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Abstract: Internet of Things (IoT) is an emerging networking technology that connects both living
and non-living objects globally. In an era where IoT is increasingly integrated into various industries,
including healthcare, it plays a pivotal role in simplifying the process of monitoring and identifying
diseases for patients and healthcare professionals. In IoT-based systems, safeguarding healthcare
data is of the utmost importance, to prevent unauthorized access and intermediary assaults. The
motivation for this research lies in addressing the growing security concerns within healthcare IoT.
In this proposed paper, we combine the Multi-Step Deep Q Learning Network (MSDQN) with the
Deep Learning Network (DLN) to enhance the privacy and security of healthcare data. The DLN is
employed in the authentication process to identify authenticated IoT devices and prevent intermediate
attacks between them. The MSDQN, on the other hand, is harnessed to detect and counteract malware
attacks and Distributed Denial of Service (DDoS) attacks during data transmission between various
locations. Our proposed method’s performance is assessed based on such parameters as energy
consumption, throughput, lifetime, accuracy, and Mean Square Error (MSE). Further, we have
compared the effectiveness of our approach with an existing method, specifically, Learning-based
Deep Q Network (LDQN).

Keywords: deep learning network; distributed denial of service attack; healthcare system; internet of
things; malware attacks; multi-step deep Q learning network

1. Introduction

Internet of Things (IoT) is a vast global infrastructure that integrates various compo-
nents, including physical or virtual objects with attributes, Auto-IDs, and self-configuration
capabilities in standard communication systems [1]. Through IoT, devices such as smart-
phones, physical sensors, and smart buildings can interconnect and exchange data seam-
lessly, utilizing both wired or wireless communication channels [2]. Within the context
of Industry 4.0, which focused on enhancing industrial environments [3], the integration
of Cyber-Physical Systems (CPS) and IoT is gaining momentum, particularly in electrical
systems and machinery. One notable development is the emergence of machine learning
(ML)-based IoT platforms designed to mitigate cyber-attacks while ensuring secure and
reliable status monitoring of devices like induction motors. Additionally, IoT is revolu-
tionizing traditional methods of observation, for example by introducing a unique IoT
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architecture for real-time monitoring of gas-insulated switchgear [4]. This convergence
not only offers exciting possibilities, like real-time monitoring and enhanced cybersecurity,
but also plays a significant role in modernizing electric power plants [5]. In today’s world,
ML methods have proven effective for addressing issues like chatter recognition across
various applications.

The exceptional performance of chatter classification is primarily attributed to the uti-
lization of ML techniques [5]. These techniques are commonly used for signal classification
and analysis. In contrast to conventional chatter detection systems, a recent innovation
has introduced a data fusion approach that relies on multiple sensor inputs for milling
chatter detection. This method is cost-effective and straight forward to implement, using
microphone and accelerometer sensors to monitor chatter during milling operations. In
order to enhance the accuracy of the chatter detection system, a novel approach introduces
fuzzy entropy alongside hybrid feature selection, accompanied by a similarity classifier [6].
This multifaceted technique demonstrates its efficacy in addressing the issue of chatter in
the machining process.

In the realm of cybersecurity, researchers like Mahmoud Elsisi and Minh-Quang
Tran [7] have developed trustworthy, safe, and secure online monitoring for autonomous
guided vehicles (AGVs). Their approach features a deep neural network (DNN) with
a rectified linear unit, replacing outdated detection methods for cyber-attacks. In order
instance, Mahmoud Elsisi et al. have designed and developed an IoT architecture that
integrates deep learning for online monitoring of power transformers and protection against
cyber-attacks [8]. For the purpose of diagnosing power transformer faults and addressing
cyber threats, they leverage a one-dimensional convolutional neural network (1D-CNN).

• Using IoT, patient care can be facilitated.
• Integrating IoT and deep learning provides better monitoring of patients, providing

privacy and security.
• In this research work, a secure healthcare model is introduced using Multi-Step Deep

Q Learning Network with IoT.
• MSDQN is combined with DLN to improve the privacy and security of healthcare data.

