasant artifacts, caused by GAN  training, and unknown and 

out-of-distribution degradations [29]. Such a limitation of not being able to preserve the 

Figure 1. Original image histogram.



Electronics 2024, 13, 713 11 of 17

Electronics 2024, 13, x FOR PEER REVIEW  11  of  18 
 

 

 

Figure 1. Original image histogram. 

 

Figure 2. Generated image histogram using ESRGAN. 

We also used the pretrained model Real-ESRGAN to generate the figures from the 

next chapter. Usually, a resolution model made for enhancing the resolution of images is 

trained on datasets containing good resolution  images/ground  truth  images and corre-

sponding images with diverse types of degradation. One challenge is to simulate the deg-

radation that happens in the real world, which can be caused by a lot of variables: camera 

blur,  sensor noise,  JPEG  compression,  sharpening artifacts,  image  editing, file  transfer 

over the Internet, etc. To overcome this, the authors of [29] introduced a high-order deg-

radation modeling process, with the purpose of simulating complex real-world degrada-

tions. 

The model was trained using DIV2K [30], Flickr2K [31], and OutdoorSceneTraining 

[32] datasets. The authors used the Adam optimizer and the loss was a combination of L1 

loss, perceptual loss, and GAN loss, with the following weights {1, 1, 0.1}. Some limitations 

are  twisted  lines and unpleasant artifacts, caused by GAN  training, and unknown and 

out-of-distribution degradations [29]. Such a limitation of not being able to preserve the 

Figure 2. Generated image histogram using ESRGAN.

We also used the pretrained model Real-ESRGAN to generate the figures from the next
chapter. Usually, a resolution model made for enhancing the resolution of images is trained
on datasets containing good resolution images/ground truth images and corresponding
images with diverse types of degradation. One challenge is to simulate the degradation
that happens in the real world, which can be caused by a lot of variables: camera blur,
sensor noise, JPEG compression, sharpening artifacts, image editing, file transfer over the
Internet, etc. To overcome this, the authors of [29] introduced a high-order degradation
modeling process, with the purpose of simulating complex real-world degradations.

The model was trained using DIV2K [30], Flickr2K [31], and OutdoorSceneTrain-
ing [32] datasets. The authors used the Adam optimizer and the loss was a combination of
L1 loss, perceptual loss, and GAN loss, with the following weights {1, 1, 0.1}. Some limita-
tions are twisted lines and unpleasant artifacts, caused by GAN training, and unknown
and out-of-distribution degradations [29]. Such a limitation of not being able to preserve
the natural edges of nuclei. This could affect the model’s generalization capabilities. How-
ever, if we deal with a task in which we need to make the data better to visualize by an
expert, these artifacts may not be such a very big disadvantage. Improving the resolution
of medical images could also be very important in scenarios where the medical image
quality is constrained by the quality of the equipment and the time it needs to produce
a high-quality image. For example, magnetic resonance imaging (MRIs) and computed
tomography (CT scans) are two very common types of medical datatypes, and their quality
depends on the equipment and the time allocated for performing the scan. The quality of
these images is crucial in making an accurate decision model. In [33], the authors give, as an
example, tissues that are small and hard to identify within the eye’s fundus. Elements like
soft exudates, microaneurysms, or hemorrhages could potentially be identified better from
an enhanced resolution image. The most significant drawback remains that artifacts could
appear during the resolution increasing procedure and this may affect model performance.
To take advantage of all types of data and combine them to obtain higher quality datasets,
the authors of [34] have proposed a multimodal image fusion method, with the purpose of
creating a clear image, without artifacts caused by the scanning process, based on a multi
discriminator hierarchical wavelet GAN. Methods like [34] could be used to overcome
imperfections in medical data and combine the strong points from different types of data
like CTs, MRIs, positron emission tomography (PET), etc.

