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Abstract: Diagnosis of analog electronic circuits is a crucial issue in computer-aided design. During
the diagnosis, solving a test equation to identify the values of faulty parameters is usually necessary.
The equation is nonlinear to the parameters, even for linear circuits. The nonlinearity of the equation
implies the possibility of multiple solutions. No method exists that guarantees the determination
of all the solutions of the test equation. However, even information about more than one existing
solution is essential for the designer. It allows for the selection of another test at the design step and
helps to obtain an unambiguous solution during the diagnosis. Information about the possibility of
additional solutions is essential for simulation after test methods (e.g., identification and verification
methods) and for simulation before test methods, so-called dictionary methods, especially those
targeting multiple fault classification. The paper deals with the problem of multiple solutions of the
test equation for nonlinear DC circuits and proposes a method for identifying the solutions using
a deflation technique. The outcomes are compared with the results obtained using standard and
adaptively damped Newton–Raphson iterative methods. The methods use randomly selected initial
guesses to find multiple solutions. The effectiveness of all the methods for identifying multiple
solutions was verified numerically and via laboratory tests.

Keywords: analog circuits; deflation technique; fault diagnosis; fault location and identification;
multiple solutions; nonlinear circuits

1. Introduction

The development of integrated circuit and semiconductor technology in the second
half of the last century has led to a growing interest in computer-aided design of nonlinear
circuits and systems. The most critical problems that research and development centers
have tried to solve are the elaboration of efficient algorithms to analyze the circuits and
methods to design for testing (DfT). Even the early simulators, such as CANCER, SPICE1,
and NAP, made it possible to determine solutions for nonlinear circuits using simple semi-
conductor models, e.g., Ebers–Moll for a bipolar transistor. Technological developments,
especially in CMOS technology, have led to the use of complex, multi-parameter transistor
models, e.g., the PSP or BSIM one. In the meantime, many papers have highlighted potential
problems in the simulation and operation of nonlinear circuits. Researchers have focused
particular attention on the issue of multiple solutions and chaos [1–9]. Simultaneously,
research was performed on the automation of testing different classes of circuits [10–49].
Standards have been developed for digital circuits, significantly improving the diagnostic
process. Unfortunately, the same issue for analog circuits has lagged. The reason is the
continuity of analog signals, noise from various external sources, and parameter tolerances,
which affect the diagnostic results. Moreover, various faults of individual components exist,
i.e., parametric/soft faults (parameter value out of tolerance range) and catastrophic/hard
faults (leading to topology changes resulting from short or open circuits). Limited access
to the interior terminals of the circuit to excitation or measurement facilities further com-
plicates the performance of a successful diagnosis. Thus, the step of proper test selection,
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maximizing the effectiveness of the diagnostic methods, is crucial [27]. Since universal
diagnostic methods have not been developed, a split in methods into two classes is made:
so-called methods with before-test simulation (SBT) and methods with after-test simulation
(SAT). The SBT methods mainly focus on fault detection (go/no-go test) and on classifica-
tion of single faults (indicating which component is faulty). Some SBT methods allow a
faulty parameter up or down deviation from a nominal value classification or even local-
ization of selected multiple faults. Artificial intelligence methods, including various neural
networks, are typically used as fault classifiers in SBT methods [18,28,30–32,39,47–49].
These methods indicate faults of each class with high precision, up to 100%. Unfortunately,
the nature of the SBT methods makes the approaches only of limited use at the design stage,
where it is necessary to identify multiple soft faults. In such cases, the typical approach
is to use SAT methods. The group of methods includes identification, verification, and
optimization methods [17,27,32,40–42]. SAT methods typically lead to a nonlinear test
equation whose solution (or solutions) meets measurement readings. SAT methods allow
for determining the values of more parameters than the SBT approaches, but require more
diagnostic information.

Although the analysis and SAT diagnosis of circuits involve different aspects and
applications, these topics for nonlinear circuits have a common aspect. The aspect is the
need to solve systems of nonlinear equations. In DC analysis, a specific description of the
circuit, e.g., a modified nodal or hybrid description, leads to the equation. The solution
for the system at constant values of the element parameters is found using a numerical
method, e.g., the Newton–Raphson method or the Piccard method. As a result, the values of
nodal voltages, branch voltages, and currents are obtained. In the fault diagnostic method,
the problem is posed differently. Based on the measured values of the circuit quantities
(voltages/currents), a nonlinear equation called the test equation is formed and solved. The
solutions to the equation are the values of element parameters. The number of parameters
sought is usually greater than the number of measured quantities at a single excitation.
Thus, it is necessary to consider the results of measurements at several different excitations.
The test equation is generally nonlinear, even for linear circuits.

Both finding all solutions in nonlinear circuits and determining parameter values
in fault diagnosis require solving a system of nonlinear equations, briefly referred to as
a nonlinear equation. Thus, it is crucial to consider the possibility of multiple solutions
to this equation when developing reliable analysis and testing methods. In analysis,
multiple solutions mean that the same circuit has different voltage/current values (so-
called equilibrium points) depending on the initial conditions of the associated dynamic
circuit. In diagnosis, multiple solutions mean that different sets of parameters or even, as
shown in the article [41], and that the same parameters but with different values satisfy the
test. Eliminating the undesirable and potentially misleading solutions requires choosing
a new test. Therefore, an important issue is identifying multiple solutions already at the
design step. At this stage, it is possible to provide sufficient access for measurements. The
problem is essential in SAT and SBT methods, where fault classification is based on a given
test. The most complicated diagnostic case concerns the testing of circuits with multiple
DC solutions [43].

The paper proposes a quick and easy-to-implement procedure to identify multiple
solutions to test equations. Identification is understood as the statement of whether mul-
tiple solutions to a diagnostic equation are possible based on measurement data (for a
measurement test established at the design stage). The appearance of multiple solutions at
the DfT stage makes it possible to rearrange the test to obtain an unambiguous diagnosis at
the actual circuit testing step. Therefore, the input data are the results of CUT simulations
at a predefined test for different parametric faults, and the result of the computational
procedure is to conclude whether the obtained solution of the test equation is unambiguous.
In addition, the software results in parameter values corresponding to the various solutions.
The procedure can be helpful at the step of selecting a test for both SAT and SBT methods.
Section 2 reviews existing methods dealing with the problem of multiple solutions in circuit
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analysis and diagnosis. Section 3 discusses the numerical techniques and methods used in
the paper, particularly the concept of deflation. Section 4 illustrates the effectiveness of the
methods to identify multiple solutions of the test equation in nonlinear circuits, through
numerical simulations and laboratory tests. Section 5 concludes the obtained results.

