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Abstract: The growth of frequency-usage devices has made the electromagnetic spectrum posture
complex, resulting in an urgent demand for frequency-usage posture cognition. However, the sensing
of space-based platforms is limited by the transmission capacity of the satellite-to-ground link and
the satellite processing capacity, which makes on-satellite data analysis and posture generation lack
the efficient means. Facing the above issues, an idea of a knowledge graph construction and semantic
representation for low Earth orbit (LEO) satellite spectrum sensing data is designed in this paper. In
the designed construction process, technologies such as knowledge extraction, ontology construction,
knowledge fusion and knowledge visualization are utilized to efficiently analyze on-satellite sensing
data. Moreover, the constructed spectrum knowledge graph can be applied in the analysis and
prediction of frequency-usage behavior and intelligent spectrum management, which exhibits the
effectiveness of the spectrum knowledge graph. Finally, the further development of the spectrum
knowledge graph is foreseen.

Keywords: LEO spectrum sensing; knowledge graph; ontology construction; semantic extraction

1. Introduction

Space-based sensing has emerged as a crucial application for the development of low
earth orbit (LEO) constellations. However, space-based sensing has certain limitations.
Firstly, LEO satellites are highly dynamic, and the objects they observe change dynamically
in both time and space. Sensing data are massively stacked on LEO satellite [1], and the data
are scattered and lack comprehensibility. Secondly, the satellite-to-ground link has limited
transmission capacity, and the limited link bandwidth results in slower data transmission
speed. As a result, there is a certain transmission delay, especially when transmitting large
amounts of data. This delay can negatively impact the real-time performance of the data.
Data may lose practical value when they need to be transmitted to the ground station or
elsewhere for processing. Additionally, due to the long propagation distance between
satellite and ground [2], the receiving sensitivity is limited and spatial resolution is low.
This makes it difficult to achieve accurate sensing even if the satellite can carry a larger
antenna. To fully utilize the semantic and scalable performance of sensing data, real-time
and efficient means of massive data mining and analysis processing are required. Semantic
extraction has been proposed as the main solution by existing researches. However, most
studies are carried out on verbal texts, images or videos. Research on space-based spectrum
sensing data is still pending. Especially, existing semantic extraction is dominated by deep
neural network approaches. There are issues with subjective codebook design, invisible
extraction and recovery processes, and weak physical interpretability of extraction results.
In recent years, knowledge graph technology has received widespread attention. It forms
a relational semantic web of the concepts, entities and relationships between them in the
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objective world, in a form more akin to the human cognition. As a matter of fact, frequency-
usage posture is actually a discrete sampling of the electromagnetic spatial relations of
continuous time, space, frequency and energy. This physical context of relationalization
makes it suitable for description in terms of relational networks. A knowledge graph, as
a relational descriptive model of structured information, has the ability to handle large
amounts of data. Precisely because of this, the knowledge graph can be used as a way to
characterize the frequency-usage posture. Spectrum posture can be effectively modeled by
knowledge graph at the semantic level. With the knowledge graph, the data are correlated
in the time, space and frequency, and the concepts and inter-conceptual relationships
in the spectrum-sensing data are captured at the semantic level. The spatiotemporal
distribution and dynamic characteristics of frequency-usage behavior can be more deeply
understood. As well as, the amount of data are reduced to a certain extent, which helps to
ease the burden of satellite-to-ground transmission and dilute the transmission delay. It is
worth mentioning that the knowledge graph has the capability of knowledge reasoning.
By eliminating the bottleneck of sorting through a large number of data facts and the
interconnecting relationships, the knowledge graph allows for skipping extensive searches
and narrowing down to the desired solution. Accordingly, the reasoning ability of the
knowledge graph can be utilized to realize the analysis and prediction of frequency-usage
behavior. On-satellite spectrum sensing data are not only semantically integrated by the
relational network, but can be fully utilized to realize the sensing value.