In recent studies, researchers have used technology to develop products that enhance
the quality of care for both patients and clinicians by utilizing industry expertise and
human-centered design principles. The emergence of IoT-driven healthcare applications
represents a notable advancement in this field, with the potential to improve the quality
of patient care while simultaneously cutting costs [9]. One remarkable extension of IoT
is into the field of biomedicine. This expansion involves the deployment of sensors,
often via wearable technology, directly at the patients’ end. These sensors can seamlessly
communicate with hospitals and emergency response systems, ensuring immediate data
transmission if necessary [10].

The rest of the paper is organized as follows

• Section 2 describes related work
• Section 3 discusses the methodology
• Section 4 discusses the results and performance analysis
• Section 5 presents the conclusion of the paper

2. Related Work

In [11], the authors discussed layered architecture, comprising multiple levels such as
the Application Layer, Communication Layer, Security Layer, Embedded Layer, Hardware
Layer, Integration Layer, and DB Layer, which has been recognized as the most effective
method for achieving effective communication among devices connected to the Internet.
IoT devices are capable of producing diverse forms of data, including text, photos, audio
files, and videos [12]. This versatility in IoT technology has opened doors to a wide array
of services and applications, encompassing smart traffic management, efficient parking
solutions, intelligent lighting systems, smart offices, and sophisticated vehicle control [13].
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Smart devices play a critical role in assessing a patient’s health status by collecting
data on parameters like temperature, blood pressure, heart rate, and saline bottle level [14].
Medical sensors now offer a solution for various medical applications, such as remote
patient activity monitoring, patient information management, chronic illness diagnosis,
and elderly healthcare [15,16]. Despite the potential benefits, the adoption of IoT in medical
systems faces several challenges. IoT devices are often resource-constrained and deployed
in unmonitored, physically vulnerable locations, necessitating the development of a secure
IoT architecture [17]. Patient medical information, stored on servers, remains a prime target
for hackers because of its sensitivity, emphasizing the need for secure communication
between IoT devices and servers [18]. To address these concerns, a two-dimensional IoT
architecture and framework (as depicted in Figure 1) has been designed to ensure end-
to-end security. IoT operates across three levels, perception, network, and application,
with data flowing through these layers. Each layer presents unique security challenges,
including issues related to confidentiality, integrity, and authenticity, often influenced by
human interaction.
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In the development of secure IoT healthcare systems, a combination of various meth-
ods is employed, including the lightweight SIMON block cypher [19], the lightweight
SIMON-based cryptography algorithm [20], the self-healing mechanism [21], and other
standard methods.

Yeh [22] demonstrated the IoT-based communication architecture using three crucial
parts: Body Sensor Networks (BSN) server, wearable body biosensors, and local processing
units (LPU). This IoT design involves two channels of communication: sensors to LPU, and
LPU to BSN server. The openness of these channels possesses potential security risks. To
solve this, the communication process is divided into two distinct phases: initialization
and authentication. During the initialization phase, security parameters are exchanged
between the communication entities. Authentication is established between LPU and
BSN, as well as between exchanged LPU, enhancing the transmission security and secrecy.
Deebak et al. [23] created a system that enhances security and anonymity in smart electronic
healthcare applications through Secure and Anonymous-Based User Authentication System
(SAB-UAS). SAB-UAS addresses the long-standing challenge of usability-security trade-
offs by implementing a systematic framework involving key communication stakeholders:
medical experts, wireless gateways, and biomedical sensors. It is worth mentioning that
SAB-UAS demonstrates higher throughput when the network has a larger number of nodes.

Another noteworthy advancement in healthcare security is the use of blockchain
technology, as presented by Rathee et al. [24]. By hashing each piece of data, they create
a secure foundation. This approach addresses concerns related to medications hacking
and data tampering. Blockchain technology proves particularly effective in enhancing
transparency and security in healthcare supply chains and document access. However,
challenges remain in implementing blockchain technology within healthcare institutions.
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Sharma and Kalra [25] have developed a lightweight user authentication mechanism
for remote patient monitoring. Their approach encompasses six different phases, includ-
ing: framework setup (selecting a secret key for the gateway node, establishing the initial
configuration); registration of medical practitioner; registration of patient; login and au-
thentication; and password update. During the login and authentication phase, medical
professionals retrieve the patients’ medical records, and mutual authentication occurs
between the gateway node, medical practitioners, and sensors. A unique random session
key is generated [26]. For managing privacy and security in IoT-based healthcare systems,
Shakeel et al. [27] introduced a powerful technique based on machine learning, known
as the Learning-based Deep-Q-Network (LDQN) approach. The increasing attention of
researchers has led to the emergence of IoT into the healthcare sector, where there are
multiple innovations being done. Due to this emergence, it has made human lives more
secure and less prone to diseases [28,29]. In [30], the author discusses the deep Q learning
based neural network with a privacy preservation method, DQNNPP. In this a model for
secure transmission of healthcare data, known as EDBN—Enhanced Dynamic Bayesian
Network—is discussed [31]. In [32], a demonstration of IoT architecture based on im-
proving the deep learning model known as YOLO—You Only Look Once—for providing
security is given.