2. Multiple Solutions in the Analysis and Diagnosis of Electronic Circuits

Robust and efficient determination of solutions to systems of nonlinear equations
is a challenging problem from a theoretical and practical point of view. Calculating DC
solutions is one of the most critical tasks when analyzing electronic circuits [1–9]. The
Newton–Raphson method and its variants are used in standard simulators to compute
solutions to the equations describing the analyzed circuits. The methods can reach quadratic
or super-linear convergence by taking the initial guess near the solution. Once one solution
is found, the computational process is terminated, and the user is not given any information
about the possibility that other solutions exist. Therefore, the methods are not suited for
calculating multiple solutions. However, a lot of circuits have many isolated operating
points [7,8]. It is crucial to verify the points before the circuit is manufactured. Determining
the points is also essential when studying chaos [2].

Finding multiple solutions in nonlinear DC circuits is a difficult task. Two approaches
to the problem exist in the literature. The first approach relies on methods that guarantee
finding all solutions [3,5,6]. The methods usually require a specific hybrid description,
can be applied to circuits belonging to a strictly defined class, and use simple models of
semiconductor devices. The most commonly used approaches are based on computational
techniques using piecewise-linear approximation (PWL) [5]. However, the methods have
limited accuracy due to the approximation. For reliable results, it is necessary to analyze the
original nonlinear circuits. Interval methods and approaches based on the idea of successive
contraction, division, and elimination of certain hyper-rectangular regions where solutions
are sought can be applied here [1,3,6]. The complexity of the numerical procedures and the
time-consuming aspect make the problem of finding all solutions for a large-scale circuit
still unsolved. The issue remains pending and will be a challenge in the future, according
to many researchers. Therefore, other approaches focus on identifying only some solutions,
although sometimes they allow finding all solutions. For this purpose, the concept of
homotopy [7,8], the idea of deflation [2], evolutionary computation, and the Carleman
linearization [9] are proposed. A separate class of methods consists of algorithms that
identify the possibility of multiple solutions in nonlinear circuits by searching for specific
topological structures [4].

SAT methods are usually aimed at soft fault diagnosis. They usually allow for the
location of faulty components and the evaluation of their actual parameters. For this
purpose, a system of nonlinear diagnostic equations of algebraic type is formulated and
solved. When the parameters are slightly outside the tolerance region, the equation can
be linearized, leading to an unambiguous solution, provided testability is considered (the
testability concept will be explained later in this section). However, such procedures lead
to approximate parameter values. More accurate results are obtained using methods for
solving the original nonlinear equations, such as the Newton–Raphson method or its
variants. Finding solutions to the test equation becomes more challenging when parameter
changes are significant. In such a case, some methods fail to converge, or they converge
to unphysical solutions. Furthermore, several sets of parameters may then satisfy the test
equation. In the area of diagnostics, in contrast to DC analysis, to the author’s knowledge,
no method guarantees the determination of all solutions. In order to find some of the
solutions, various initial guesses may be chosen, and standard methods used. Such an
approach was first proposed in [20]. Another method based on the homotopy concept and
an efficient procedure for tracing a homotopy path was proposed in [40]. In a systematic
manner, it can find several sets of parameters that satisfy the diagnostic test rather than one
specific set. However, the computational process is complex and challenging to implement,
and numerical examples show that the method diverges in about 10% of cases. A systematic
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search method was developed in [41] to find multiple solutions to the test equation in
BJT and MOS circuits. The algebraic test equation is transformed into an initial value
problem (IVP). The IVP is solved by numerical integration, so the computational process
is complex, although, as the results in [41] show, it is efficient. All the methods discussed
above are so-called verification methods, and deal with DC nonlinear circuits. The methods
are based on the assumption that the faulty elements are known and usually limited to a
few parameters. The remaining elements are assumed to be healthy. Using a redundant
number of measurements relative to the number of parameters sought, so as to avoid
multiple solutions, was also applied in [42] to diagnose soft faults in linear AC systems.
The proposed algorithm solves the problem using the Levenberg–Marquardt method.
Unlike verification methods, the algorithm is applied to all testable element sets.

The testability of a circuit is an important issue in the study of solution ambigu-
ity [10,11,14–16,19,21–25,29,37,38,44,45]. Testability has been the subject of intensive re-
search since the 1960s, and methods in this area deal mainly with linear circuits. Testability
provides theoretical and rigorous upper bounds on the degree of solvability of a problem
once a set of test points has been selected. Various approaches based on fully numerical,
symbolic, or graphical techniques are available for linear (or linearized at the operating
point) circuits [14]. An important concept is the ambiguity group. If considered potentially
faulty, this set of components does not provide a unique solution when identifying a fault
at the chosen test. An ambiguity group that does not contain other ambiguity groups is
called a canonical ambiguity group. Typical testability identification procedures are well
established and use the Jacobian matrix rank evaluation of the test equation. Testability
analysis in nonlinear circuits is much more complex. The article [19] proposes a procedure
for determining testability and ambiguity groups for analog circuits containing nonlin-
ear devices. The proposed approach uses the idea of piecewise linear approximation of
nonlinear characteristics and considers combinations of linearity regions using testability
evaluation techniques for linear circuits. However, the method has practical application
only for relatively simple circuits. Testability in fault diagnosis of DC–DC converters con-
sidering the single fault hypothesis is discussed in [10,14]. The approach proposed in [10]
is based on symbolic analysis techniques for linear circuits corresponding to a specific
operating phase (i.e., a specific switch state). In [14], a graphical testability evaluation is
additionally used. Thus, the problem of testability for nonlinear circuits is still open.

Thus, as can be seen from the literature review presented, the problem of multiple
solutions in nonlinear circuits has been addressed in several works. However, most
of the works are of a verification type. They do not give a complete insight into the
phenomenon’s scale when comprehensively looking at the circuit under test. Furthermore,
the computational effort required to verify a single set of several parameters is considerable.
Therefore, the paper attempts to develop a simple and efficient procedure to identify
multiple solutions in the diagnosis of nonlinear circuits.