Therefore, the construction of a knowledge graph in the field of LEO satellite spectrum
sensing is investigated in this paper. There are two methods of knowledge graph construc-
tion: bottom-up approach and top-down approach. The bottom-up approach focuses on
automatically extracting knowledge from various types of data, emphasizing the discovery
of entities and relationships, while the top-down approach concentrates on modeling and
standardizing knowledge, that is, defining the ontology and data patterns ahead of time,
and then adding entities and relationships to the database. In response to the dynamic sens-
ing characteristics of LEO satellites and the structural characteristics of spectrum sensing
data, it is necessary to be able to extract concepts, conceptual hierarchies, and inter-concept
relationships from heterogeneous spectrum sensing data. At the same time, as the spectrum
knowledge graph needs to satisfy sufficient accuracy, the schema-layer ontology needs
to be constructed to constrain the framework and rules of the knowledge graph. Accord-
ingly, a knowledge graph construction idea applicable to the field of spectrum sensing of
LEO satellite is designed, which blends the bottom-up approach and top-down approach.
The idea includes knowledge extraction, ontology construction, knowledge fusion, and
knowledge visualization processes. Moreover, the specific implementation of each process
is described in detail. Based on the proposed research methodology, we finally complete
the construction of the spectrum knowledge graph and realize the visualization display.
According to the characteristics of the constructed spectrum knowledge graph, its applica-
tion trends and prospects are illustrated. It is shown that the introduction of the designed
spectrum knowledge graph can carry out efficient spectrum knowledge utilization and
frequency-usage posture generation.

2. The Framework of the Knowledge Graph

The concept of a knowledge graph was first introduced by Google in 2012 [3]. Knowl-
edge graphs have been proven to be an effective approach of representing real-world
entities, their semantic relationships, and attributes [4]. As a semantic network, knowledge
graphs demonstrate powerful expression abilities and modeling interpretability, exhibiting
excellent results in knowledge question-answering, knowledge recommendation, knowl-
edge visualization, and other applications [5]. Knowledge in the knowledge graph is
presented in the form of triples [6]. There are two fundamental forms: (Entity, Relationship,
Entity) and (Entity, Attribute, Attribute-value). As shown in Figure 1, taking the typhoon
knowledge graph as an illustration, two distinct knowledge presentation forms are evident.
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Figure 1. Typhoon knowledge graph.

By eliminating the bottleneck of sorting through a large number of data facts and
the interconnecting relationships, the knowledge graph allows for skipping extensive
searches and narrowing down to the desired solution [7]. This provides the knowledge
graph with sufficient power to mimic how human thought. Because of this, knowledge
graphs have been successfully applied in many fields such as the Internet, finance,
healthcare, and more. To address the issue of un-normalized radio monitoring data,
Zhang Yuyu et al. [8] proposed the idea of analyzing massive radio monitoring data
based on a knowledge graph. A knowledge base of structured radio monitoring data
has been constructed by employing techniques like blind signal recognition. The au-
thors of [9] employ knowledge graph to demonstrate the satellite network topology and
routing architecture to optimize the performance of existing routing policy. In [10], an
interpretable and efficient decision strategy was obtained with the support of the multi-
dimensional knowledge graph. Moreover, a knowledge-graph-assisted collaborative
filtering algorithm incorporating path loss was proposed in [11], which constructs a
better decision system for satellite-to-ground communication.

There are two methods to construct a knowledge graph: the top-down method and
the bottom-up method [12]. A comparison of the function of the two construction methods
is shown in Table 1.

Table 1. The comparison of the function of the two construction methods.

Construction Method Functional Comparison

top-down method Focuses on definition of knowledge structures and emphasizing the modeling and specification
of knowledge. Commonly used in the construction of domain knowledge graphs.