In this research, a model for knowing an individual’s health condition and providing
proper medication is designed [33]. In [34], an approach for an IoT healthcare monitoring
system and enhanced IGWO (Improved Grey-Wolf Optimization)-based DCNN (Deep
Convolution Neural Network) model to detect lung cancer is discussed.

In [35], a proposed model known as ICBS (Information Centric Dissemination Scheme)
for smart cities to provide smart health is discussed. Jyothi Peta and Srinivas Koppu [36]
introduced SPWO (Student Psychology Whale Optimization)-based deep max out network.
It classifies breast cancer disease. In [37], a review on various deep learning techniques for
IoT information is discussed.

Figure 2 depicts the various processing steps involved in LDQN. This ML method is
used to examinate problems related to access control, authentication, and virus detection.
Additionally, employing LDQN eliminates intermediate attacks, like spoofing attacks. The
LDQN approach has been developed and applied to maintain the integrity, security, and
privacy of health reports and data transfers. Specifically, LDQN is instrumental in detecting
and blocking malware threats during the transmission of health-related information. This
ensures that health data remain safe, reliable, and protected during the process of generating
health reports or transferring information.
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3. Methodology

To ensure the security of IoT healthcare data against malware attack, DDoS attack, and
intermediate attacks, the proposed method leverages deep learning algorithms, specifically
DLN and MSDQN. The proposed approach comprises two distinct phases: access control
and authentication. In the first phase, the authentication method is developed using DLN
to identify an authenticated IoT device and prevent intermediate attacks. This step is crucial
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in establishing the integrity of the IoT network. In the second phase, MSDQN is utilized
to secure the transfer of healthcare data through IoT devices. Figure 3 provides a visual
representation in the form of a block diagram, illustrating the components and flow of the
proposed approach.
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The main contributions of this research paper can be summarized as follows: (a) Deep
Learning Network for intermediate attacks and IoT device authentication—it leverages a
deep learning network that utilizes signal features, including the received signal strength,
impulse response of the channel, state information of the channel, and received signal
strength indicator, to address intermediate attacks and authenticate IoT devices; (b) MS-
DQN for identifying malware and DDoS attacks—by analyzing traffic attributes and signal
features using MSDQN, malware, and DDoSattacks can be identified during data trans-
mission; (c) Reducing data leakage in medical data transmission—by combining DLN and
MSDQN, we offer a comprehensive approach to safeguarding the integrity and privacy of
medical data.

3.1. Authentication Using Deep Learning Network Existing Designs (or Original Designs)

In the proposed method, authentication is considered the initial and critical step for
ensuring the secure transfer of health information between IoT devices. The IoT devices
used in this proposed technique have limited memory sources, which poses challenges for
a robust authentication process. To enhance the security and privacy of the transmitted
information, various signal features, such as the received signal strength, impulse response
of the channel, state information of the channel, and received signal strength indication,
are used. However, the resource constraints associated with IoT devices can inhibit the
effectiveness of the authentication mechanism during the transmission of healthcare data.
These limitations underscore the need for efficient and resource-friendly authentication
methods to maintain data privacy in IoT healthcare systems.

3.2. Deep Learning Network (DLN)

This proposed method takes advantage of the DLN to overcome the authentication
challenges arising from the resource limitations. In IoT networks, the limited battery and
memory capacity often give rise to Sybil attacks. To counter these vulnerabilities, the
effective learning of IoT device features is implemented at every level. Consequently, the
proposed approach for transmitting healthcare data integrates DLN within IoT devices.
This integration not only reinforces the authentication but also significantly reduces the
risk of data leakage during transmission.