3. Solving the Nonlinear Test Equation
3.1. Preliminaries

In this paper, only single and multiple soft faults are considered. Hard faults can be
effectively localized using dictionary methods and properly learned classifiers due to their
usually significant impact on the measured quantities. A general form of the nonlinear test
equation for soft faults is defined first. For circuits consisting of n parameters considered
potentially faulty, the diagnostic test is arranged according to the test domain. For nonlinear
DC circuits, the circuit under test (CUT) is driven by a voltage (current) source or sources
applied to the terminals available for excitation, and the output voltages (currents) are
read at the nodes (branches) available for measurement. If the number of measurements is
less than n, the measurement is repeated for a different source(s) value to obtain at least
n values of the circuit quantities. For linear (or linearized at operating point nonlinear
circuits) considered in the AC domain, CUT is usually driven by a source applied to the
input terminals. Measurements of the rms value and phase of the output voltage are
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taken at the nodes available for measurement at fixed test frequencies to obtain at least
n measurement values. For circuits considered in the time domain, CUT is driven by a
waveform produced by a signal generator, e.g., a DDS generator. Measured output voltage
(current) values are read at the nodes (branches) available for measurement at fixed instants
of time to obtain at least n of measured values.

The measured voltage (current) values form a vector q = [q1 · · · qn]
T, where T

denotes the transposition. Each measured circuit quantity is a certain function of the
parameters x1, . . . , xn, qi = f̂i(x), i = 1, · · · , n, where x = [x1 x2 · · · xn]

T. The parameters
forming vector x depend on the class of circuits and the test domain. In the case of DC
nonlinear circuit diagnosis, the parameters can include resistance and model parameters
of nonlinear semiconductor devices such as saturation current, dependent source gain
coefficient, and transconductance. The above scalar relations can be written in vector form

as f̂(x) = q, where f̂(x) =
[

f̂1(x) · · · f̂n(x)
]T

. The equation is usually written in the form

f(x) = 0, (1)

where f(x) = f̂(x) − q, 0 = [0 0 · · · 0]T. Equation (1) is called the test equation. In real
circuits, the nonlinear function f̂(x) is not known in explicit analytical form.

From a mathematical point of view, the test equation (1) may have multiple solutions.
Unfortunately, no method guarantees the finding of all the solutions. Therefore, the
following sections discuss several methods that may lead to some of the solutions. The
methods described in the first two subsections are iterative and find one solution based on a
single initial guess. The first method is the standard Newton–Raphson method, commonly
used in solving systems of nonlinear equations. Properly selecting the initial guess leads
to a quadratic convergence to the solution. However, an incorrectly chosen initial guess
can result in slow convergence or divergence. The second method is a modified Newton–
Raphson method, which is more robust to the problem of divergence and poorly chosen
initial guesses [50], (p. 192). However, in cases where the standard Newton–Raphson
method iterates from a good initial guess, the modified method usually requires more
iterations. Both methods are run many times from randomly selected initial guesses (1000
guesses assumed) to find multiple solutions. Each new solution is stored. The results of
these calculations were compared with the results of the method based on the deflation
technique proposed in Section 3.6. The idea of deflation is discussed in Section 3.4. An
example illustrating how the methods work is discussed in Section 3.5.

3.2. The Standard Newton–Raphson Method (S-NRM)

In this section, the standard Newton–Raphson method (S-NRM) applied to a system
of n equations written in the form (1) having a solution x∗ =

[
x∗1 x∗2 · · · x∗n

]T is discussed.
Assuming that the functions fi(x), i = 1, · · · , n, are sufficiently smooth and expanding

them into a Taylor series around some point x(j) =
[

x(j)
1 x(j)

2 · · · x
(j)
n

]T
after elementary

rearrangements, the following relation defining the Newton–Raphson iterative process
is derived

J
(

x(j)
) (

x(j+1) − x(j)
)
= −f

(
x(j)
)

, (2)

where J
(

x(j)
)

is the Jacobi matrix. The iterative process involves solving Equation (2) for

x(j+1) using the previously calculated x(j). The iterative process starts from an assumed
initial guess x(0). By introducing an auxiliary designation y(j+1) =

(
x(j+1) − x(j)

)
, a typical

calculation process involves solving a linear equation

J
(

x(j)
)

y(j+1) = −f
(

x(j)
)

(3)
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for y(j+1) and determining the successive approximation of the solution from the formula

x(j+1) = x(j) + y(j+1). (4)

The procedure is repeated for j = 1, 2, . . . , until both conditions
∥∥∥y(j+1)

∥∥∥
∞
< ε and∥∥∥f

(
x(j+1)

)∥∥∥
∞
< η are met, where ε specifies an assumed error tolerance, η is a sufficiently

small number, e.g., ε = 10−4 ÷ 10−3, η = 0.001, and ‖·‖∞ is the uniform (infinity) norm.
Choosing an initial guess that guarantees rapid convergence is generally a difficult task. If
the sequence of successive iterations does not converge, the process is terminated, another
initial guess is set, and the calculation is repeated.

3.3. The Damped Newton–Raphson Method (D-NRM)

In order to improve the convergence of S-NRM, a modification involving step reduc-
tion is often used. The simplest case is the damped version of the algorithm, which involves
reducing the step in a certain ratio, leading to the following modification of (4),

x(j+1) = x(j) + λ y(j+1), (5)

where λ is the damping coefficient from the interval (0, 1]. The main difficulty is the
selection of a damping coefficient λ. In the simplest case, the coefficient is chosen arbitrarily
and fixed. In more sophisticated software, the coefficient is changed at each iteration. If
the initial guess is far from the solution, then the direction of convergence determined by
the Jacobi matrix may be ill-defined. Such a phenomenon is characterized by successive
solutions diverging in a zig-zag manner. It manifests in changing the sign of the elements
of the vector y(j+1). To prevent the phenomenon, x(j+1) is calculated using the formula

x(j+1) = x(j) + λ(j)y(j+1), (6)

where λ(j) it is chosen as follows. If there is a change in sign, then λ(j) = λ(j−1) · Θ;
otherwise, λ(j) = λ(j−1)

/
Θ, Θ is some constant chosen experimentally, (Θ < 1, e.g.,

0.75). If λ(j) > 1, then λ(j) = 1 is taken. If λ(j) < 0.001, then λ(j) = 0.001 is taken. The
above-described modification of the Newton–Raphson method will is called the damped
Newton–Raphson method (D-NRM).