bottom-up method Focuses on automatic extraction of knowledge from various types of data, emphasizing the
discovery of knowledge. Commonly used in the construction of open-domain knowledge graphs.
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Spectrum knowledge graphs belong to domain knowledge graphs [13]. Compared to
the current static knowledge graphs in the fields of medicine and finance, the high dynamics
of satellite platforms, and real-time changes in frequency-usage behavior fundamentally
affect the construction of the knowledge graph. For this reason, the schema-layer ontology
should be designed to define the framework and rules of knowledge graph, which are used
for modeling and the specification of knowledge. Furthermore, LEO spectrum sensing
field contains enormous amounts of heterogeneous data, and has strict requirements for
accuracy. Thus, it is necessary to be able to extract knowledge from spectrum sensing data
and satellite domain knowledge for initial data collection and knowledge discovery. Taking
this into consideration, it was decided to fuse the top-down and bottom-up methods to
design a knowledge graph construction idea which was applicable to the spectrum sensing
data of LEO satellite. The specific construction process is shown in Figure 2.
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According to Figure 2, the first step is to obtain data and partition them. There
are three types of data structure, structured data, semi-structured data, and unstruc-
tured data. Structured data are data that have a fixed format and structure, such as
relational database data. Semi structured data are data that have a certain hierarchi-
cal structure but are different from traditional structured data forms, such as JSON.
Unstructured data refers to data without a clear structure, such as text, images, or
video. By observing the data obtained, spectrum data and ephemeris data belong to
semi-structured data, while satellite platform and payload information belong to un-
structured data. Knowledge extraction is then performed. Knowledge extraction is
the process of extracting entities, relationships and attributes from raw data. Natural
language processing and information extraction techniques are often involved. There
are many methods of knowledge extraction in practical applications. Depending on
the development history, they are mainly categorized into rule- and dictionary-based
methods, machine-learning-based methods, and deep-learning-based methods. Un-
structured or semi-structured data are converted into structured knowledge through
this process. The underlying knowledge structure is built by identifying entities, rela-
tionships and attributes. Subsequently, the ontology layer of the spectrum knowledge
graph is designed from LEO satellite spectrum sensing perspective to constraint the
framework and boundary of knowledge. The ontology provides a common understand-
ing of the information structure and formalized knowledge structures, and clarifies the
hierarchical structure between entities. It can be used to define concepts of things in
the domain and properties that can be used to describe them. However, the method of
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ontology construction is not standardized due to the different domains and purposes of
construction. The following methods are commonly recognized in the field: Skeleton
Method, Loop Acquisition Method, Methodology Method, Seven-Step Method, and so
on. Due to the knowledge extraction of data with different structural types, problems
such as knowledge redundancy and knowledge conflict are inevitable. These problems
can impact the quality of the extracted knowledge, which in turn affects the results of
the data to be analyzed and mined. Therefore, knowledge fusion is necessary to be
executed for the extracted knowledge. Knowledge fusion is usually achieved through
two steps: entity linking and knowledge mapping. The problems of data redundancy
and data conflict can be effectively solved through knowledge fusion, and the extracted
data can be consistently integrated under the constraints of the ontology. Finally, the
triples constrained by the ontology layer are transformed into nodes and links, and
stored in spectrum knowledge graph. Knowledge visualization refers to presenting
knowledge graphs in a graphical manner. This process is usually implemented with the
help of graph visualization tools such as Neo4j, Apache Jena, etc. Through graphical
presentation, the fused knowledge can be explicitly observed, which leads to a better
understanding and mastery of related information.

3. Construction of Knowledge Graph for Spectrum Sensing Data from LEO Satellite
3.1. LEO Satellite Sensing Scenario

LEO satellite sensing, although highly dynamic, enables globally all-day, all-weather,
seamless sensing. A snapshot model is used to represent the moment of LEO satellite
over-top sensing. Each time a LEO satellite passes over an area, it receives sensing data
from that area, and gradually forming sensing results for that area. On-satellite spectrum
sensing data are data used to characterize terrestrial electromagnetic spectrum information.
They are acquired by sensors or instruments carried on the satellite payload when the
satellite is used as a spectrum sensing node. This paper focus on the construction of
spectrum knowledge graph for the scenario of a single satellite over-top a certain area. A
LEO satellite with an orbital altitude of 500 km makes up the system’s space segment. The
incline of its track is 86.4◦. The Earth station for the ground segment is situated in Nanjing.
LEO satellite is employed as sources for spectrum sensing to gather spectrum data. The
coordinates of an earth station are given in [latitude, longitude]. Nanjing Station is located
at [32◦, 119◦].