4. Results

Another way to show that the images are not the same is to compute the structural
similarity index (SSIM) and the mean squared error (MSE). SSIM values range from −1 to
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1, where 1 indicates perfect similarity, and MSE measures the average squared difference
between corresponding pixel values in the two images. A lower MSE indicates less differ-
ence between the images. The SSIM and MSE scores for Figures 3 and 4 are: SSIM: 0.9185
and MSE: 0.0006. The provided SSIM and MSE values show that, while the two images are
highly similar, which was expected and can be evaluated by a visual inspection, they are
not exactly the same.
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In Figures 1 and 2, the image pixel distribution for the original image and the ESRGAN
generated image can be observed.

One downside of generating higher resolution images is the appearance of artifacts
around edges. One method to lower the appearance of artifacts is PSNR, or peak signal-
to-noise ratio. It is used in ESRGAN as a metric to evaluate the quality of super-resolved
images. PSNR measures the difference between two images by evaluating the peak signal
power (the maximum possible value) and the amount of noise or distortion introduced
during the process of upscaling or image enhancement. A higher PSNR value indicates a
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smaller difference between the generated image and the original image, implying better
image quality. We also generated a set of images from the same input dataset, with a model
using PSNR. The differences might not be immediately apparent, yet the distributions vary
notably. In Figure 3, an example of an image generated with the PSNR model is displayed.

Lastly, we used Real-ESRGAN to generate new images, as can be seen in Figure 4,
along with the corresponding segmentation mask from Figure 5. The segmentation mask
is part of what is provided by the dataset. We ensure the application of the same aug-
mentation technique to the original image and to the corresponding mask. In the case of
a segmentation mask, we make sure that features like edges of the area of interest align
correctly between the original image and the mask. Real-ESRGAN is a state-of-the-art
solution for increasing resolution. Compared to the original ESRGAN, it proposes a U-
net discriminator with spectral normalization, to increase discriminator performance and
stabilize the training dynamics [29].
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Figure 5. Generated segmentation mask using Real-ESRGAN.

To provide a more suggestive visual qualitative analysis, we also applied the Real-
ESRGAN to a breast histopathology dataset [35]. The original images are 50 × 50 pixels in
size and show invasive ductal carcinoma pathology. If we would like to use this dataset for
a task like semantic segmentation, it would be a very unpleasant and maybe impossible
task to annotate the images at this size. A simple change of image size produces blurry
results. In a scenario like this, it is observed that resolution enhanced images present a
better quality. In Figure 6, four of the original images from the dataset are presented. In
Figures 7–10 we can see on the left the simple resized image and on the right the Real-
ESRGAN enhanced image.
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Figure 10. Breast histopathology image 4 resized (left) and Real_ESRGAN generated (right).

We can observe that there is a similarity of the characteristics between Figures 7 and 10,
and, respectively, Figures 8 and 9; this similarity can also be seen in the results from Table 2.
The SSIM and MSE values are closer together for images that share similar characteristics.
Also, this shows that the chosen model is capable of consistency and generalization.

Table 2. SSIM and MSE values computed between resized and Real_ESRGAN images.

Figure SSIM MSE

7 0.4434 0.0076

8 0.7048 0.0085

9 0.6797 0.0049

10 0.3710 0.0074

5. Conclusions

The current review has provided a comprehensive overview of the current state-of-
the-art architectures of generative adversarial networks within the domain of computer
vision. The experiment with enhanced super-resolution generative adversarial networks
revealed their capability in generating additional data for diverse datasets, without just
duplicating existing information. Looking ahead, GANs hold significant potential in semi-
supervised tasks across various domains. Their ability to generate realistic data expands
the possibilities for training models with limited labeled data, making them invaluable in
scenarios where obtaining large labeled datasets is challenging.

For future work, we want to extend the applicability of ESRGANs. We want to
experiment and find out how semantic segmentation tasks would perform on datasets
enriched with extra generated images, compared to the original dataset. Furthermore, we
want to apply ESRGAN to augment patches from histopathology images. In histopathology
imaging, the scanned image of the tissue is of very high resolution, but only a small part
of the image actually contains areas of interest. This is why, for histopathology image
segmentation, the image is divided into patches, maintaining only the relevant ones for our
classes [36]. Consequently, there is a need to increase the resolution of these small patches,
where ESRGAN could prove beneficial. Additionally, in the case of these images, a GAN
could be employed to alter the colors, as this represents the most common augmentation
technique for this type of medical image.
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