3.4. Deflation Technique (DT)

The proposed approach uses a concept known in mathematics as the deflation tech-
nique (DT) [2,51–55]. The theoretical foundations of DT are given in [51]. Farrell et al.
extended the concept to systems of partial differential equations [52]. DT in application
to finding the solution of a system of nonlinear equations at roots where the Jacobian
is singular is discussed in [53]. Huang et al. proposed using DT to find eigenvalues in
dispersive metallic photonic crystals [54]. Luo and Xiao presented an optimization method
composed of DT, the continuation method, and quasi-genetic evolution [55]. Article [2]
proposes a method for finding multiple operating points using the deflation technique and
the SPICE simulator.

An interesting problem in solving nonlinear equations is the presence of [51]. The zero
is the root to which the numerical process converges, regardless of the initial guess chosen.
The problem often leads to the masking of the zero, which is essential for the actual study.
DT makes it possible to avoid convergence to the magnetic zero once it has been found. It
allows other solutions to the nonlinear equation to be found. The problem is illustrated
using an elementary example in Section 3.5.

The idea of DT [51] is to modify the original equation continuously after determining
its successive solution. The newly formulated nonlinear equation retains the solutions of
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the original equation that remain to be calculated, making it impossible for the numerical
process to converge to the previously found solutions.

The nonlinear Equation (1) is considered under the assumption that the equation
has several solutions. Let one of the solutions, denoted x1, has already been found. To
determine the other solutions, Equation (1) is deformed. Paper [51] introduced a deflation
matrix M

(
x, x1) of dimension n by n and proposed the deformation of the original function

in the form

g(x) = M
(

x, x1
)

f(x), (7)

where, for any sequence x(i) → x1, it holds limi→∞ inf ||M
(

x(i), x1
)

f
(

x(i)
)
|| > 0.

Equation (7) is solved using a method for determining a single solution (e.g., S-NRM
or D-NRM). The selection of the matrix M guarantees that x1 is not a solution to (7). Thus,
the sequence generated by the method is either convergent to another solution of the
original Equation (1) or divergent. In order to deflate k solutions of x1, · · · , xk, deflation is
formulated in the form

g(x) = M
(

x, x1
)
· · ·M

(
x, xk

)
f(x). (8)

The various deflation methods differ in the selection of M. In the so-called normal
deflation, M has the form

M
(

x, xj
)
=

1
||x− xj||

A, (9)

where A is a n × n matrix, and || · || denotes a norm, e.g., uniform or Euclidean norm.
Usually, the identity matrix is chosen as the matrix A.

Brown and Gearhart proposed the following strategy for determining multiple solu-
tions [51]. The nonlinear equation is solved using the S-NRM or Brown method to locate
the first solution. Next, DT is used to create the modified function. The deflations with
uniform and Euclidean norm and the so-called gradient deflation are considered. The
second solution is sought using the same initial guess. If the second solution is found,
the process continues, always using the same initial guess. The process ends when (a)
all solutions to the nonlinear equation (or the maximum number of solutions set by the
user) have been found, (b) the process has become divergent, (c) the maximum allowed
number of iterations has been exceeded, or (d) the Jacobi matrix became singular. A simple
example in [51] shows that all solutions were determined for only one of 21 different initial
guesses and one M in DT. Other examples in paper [51] show that the S-NRM often leads
to divergence, even in the first solution calculation.

To the author’s knowledge, the deflation technique has not yet been applied in fault
diagnosis, and the proposal presented in Section 3.6 is the first in this area.

3.5. Illustrative Example

To illustrate the application of the methods discussed in Sections 3.2–3.4, the solutions
of a scalar nonlinear equation f (x) = 0 with f (x) having the form

f (x) = x3 − 2.6x2 + 2.16x− 0.576 (10)

are considered. Equation (10) is written in the equivalent form

f (x) = (x− 0.8)(x− 0.6)(x− 1.2), (11)

from which it follows that its roots are x∗ = 0.6, x∗∗ = 0.8, and x∗∗∗ = 1.2 (see Figure 1).
Three methods were used: S-NRM, D-NRM, and DT. For S-NRM and D-NRM, 1000 draws
of the initial guess x(0) were made using the uniform distribution. In case (a), initial guesses
are drawn from the interval (−0.5, 0.5), and in case (b), from the interval (−5, 5). The
results are shown in Table 1. It can be observed that, despite 1000 analyses, all solutions
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are found only in one case (D-NRM case (b)). In this case, only 0.03% of the analyses (3
out of 1000 draws) resulted in a root x∗∗∗ = 1.2. In DT, both S-NRM (case (c)) and D-NRM
(case (d)) were used to solve the nonlinear equation at each step. The calculations were
performed assuming two initial guesses. In variants (c0) and (d0), the initial guess x(0) = 0
is set. In variants (c1) and (d1), x(0) = 1 is taken.

Table 1. Results of calculations using different Newton–Raphson methods.

Percentage of Draws Resulting in the Solution
Solution S-NRM D-NRM S-NRM D-NRM

(a) (a) (b) (b)

0.6 100% 100% 50.3% 97.1%
0.8 0 0 49.7% 0.26%
1.2 0 0 0 0.03%

Figure 2 shows the process of finding the solutions in case (c0).
 

 

Figure 1. Plot of nonlinear function (10) having three roots (x∗, x∗∗, and x∗∗∗) and an enlarged part
of the plot covering the solutions.

The black dots represent the results of the individual iterations of the S-NRM, and the
dotted lines represent the tangents at successive points whose intersections with the 0-x
axis represent consecutive approximations of the solution. This is the standard graphical
interpretation of Newton’s method. Starting from the initial guess x(0) = 0, the first solution
x∗ = 0.6 is found after seven iterations (Figure 2a shows the first four iterations). Then, the
nonlinear function is modified, leading to the function

g1(x) =
f (x)
|x− 0.6| . (12)

Starting from x(0) = 0, the second solution, x∗∗ = 0.8, is found after five iterations
(Figure 2b shows the first three iterations). According to the DT concept, further modifica-
tion of the nonlinear function is defined,

g2(x) =
f (x)

|x− 0.6| |x− 0.8| . (13)
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Starting with x(0) = 0, the solution x∗∗∗ = 1.2 is found after one iteration (Figure 2c).
Next, another modification of the nonlinear function is specified,

g3(x) =
f (x)

|x− 0.6| |x− 0.8| |x− 1.2| . (14)

Further calculations lead to a divergent process (Figure 2d). Thus, the calculation
process is terminated. Three solutions have been found, which in the considered case are
all roots. Table 2 shows the results of using DT in the cases described above. In all cases,
all solutions to the nonlinear equation were found. The number of iterations in variants
(c0) and (c1) are lower than in variants (d0) and (d1). However, as numerous numerical
examples have shown, the combination of DT and D-NRM is usually more efficient for the
systems of nonlinear equations forming the test equation.
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Figure 2. Illustration of founding solutions (x∗, x∗∗, and x∗∗∗) to the scalar nonlinear equation in vari-
ant c0. (a) Determination of the solution x∗. (b) Determination of the solution x∗∗. (c) Determination
of the solution x∗∗∗. (d) Divergent process.