3.2. Knowledge Extraction

The fundamental unit of the spectrum knowledge graph is called triple [14]. There
are two forms of the triples: (Entity, Relationship, Entity) and (Entity, Attribute, Attribute-
value). Triples are formed by extracting from knowledge within the LEO satellite spectrum
sensing scenario. By observing the data obtained, most of knowledge in the fields of
LEO spectrum sensing are semi-structured or unstructured data. Among them, spectrum
data and ephemeris data belong to semi-structured data, while satellite platform and
payload information belong to unstructured data. Different methods are considered to
extract knowledge according to different data structural types so as to generate knowledge
entities, relationships and attributes. For semi-structured data, algorithms such as energy
detection and higher order statistics are utilized to extract the entities and relationships.
For unstructured knowledge, the deep learning method of BiLSTM-CRF [15] is applied
to obtain important information. The preliminary extracted information is stored in CSV
format. The knowledge extraction process extracts entities, relationships, and attributes
from raw data, and unstructured or semi-structured data are converted into structured
knowledge. By identifying entities, relationships and attributes, the base knowledge
structure is established.
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3.3. Ontology Construction

Ontology is a philosophical concept that represents “objective existence”. The ontology
provides the shared comprehension [16] of information structures, and defines the concept
of objects in the domain and the properties that can be used to describe them. There are
many methods for ontology construction, including IDEF-5 [17], the seven-step method [18],
skeleton method [19], TOVE method [20], loop acquisition method [21], methodology
method [22], and the nine-step method [23], etc., which have been applied to various fields
of ontology construction. In order to be able to efficiently perform on-satellite sensing data
analysis, an accurate conceptual and relational model is crucial in constructing a spectrum
knowledge graph. Combining the characteristics of the LEO spectrum sensing field, above
methods are synthesized and a five-step method was designed to construct ontology layer.
The details are as follows.

(a) Analyze domain to determine the scope of ontology. The knowledge to be embodied in
the field of the LEO satellite includes the system components and basic information of
the satellite, such as the satellite number, type, operator, etc., which is used to identify
the satellite. Spectrum sensing domain includes perception beams, perception time,
signal bandwidth, center frequency, etc.

(b) Consider reusing existing ontology. To the best of our knowledge, no ontology model
absolutely applicable to the knowledge graph of the LEO satellite spectrum sensing
data is found among the existing constructed knowledge graphs. Therefore, the
development and design of the ontology model need to be considered from scratch.

(c) Obtain knowledge definitions and design the semantic unit. The significant terms
in the spectrum sensing of the LEO satellite should be listed, such as the definition
of the concepts related to the satellite system composition in the satellite field.
During the process of terms display, attention should be paid to the possible
ambiguity issues of certain terms to ensure the accurate formation of professional
concepts in the relevant field.

To facilitate the standardized definition of object classes, relationships, and attributes
in the future, a semantic unit is designed for constraints. The semantic unit is expressed
formally as S = {H, R, A}, and the specific meanings of each element are as follows:

(1) The non-empty set of abstract entities is represented by H = {h1, h2, · · · , hn}. Element
hi represents the abstract concept type in the ontology layer, such as the LEO satellite
class or signal class.

(2) R = {r1, r2, · · · , rn} stands for the non-empty set of connected edges in the semantic
unit. Conceptual classes are linked by the element ri. For example, kind-of indicates
the parent–child relationship of the nodes, part-of indicates the relationship between
the whole and the part, etc.

(3) The non-empty set of abstract attributes is represented by A = {a1, a2, · · · , an}. Both
the object attributes and data attributes can be represented by element ai. For example,
frequency value and bandwidth value are considered as data attributes, while satellite
payload and beam characteristics are considered as object attributes.