Table 2. Results of calculations using DT.

Subsequent Solutions @ Number of Iterations
Step DT S-NRM DT D-NRM DT S-NRM DT D-NRM

(c0) (d0) (c1) (d1)

1 0.6 @ 7 0.6 @ 13 0.6 @ 2 0.8 @ 10
2 0.8 @ 5 0.8 @ 12 1.2 @ 22 1.2 @ 10
3 1.2 @ 2 1.2 @ 10 0.8 @ 2 0.6 @ 10
4 divergence divergence divergence divergence
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3.6. Proposed Method

Based on the conclusions given in [51] and the author’s own experience gained during
the implementation and testing of DT, it was concluded that a combination of deflation
using the Euclidean norm with D-NRM is most effective. Instead of starting from random
initial guesses as proposed in [51], it is suggested that once a solution has been determined,
one of the four attempts to determine the next solution is taken sequentially. The flowchart
of the proposed method is shown in Figure 3, where pnom is a vector of nominal parameters.
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Figure 3. Flowchart of the proposed deflation method.
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Determining a solution in any attempt stops the successive attempts, the function
is modified according to deflation, and the process continues. The process is stopped
when the fixed number of iterations (1000) is reached, a divergence is encountered, or a
Jacobi matrix is singular in all four attempts. The first attempt is applying the conventional
deflation defined by Formulas (8) and (9), using the Euclidean norm and the identity matrix,
at the same initial guess as at the beginning of the calculation. In the second attempt, a
slightly perturbed (to avoid dividing by zero) last-found solution x̃ is set as the initial
guess. In the third attempt, the value of the Euclidean norm in Formula (9) is raised to the
power of 1.5, and in the fourth attempt, the norm is raised to the power of 2. The proposed
modifications of DT and using D-NRM in each step proved to be efficient. The method,
called DM, has been tested on more than 500 fault cases in nonlinear circuits, some of which
are discussed in Section 4.

4. Results and Discussion

The methods discussed in Section 3 were implemented in the Delphi environment. The
calculations were performed on a PC with an Intel Core i7-6700 processor and 64 GB RAM.
Three examples of nonlinear DC circuits, two using bipolar transistors (Figures 4a and 5)
and one made in CMOS technology (Figure 6), were selected to illustrate the method’s
effectiveness. Simulations were carried out, assuming specific measurement accuracies and
tests. In order to investigate the influence of measurement accuracy on the results for the
circuits with BJTs, the tests were performed assuming two different values of measurement
accuracy. In addition, one of the circuits was tested in the laboratory (Figures 4b and 7).
The results of the simulations and laboratory tests of about 500 parametric fault variants
are discussed. Faults with different multiplicities and different deviations from the nominal
value of the parameter were considered. Deviations of the range (−60%, 60%) from
the nominal value were examined for the circuits in Examples 1 and 2. In Example 3,
the deviations did not exceed ±50% of the nominal value. For the circuits studied in
Examples 1–3, single, double, and triple faults were considered. In Example 1, quadruple
faults were also taken into account.
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Figure 4. Preamplifier—circuit diagram (a) and practical realization (b). Note: numbers in circles
indicate node numbers, and numbers next to squares indicate IC pinout.
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Figure 5. Amplifier using a transistor array CA3083 (Intersil Coorporation, Melbourne, FL, USA).
Note: numbers in circles indicate node numbers, and numbers next to squares indicate IC pinout.
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 Figure 6. Differential amplifier designed in CMOS technology.

The influence of tolerance and measurement uncertainty was neglected in the study.
Research in the area has shown that, in most cases, considering tolerance and uncertainty
within reasonable limits does not change the number of solutions, but leads to intervals
covering the actual solution. However, taking large tolerance values and low measurement
accuracy may result in overlapping intervals corresponding to two solutions. Consequently,
one very wide interval is obtained. Such a result is useless and requires either a change in
the test or an increase in measurement accuracy. The fault identifications were performed
using S-NRM, D-NRM, and DM. For S-NRM and D-NRM, the solutions to the test equation
were found by drawing an initial guess from the intervals covering the nominal value of
the parameters and the limits being ±50% of the nominal value. The number of draws
was assumed to be 1000. A uniform distribution was used. Calculations were carried out
for normalized parameters in all methods. The nominal value of a parameter corresponds
to a value equal to one of the new variable. The bipolar transistors are characterized by
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the Gummel–Poon model, whereas the Shichman–Hodges model is used for the MOS
transistors [56,57].

4.1. Example 1

A preamplifier circuit containing seven resistors and two bipolar transistors, shown in
Figure 4a, is considered.

The nominal values of the components are shown in the figure. The parameters of the
Gummel–Poon model, which characterizes the transistors, are as follows: BF = 190, BR = 16,
IKF = 0.1209 A, IKR = 29.8× 10−3 A, IS = 40.000× 10−15 A, ISC = 116.120× 10−15 A,
ISE = 99.086× 10−15 A, NC = 1.7, NE = 1.60, NF = 1.015, NR = 1.0, RE = RB = 0.1 Ω,
RC = 10 Ω, at temperature 25 °C. The following diagnostic test was selected to identify
the values of all seven resistors, assuming the transistors are healthy. For the supply
voltages, V1 = 15 V, V2 = 15 V, voltages at nodes 2, 3 and 6, and current iV1 were read.
For the supply voltages V1 = 8 V, V2 = 5 V, the same measurements are taken except for
voltage at node 2. As a result, a nonlinear test equation involving seven equations with
seven unknowns is formed. The soft fault identification process is performed in three
variants. In variant A, parameter identification is carried out based on simulations of a
measurement test using high-precision measuring equipment (DC voltage and current
measurement with an accuracy of 1 µV and 1 nA, respectively). Variant B involves
parameter identification based on the simulations of the test using standard-precision
measurement equipment (DC voltage and current measurement with an accuracy of 1 mV
and 1 µA). Variant C uses measurements taken in the laboratory. For this purpose, the
circuit shown in Figure 4b was used. The tested circuits use a typical solder-less breadboard,
general-purpose high current NPN transistor array CA3083, and resistors of 1% tolerance.
Seven-decade programmable 1% resistor boards were used to set the actual values of the
fault resistances in the circuit (Figure 4b). The equipment necessary to take measurements
consists of a 34401A Digital Multimeter (Hewlett-Packard Company, Loveland, CO, USA),
Motech LPS-305 Programmable Linear Power Supply (Motech Industries Inc., Taipei Hsien,
Taiwan) , and METRAHIT ENERGY digital multimeter (Gossen Metrawatt, Nurnberg,
Germany) (Figure 7).
 

 

Figure 7. Photo of the laboratory bench during the testing of the circuit shown in Figure 4.

Using simulation (Variants A and B), 139 different soft faults (single and multiple)
were examined. Ten of the faults were validated in the laboratory. In six cases of variants
A and B (4.3%), all three methods found only one solution. In 133 cases (95.7%), at least
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one of the methods led to two solutions. The results demonstrate the high probability of
multiple solutions in CUT. It should be noted that the diagnostic test was selected using
some concepts presented in [27]. Changing the test by adding more measurement nodes
and measuring the current of source V2 or using different values of the sources does not lead
to more unambiguous results, especially in variant B. Instead, a divergence of the method
or very inaccurate results are obtained. Analyzing the results obtained with two different
measurement accuracies (variants A and B), as expected, a deterioration in the accuracy
of the parameter value identification was observed when the accuracy of measurement
deteriorated. As a result, it leads to estimation errors of up to 10%, with an average of 4%.
In variant C, the results deteriorated due to the model used, the effect of temperature, the
precision of the resistors in decades, and the measurement uncertainty. The results for the
three selected cases analyzed under all variants are shown in Tables 3–5. Figure 8 shows
the simulation results in SPICE for the solutions obtained in case 1 of variant A. The labels
in the diagrams correspond to the quantities measured during the diagnostic test. As can
be seen, the values for both sets of parameters corresponding to the solutions are the same.
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Figure 8. SPICE simulation results for the solutions given in Table 3, variant A (the measured
quantities marked).
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Table 3. The results of identification—case 1. Assumed values of parameters: R1 = 265.00 kΩ,
R2 = 21.60 kΩ, R3 = 39.00 kΩ, R4 = 6.89 kΩ, R5 = 2.62 kΩ, R6 = 273 Ω, R7 = 261 Ω.

Variant
Solutions D-NRM (1) S-NRM (1) Time [s]

R1
[kΩ]

R2
[kΩ]

R3
[kΩ]

R4
[kΩ]

R5
[kΩ]

R6
[Ω]

R7
[Ω] [%] [%] DM D-NMR S-NRM

A 265.00 21.60 39.00 6.89 2.62 273 261 83.5 41.9 1.1 9.4 7.128.67 36.81 3.84 11.34 2.83 307 261 4.0 0.4

B 267.93 21.70 39.39 6.92 2.62 273 261 83.1 45.6 1.2 8.5 6.928.82 36.99 3.86 11.39 2.82 307 261 4.6 0.1

C 263.96 21.30 38.48 6.71 2.62 278 261 83.6 42.4 1.1 8.1 7.428.10 36.71 3.73 11.16 2.83 312 261 5.0 0.2

(1)—percentage of iteration processes (per 1000 initial guess draws) leading to the solution.

Table 4. The results of identification—-case 2. Assumed values of parameters: R1 = 330.00 kΩ,
R2 = 21.60 kΩ, R3 = 42.20 kΩ, R4 = 6.89 kΩ, R5 = 2.62 kΩ, R6 = 100 Ω, R7 = 261 Ω.

Variant
Solution(s) D-NRM (1) S-NRM (1) Time [s]

R1
[kΩ]

R2
[kΩ]

R3
[kΩ]

R4
[kΩ]

R5
[kΩ]

R6
[Ω]

R7
[Ω] [%] [%] DM D-NMR S-NRM

A 330.00 21.60 42.20 6.89 2.62 100 261 75.8 40.5 0.5 9.7 7.326.86 39.32 3.05 12.02 2.85 137 261 6.7 0.1

B 337.93 21.50 43.26 6.86 2.62 100 261 76.9 45.6 1.1 9.7 6.926.26 39.86 2.97 12.17 2.86 138 261 5.7 0.1

C 331.19 20.75 42.75 6.66 2.63 96.5 261 79.6 38.1 1.2 7.8 8.424.44 39.80 2.78 12.20 2.89 136 261 5.0 0.0 (2)

(1)—percentage of iteration processes (per 1000 initial guess draws) leading to the solution; (2) —no solution found.

Table 5. The results of identification—case 3. Assumed values of parameters: R1 = 265.00 kΩ,
R2 = 10.00 kΩ, R3 = 42.20 kΩ, R4 = 6.89 kΩ, R5 = 2.62 kΩ, R6 = 273 Ω, R7 = 390 Ω.

Variant
Solution D-NRM (1) S-NRM (1) Time [s]

R1
[kΩ]

R2
[kΩ]

R3
[kΩ]

R4
[kΩ]

R5
[kΩ]

R6
[Ω]

R7
[Ω] [%] [%] DM D-NMR S-NRM

A 265.00 10.00 42.20 6.89 2.62 273 390 78.1 30.8 1.1 20.7 8.3

B 269.18 9.96 42.93 6.86 2.62 273 390 79.0 31.2 1.1 19.6 8.4

C 270.01 9.75 43.02 6.69 2.62 273 390 79.7 30.1 1.2 14.7 8.6

(1)—percentage of iteration processes (per 1000 initial guess draws) leading to the solution.

A study was conducted to compare the effectiveness of identifying multiple solutions
using DM, S-NRM, and D-NRM. Among the three methods, DM was found to be the most
time-efficient. On average, it was seven times faster than S-NRM and ten times faster than
D-NRM. However, D-NRM identified the largest number of cases (133 for both variant
A and B) where ambiguity in the solution occurred. It should be noted that this was the
result of 1000 iteration processes with different initial guesses. Due to the lack of a method
that guarantees the determination of all solutions, the results from D-NRM were taken as
a reference. DM identified the ambiguity in the solutions in 106 cases in variant A, and
96 cases in variant B. S-NRM identified ambiguity in 88 and 82 cases (the result of 1000 trials
for each case), respectively. These results are presented in Figure 9.