(d) Define concept classes, attributes and relationships. Ontological classes are abstracted
from objectively existing objects. According to the inherent attributes of concepts
and the constraints of semantic unit, the relationships between concepts and the
relationships between concepts and attributes can be fully described. The defined
classes and attributes are shown in Figure 3. Three levels of classes are defined in this
paper: the first level class is the LEO satellite, the second level class is the beam, and
the third level class is the sensing signal. All other concepts are defined as attributes,
with the exception of the third level object class. Figure 4 illustrates the defined
relationships. A total of five types of relationships are specified: be provided with,
consist of, sensing of, subsystem, and numerical relationships.
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(e) Verify and analyze ontology. After completing steps (a)–(d), the constructed ontology
model should be analyzed and validated. If the constructed ontology model is
unreasonable, each step needs to be checked according to the construction process. It
is necessary to make corresponding modifications to the identified issues, and then
the modified model should be re-evaluated until it passes validation.

In this paper, Protégé [24], an ontology editor developed by Stanford, is applied to
construct the ontology layer of the spectrum knowledge graph. The integral ontology layer
is shown as Figure 5.
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3.4. Knowledge Fusion and Knowledge Storage

When extracting knowledge from data with different structure types, problems such
as knowledge redundancy and knowledge conflicts inevitably arise. These problems impair
the quality of the extracted knowledge, which in turn affects the results of the data to be
analyzed and utilized. After knowledge extraction, the data are fused through entity link-
ing and knowledge mapping for knowledge fusion. The entity linking process primarily
employs a programming language to generate unique flags for the information extracted
under each specific time, space, and frequency band, and then categorizes and packages
them. Entities and attributes with associations in different data types are linked, and dupli-
cate entities are deleted. The knowledge mapping process marks each entity knowledge,
relationship, and attribute knowledge, respectively, by the constraint of conceptual class,
relationship, and attribute in the ontology layer. After knowledge mapping, the data in
CSV files are mapped into the form of the semantic unit in the ontology, eventually forming
triples. The common types of spectrum knowledge graph triples are shown in Table 2. The
purpose of knowledge fusion is to eliminate invalid knowledge, avoid information silos,
and make knowledge more connected and valuable.

Table 2. Spectrum knowledge graph triples.

Head Entity Relationship Tail Entity/Attribute

LEO Satellite be_provided_with Beam
LEO Satellite Consists_of Satellite Payload/Satellite Platform

Beam Sensing_of Sensing Signals
Sensing Signal Value_is Bandwidth Value/Frequency Value, etc.

After knowledge fusion, the spectrum knowledge graph is stored and visualized
through graphical means. Neo4j [25] graphical database was chosen for the visualization
display. The spectrum knowledge graph was stored and visualized in the graph database
of Neo4j by importing the py2neo module. Neo4j is a widely used graph database, which
provides a flexible and interpretable platform for visualizing and querying large-scale
data [26]. In Neo4j, fine-grained queries about entities and relationships can be performed
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by using the Cypher language and Match language. The entities and relationships as-
sociated with query knowledge can be presented together. The visualization sample of
spectrum the knowledge graph is shown in Figure 6. Figure 7 shows the local detail of
spectrum knowledge graph. Compared with the original data, it can be considered that
the spectrum knowledge graph construction method proposed in this paper is complete
and feasible. Based on the semantic unit, the constructed spectrum knowledge graph
logically forms a vertical associative relationship with ontology layer, data layer, and cross-
mapping relationship layer, but forms a horizontal networked topological structure with
the corresponding concepts, attributes, and relationships.
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4. Application Trends
4.1. Analysis and Prediction of Frequency-Usage Behavior Based on Spectrum Knowledge Graph

The long propagation distance and high propagation delay between the satellites
and the ground results in the lagging of spectrum sensing results. Facing the demand for
resource control of LEO constellations, the issue of obtaining the future spectrum “state”
and “posture” in advance must be considered sufficiently. Spectrum knowledge graph
has the capability of knowledge reasoning [27]. It makes it possible to bypass drawn-
out searches and focus on the ideal answer for prompt decision-making. Therefore, the
prediction of frequency-usage behavior can be achieved with the help of the spectrum
knowledge graph. By mining the evolutionary characteristics of spectrum resources, the
frequency behavior of frequency-usage devices could be analyzed so as to reason about the
possible frequency-usage posture at future moments.