Additionally, it is important to note the percentage of convergent iterative processes
to the solutions under the assumed method of drawing the initial guess. D-NRM led, on
average, to the first solution in 78.00% and to the second solution in 6.20% of cases (6.48%
referred only to cases where the second solution exists). In 15.80% of cases, no convergence
was achieved in the assumed number of iterations (the maximum number of iterations was
set to 1000). For S-NRM, the values were 32.80%, 0.29% (2.10%), and 66.91%, respectively
(see Figure 10a). Thus, D-NRM is superior to S-NRM as it leads to determining second and
subsequent solutions with greater probability for the same type of random draw.
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Figure 9. The number of cases for variants A and B for which multiple solutions were identified
using D-NRM, S-NRM, and DM.
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Figure 10. The percentage of processes converging to solution(s) and percentage of processes not con-
verging for 1000 randomly selected initial guesses in D-NRM and S-NRM methods (value averaged
over all cases considered in the examples). (a) Example 1. (b) Example 2—Test 1. (c) Example 3.
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4.2. Example 2

An amplifier containing six resistors and five bipolar transistors, shown in Figure 5,
built using a CA3083, is considered. The transistor models are the same as in Example 1.
The nominal values of the resistors are indicated in the figure. The faults of resistors R1, R2,
R3 and R4 are considered. Sensitivity analyzes show that changes in resistors R5 and R6
have minimal effect on the nodal voltages. Therefore, the resistors cannot be diagnosed
using reasonable measurement accuracy. A DC test is established to diagnose soft faults.
For this purpose, different values of the input voltage V1 are applied. Two different tests are
considered to illustrate the impact of selected tests on the number of solutions. In the first
test, two values of voltage source V1 (V1 = 12 V and V1 = 9 V) are assumed, and voltages
at nodes 3 and 6 are read with an accuracy of 1 µV. In the second test, two values of V1 are
taken (V1 = 15 V and V1 = 5 V). Voltages at nodes 2 and 9, in two variants, A and B, as in
Example 1, are read.

4.2.1. Test 1

Twenty-six different soft faults (single and multiple) were examined. In three cases
(11.5%), at least one of the methods led to two solutions. The results for three selected cases
are shown in Table 6.

DM was, on average, 15 times less time-consuming than S-NRM and 20 times less
time-consuming than D-NRM. The three methods identified all cases where ambiguity in
the solution occurred. D-NRM led, on average, to the first solution in 81.78% of cases and
to the second solution in 3.98% of cases (34.47% referred only to cases where the second
solution exists). In 14.24% of cases, no convergence was achieved. For S-NRM, the values
are 61.70%, 0.48% (41.67%), and 37.82%, respectively (see Figure 10b). The result regarding
Case 2 in Table 6 is interesting. Only a tiny percentage of the initial guesses led to a result
matching the assumed fault (4.3% of draws for D-NRM and 4.6% of draws for S-NRM).
Thus, the probability of identifying the incorrect fault in the case is very high if the methods
are used. An attempt to identify faults with a lower measurement precision is unsuccessful
for this test due to inaccurate parameter values. In order to eliminate multiple solutions to
the diagnostic equation, a second test is proposed. Furthermore, the test allows the process
to be performed at a measurement accuracy of 1 mV.

Table 6. The results of identification. Test 1. Case 1: R1 = 7.593 kΩ, R2 = 6.200 kΩ, R3 = 389.5 Ω,
R4 = 388.9 Ω, R5 = 10.02 kΩ, R6 = 100.5 kΩ. Case 2: R1 = 7.593 kΩ, R2 = 5.058 kΩ, R3 = 270.0 Ω,
R4 = 510.0 Ω, R5 = 10.02 kΩ, R6 = 100.5 kΩ. Case 3: R1 = 8.500 kΩ, R2 = 8.000 kΩ, R3 = 270.0 Ω,
R4 = 388.9 Ω, R5 = 10.02 kΩ, R6 = 100.5 kΩ.

Case
Solutions D-NRM (1) S-NRM (1) Time [s]

R1
[kΩ]

R2
[kΩ]

R3
[Ω]

R4
[Ω] [%] [%] DM D-NMR S-NRM

1 7.593 6.225 389.5 388.9 85.4 69.7 1.3 86.9 32.0

2 7.593 5.067 270.5 510.0 4.3 4.6 1.6 9.7 59.27.587 6.239 331.0 509.6 95.5 9.3

3 8.496 7.967 268.9 388.7 96.3 14.7 1.0 9.0 27.88.510 4.646 159.4 389.3 3.7 0.9
(1)—percentage of iteration processes (per 1000 initial guess draws) leading to the solution.

4.2.2. Test 2

A total of 138 soft faults were examined, including all the faults considered in
Section 4.2.1, in variants A and B. None of these cases resulted in a physically accept-
able solution other than the assumed fault. However, DM in 36 cases led to determining
a different set of parameters. In each set, one of the parameters with a negative value
occurred. Such a solution is not accepted, but it influences the computational processes
that use S-NRM and D-NRM as a smaller percentage of initial guesses result in convergent
processes. The outcomes for the same cases as considered in Section 4.2.1 are shown in
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Table 7. On average, DM was 16 times less time-consuming than S-NRM and 18 times
less time-consuming than D-NRM. Convergence to the solution was achieved in 84.00% of
the initial guesses for D-NRM. In 16.00% of draws, the method diverged. For S-NRM, the
values were 58.50% and 41.50%, respectively.

Table 7. The results of identification. Test 2. Case 1, 2, and 3 the same as in Table 6.

Case Variant
Solutions D-NRM (1) S-NRM (1) Time [s]

R1
[kΩ]

R2
[kΩ]

R3
[Ω]

R4
[Ω] [%] [%] DM D-NMR S-NRM

1 A 7.593 6.199 389.4 388.8 87.9 60.1 2.0 14.9 23.2
B 7.693 6.271 394.3 394.4 87.1 59.2 2.0 10.2 19.8

2 A 7.593 5.058 270.0 510.0 89.1 48.2 1.7 12.0 22.0
B 7.522 5.011 267.2 504.9 86.2 45.1 2.0 13.1 20.8

3 A 8.500 8.000 270.0 388.9 66.6 9.6 0.8 31.6 91.2
B 8.389 7.894 266.2 383.2 62.9 7.4 0.7 47.2 80.0

(1)—percentage of iteration processes (per 1000 initial guess draws) leading to the solution.

4.3. Example 3

Consider the differential amplifier depicted in Figure 6. The figure provides the
nominal channel length and width of all transistors. The Shichman–Hodges model, which
is embedded at Level 1 of SPICE [56,57] and has the following nominal parameter values,
is used. For PMOS transistors: γ = 0.6 V0.5, IS = 10−14 A, Kp = 40 µA/V2, PHI = 0.6 V,
RD = RS = 10 Ω, vt0 = −0.90 V; and for NMOS transistors: γ = 0.5 V0.5, IS = 10−14 A,
Kp = 120µA/V2, PHI = 0.6 V, RD = RS = 10 Ω, vt0 = 0.80 V.

The study looked at potential faults in intrinsic transconductance parameters (Kp)Mi ,
i = 1, · · · , 5. The faults could be due to variations in the thickness of the gate oxide or
the mobility of the carriers. It is assumed that the readings are taken at node 4 for five
combinations of source values Vin1, Vin2, VDD: (1) 2.6, 2.5, 5.0; (2) 2.5, 2.2, 5.0; (3) 1.5, 2.0, 4.5;
(4) 2.3, 1.6, 5.0; (5) 2.2, 2.0, 5.0, all in volts. Soft faults were simulated using SPICE. The
measurement accuracy was assumed to be 1 µV. The study examined 41 different soft
faults, and in 17 of the cases (41.5%), at least one diagnostic method led to two solutions.
The results for three selected cases are shown in Table 8. In case 2 in Table 8, the probability
of identifying an incorrect fault was higher than the probability of indicating the correct
one if D-NRM and S-NRM methods were used. Ambiguity in the solution of the diagnostic
equation was identified using D-NRM in 17 cases. DM identified ambiguity in 15 and S-
NRM in 14 cases. D-NRM led, on average, to the first solution in 52.71% of cases and to the
second solution in 9.73% of cases (20.87% referred only to cases where the second solution
exists). In 37.56%, no convergence was achieved. For S-NRM, the values were 19.98%,
1.45% (4.77%), and 78.57%, respectively (see Figure 10c).Thus, D-NRM is more efficient
than S-NRM, leading to the second and subsequent solutions with a higher probability. On
average, DM was four times less time-consuming than S-NRM for the circuit under study
and seven times less time-consuming than D-NRM.
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Table 8. The results of identification. Case 1: (Kp)M1 = 45, (Kp)M2 = 39, (Kp)M3 = 121, (Kp)M4 =

120, (Kp)M5 = 121, all in µA/V2 Case 2: (Kp)M1 = 53, (Kp)M2 = 33, (Kp)M3 = 121, (Kp)M4 = 120,
(Kp)M5 = 121, all in µA/V2 Case 3: (Kp)M1 = 41, (Kp)M2 = 39, (Kp)M3 = 121, (Kp)M4 = 150,
(Kp)M5 = 135, all in µA/V2.

Case Solutions D-NRM (1) S-NRM (1) Time [s]
(Kp)M1
[µA/V2]

(Kp)M2
[µA/V2]

(Kp)M3
[µA/V2]

(Kp)M4
[µA/V2]

(Kp)M5
[µA/V2]

[%] [%] DM D-NMR S-NRM

1 45.00 39.00 121.0 120.0 121.0 53.9 28.2 9.3 48.5 30.06.17 15.55 19.57 53.27 23.86 21.8 0.0 (2)

2 53.29 33.08 121.7 120.2 121.6 20.8 9.9 8.5 142.8 25.765.13 36.54 148.6 127.3 146.9 52.1 30.7

3 40.97 38.99 120.9 149.9 134.9 51.2.8 30.8 7.8 91.0 26.57.75 17.41 25.9 82.9 35.7 23.2 0.5
(1)—percentage of iteration processes (per 1000 initial guess draws) leading to the solution; (2)—no solution found.

5. Conclusions

The occurrence of ambiguous solutions to a nonlinear test equation in the absence of
methods guaranteeing the identification of all its solutions is a significant problem in the
diagnostics of analog electronic circuits. The present work shows that the problem often
occurs even in relatively simple DC nonlinear circuits. Not considering other solutions can
result in the determination of incorrect parameters in the SAT identification and verification
methods or the wrong classification of soft faults in the SBT method. Identifying the
possibility of multiple solutions makes a recommendation to the designer to select a
different diagnostic test.

The paper presents three methods that can identify multiple solutions to the test
equation. The effectiveness of the methods has been verified through numerical and
laboratory tests. The most important results are the statistical information on the average
number of convergent processes for 1000 randomly selected initial guesses for the S-NRM
and D-NRM methods (see Figure 10) and the number of identified cases for which the
solution is ambiguous. The data show the scale of the problem and suggest the choice of
method and the required number of initial guesses to achieve reliable results. D-NRM with
many randomized initial guesses (at least 500) is the most efficient method for identifying
multiple solutions among the methods. On the other hand, S-NRM is less efficient and
may miss some solutions using the same number of draws. Moreover, if it identifies
additional solutions, the percentage of converging iterative processes to these solutions is
much smaller than for D-NRM. The global rate of processes that do not converge using
S-NRM is much higher than for D-NRM. DM ranks between S-NRM and D-NRM regarding
the efficiency of identifying multiple solutions. However, it is significantly faster, which is
crucial for larger circuits or circuits that use complex semiconductor device models. The
reason is the need for an identification process involving multiple DC analyzes of circuits
with different parameters to fit the solution to the measurements. The analyzes can be
performed in SPICE or custom software, as in this paper.

Limited measurement accuracy affects the progress of iterative processes and the
accuracy of the determined solutions. Since no method is guaranteed to find all solutions
to the problem posed, and in DM, the D-NRM method is used to solve the modified
nonlinear equations, the process can converge, diverge, or suffer from lack of convergence.
Hence, there is a difference in the number of identified cases demonstrating ambiguity
for different measurement accuracies. In the case of S-NRM, the difference is because the
method only for a negligible number of initial guesses leads to the second and possibly
subsequent solutions. Moreover, S-NRM is characterized by a large percentage of divergent
processes. It should also be noted that in the iterative process, analyzes of the nonlinear
circuit are made for the parameter values currently determined in the iteration. At this
stage, problems with the convergence of the numerical process may arise, leading to the
interruption of calculations.
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