However, there are numerous N-to-1 relationships in the spectrum knowledge graph,
which makes calculating directly less effective. Knowledge representation learning can
be applied to achieve the prediction of spectrum posture. In this approach, the enti-
ties and relationships in the spectrum knowledge graph are mapped to the continuous
vector space through the training model [28], which can enhance the efficiency of data
processing and computing. As shown in Figure 8, in the case of frequency prediction,
the information of the 2nd January has been aggregated into the spectrum knowledge
graph in the form of triples, such as (qm,n, BandwidthIs, 703.12), (qm,n, TimeIs, 02/01),
(qm,n, FrequencyIs, f2), (qm,n, BelongTo, A), etc. The knowledge of the 7th of January
can be modelled as the partial triples such as (qi,j, TimeIs, 07/01), (qi,j, BelongTo, A),
(qi,j, FrequencyIs, ? ), etc.
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Considering the complexity and variability of the electromagnetic environment and
the high dynamics of satellites, it is necessary to use the model with a simple structure and
computational efficiency for spectrum posture prediction. The TransR [29] model can be
deployed to achieve the prediction of spectrum posture. The principle of TransR model is
shown in Figure 9. In the TransR model, for each triple {H, R, A}, the entity embedding is
set to H, A ∈ Rk and the relationship embedding is set to R ∈ Rd. Note that the dimensions
of entity embedding and relationship embedding are not necessarily the same, i.e., k ̸= d.
For each relationship R, a projection matrix Mr ∈ Rk×d is set up, which projects entities
from the entity space to the relationship space. Using the projection matrix, the projection
vector of the entity can be defined as:

Hr = HMr (1)

Ar = AMr (2)

That is, for a triple {H, R, A}, it needs to be satisfied:

d(H, R, A) =
∣∣∣∣∣∣Hr + R − Ar

∣∣∣∣∣∣22 =
∣∣∣∣∣∣HMr + R − AMr

∣∣∣∣∣∣22 ≈ 0 (3)

Then, the spectrum posture prediction problem is transformed into the link prediction
problem of the triple (qi,j, FrequencyIs, ?). All entities under the corresponding category
are used as candidates to compute the score function, and the one with the highest score is
determined as the predicted result.

Frequency-usage behavior prediction can help overcome the sensing capacity lim-
itations and provide active, predictive, and enhanced information support for the LEO
constellation resource scheduling, improving frequency efficiency.
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4.2. Intelligent Spectrum Management Based on Spectrum Knowledge Graph

The spectrum knowledge graph offers new perspective on how human language can
be comprehended by machines. Combined with natural language processing techniques,
the spectrum knowledge graph can support many downstream applications of collaborative
human–computer interaction. With the spectrum knowledge graph, managers can directly
perform intelligent knowledge retrieval and human–machine Q&A related to spectrum
or LEO satellite knowledge in natural human language. The labor costs associated with
spectrum management and the reliance on spectrum experts can be effectively decreased
with this strategy.

(1) Integrated Management System for LEO Spectrum Sensing Information: The LEO
satellite spectrum sensing information is stored in the spectrum knowledge graph in
a unified knowledge representation form. Users can explicitly observe and invoke
the knowledge. For a specific observation time under a beam, important data like
center frequency, bandwidth, modulation type of the real-time sensing signal, etc. can
be shown in real time. This makes it easier for users to track and identify specific
signal. Additionally, knowledge retrieval can be performed in the form of a graph,
where entities and relationships associated with the queried entity can be presented
together. This approach allows for more comprehensive and relevant knowledge for
user decision-making.

(2) Intelligent Q&A System for LEO Spectrum Sensing Information: This system supports
the use of natural language input for factual, right-and-wrong types of questions
about spectrum field or LEO satellite field. Questions such as “the beam coverage
of a particular satellite” and “what is the center frequency of the sensing signal at
a particular time”, etc., are permitted. The intelligent Q&A system can respond to
questions instantly after natural language comprehension, spectrum knowledge graph
querying, and reasoning.

By constructing an intelligent spectrum management system based on a spectrum
knowledge graph, changes in the spectrum can be captured in a timely manner. The opti-
mization of spectrum scheduling strategy can be achieved by utilizing the capability of data
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analysis and prediction of frequency-usage behavior of the spectrum knowledge graph.
Spectrum congestion and conflicts can be effectively avoided, improving the utilization effi-
ciency of spectrum resources. In addition, the knowledge graph can help analyze whether
spectrum usage is in compliance with regulations and policies to ensure standardized
spectrum usage.

5. Summary and Outlook

In order to efficiently perform on-satellite spectrum sensing data analysis and spectrum
posture generation, a knowledge graph construction and semantic representation idea for
LEO satellite spectrum sensing data is designed in this paper. By efficiently rearranging LEO
satellite spectrum sensing data, data integration at the semantic level can be accomplished.
As a result, the intricate and dynamic environment of the frequency-usage posture can be
better depicted.

However, a truly usable spectrum knowledge graph relies on the long-term con-
struction of multiple satellites and worldwide spectrum sensing data. In this context, the
collaborative updating and knowledge fusion of the LEO satellite spectrum knowledge
graphs are particularly crucial.

(1) Scalable ontology model: With the increase of frequency-usage devices, the types
of frequency-usage devices are gradually diversified. This makes the sensing in-
formation characteristics also diversify. The diversity will pose a challenge to the
construction of ontology model. If the classes, relations and attributes defined in the
ontology model are too homogeneous, the diversity of sensing features cannot be
adequately characterized, and the validity of the results of the analysis and prediction
of frequency-usage behaviors will also be reduced. Further research on data-driven
scalable ontology construction methods is necessary. The ontology does not need to
be reconstructed when the complexity of the sensing information features is enhanced.
The original ontology can be evolved with automated or semi-automated extensions
to fully characterize the diversity of sensing features. Thus, the validity of the results
of frequency-usage behavior analysis and prediction can be improved.

(2) Collaborative updating: As the number of frequency-usage devices continues to
increase, the status of each device is constantly changing. This will enhance the
dynamism of global sensing, such as the increased probability of device switching
on/off, switching of frequency-usage patterns, and diversification of behaviors. At
the same time, the spectrum environment may also undergo significant changes in
a short period of time. Therefore, the spectrum knowledge graph needs to be able
to reflect the dynamic changes of the spectrum posture in a timely manner. If the
constructed spectrum knowledge graph can be dynamically updated and evolved, it
can continuously learn and adapt to the real-time changing frequency environment. By
rapidly capturing the complex changes in the frequency-usage posture, the dynamic
knowledge graph can furnish a comprehensive cognition of the frequency-usage
posture, and offer more diversified and in-depth data support for the cognition of
the frequency-usage posture. Owing to the specificity of the field, knowledge in the
spectrum domain is often constrained by temporal and spatial factors, such as the
high dynamism, time-sharing asynchronous observation of LEO satellites, etc. These
problems can be mitigated by adding attributes such as time and geographic location.
Nevertheless, it may result in a rise in the quantity of entities and relationships.
Therefore, the spectrum knowledge graph is to some extent distinguished from other
fields by its short timeliness and frequent updates. The problem of how to efficiently
perform dynamic updating of on-satellite knowledge graph has to be considered.

(3) Knowledge fusion: With the continuous development of satellite constellations and
inter-satellite networking technology, multiple satellites can be interlinked for sensing.
By fusing knowledge graphs from different satellites, various frequency-usage be-
haviors, patterns, and trends can be more comprehensively understood. By doing so,
more accurate information can be provided for the rational planning and allocation of
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spectrum resources to optimize resource scheduling. However, distinct variations in
satellite orbits and observation angles result in disparities in the constructed spectrum
knowledge graphs on various satellite. This variability not only impacts the knowl-
edge graph’s size, but can also result in issues like knowledge duplication and conflict.
One of the most efficient ways to extend the incomplete spectrum knowledge graphs
is to fuse cross entities from multiple spectrum knowledge graphs into a uniform
knowledge graph. This method can address the issue of knowledge contradicting in
various knowledge graphs and mitigate the problem of long-tailed distribution of
data to some extent.
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