IoT devices, such as sensors and actuators were subjected to testing within predefined
range boundaries. To verify the privacy of data transmission, an authentication request is
initiated from one IoT device to another positioned within the designated testing area. The
authentication request is then processed, which involves the extraction of several signal
properties. These properties include the signal strength, impulse response of the channel,
channel state information, and received signal strength indication, all within a specific
range. DLN evaluates ambient radio signals and packet request arrival times based on these
extracted features. The acquired features, obtained during the DLN training procedure, are
then used to determine the appropriate output for the authentication process. To ensure an
effective DLN training, Adaboost training is used, even when the features contain noise or
errors. Equation (1) shows the feature training process of the DLN.
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f (y) = ∑k
k=1 αkhk(y), (1)

In the pooling layer, the features are represented as αk and the more refined features
are denoted as hk. These trained features are then stored in a database and are utilized
to carry out the authentication process. For any new device seeking authentication, an
analysis of signal features is performed. The analysis relies on the input, hidden, and output
layers, which constitute the three fundamental layers of DLN. Moreover, specific bias value
c and weight values wj are used in the above-mentioned layer during the evaluation of the
authentication output, as illustrated in Equation (2).

No = ∑M
j=1 yj ∗ wj + c, (2)

In the estimation phase of the authentication result, the Levenberg–Marquardt learning
algorithm plays a significant role in further training the DLN. As shown in Equation (3),
the weights and bias values are updated using the Levenberg–Marquardt approach for an
accurate and efficient authentication process:

Yl+1 = Yl −
[
KTK + µJ]−1KTe, (3)

where:

• K is the Jacobian matrix
• µ is the combination coefficient
• e is the error vector.

As a result, the training features are compared to incoming authentication requests
to authenticate the IoT devices. This DLN-based authentication mechanism effectively
eliminates intermediary attacks during the transmission of healthcare data. Furthermore,
following the authentication procedure, a multi-step Q learning mechanism is used to
enhance the security of medical data during the transmission process.

3.2.1. MSDQN-Based Secure Data Transmission of IoT Healthcare Data

The final step of the proposed method focuses on securing the transmission of the
medical healthcare data through the utilization of the MSDQN. The DLN-based authentica-
tion process is used to analyze traffic requests related to medical data. In this verification
process, various traffic parameters, including host post number, frame length, transmitting
protocols, frame number, transmitting file type, and request IP address, are examined.
These traffic parameters, along with signal attributes like the received signal strength,
channel impulse response, channel status data, and received signal strength indication,
are stored in a database. When transmitting IoT healthcare data, the features from the
database are used to train MSDQN, enabling it to effectively detect and mitigate malware
and DDoS attacks.

3.2.2. Multi-Step Deep Q Learning Network Algorithm

The function of new state–action value Q̂π(s, b) is modified when the agent proceeds
action b in state s under policy of π. The function of new state–action value is expressed in
the Equation (4).

Q̂π(s, b) = Eπ

[
Ĝt(m)

∣∣st = s, bt = b
]
b, (4)

The return function Ĝt(m) is modified based on the Markov property that is illustrated
in the Equation (5).

Ĝt(m) = r̂t(m) + γ ˆGt+1(m), (5)
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where r̂(m)
t = 1

m ∑l=m
l=1 r(t+l−1). Additionally, the new state function value of Equation (4) is

calculated, along with dynamic programming which is expressed in the Equation (6).

Q̂(s, b) = Eπ

[
r̂t(m) + γEb′ Q̂ˆ

(
s′, b′

)∣∣st = s, bt = b
]

(6)

where, s′ is the subsequent state of state s based on the state transition probability. Similar
to the conventional Q learning, the backup operation is used to estimate the new optimal
state–action value function which is expressed in Equation (7).

Q̂(st, bt)← Q̂(st, bt) + α

[
r̂(m)

t + γmax
b

Q̂(St+1, b)− Q̂(St, bt)

]
, (7)

The MSDQN uses the reward r̂(m)
t instead of rt when compared to the one-step tempo-

ral difference method. The function of the new state–action value Q̂(s, b) is approximated by
using a parameterized continuous function Q̂(s, b; θ) for a continuous state space problem.

Therefore, the authentication process using DLN avoids the intermediate attacks be-
tween the IoT devices. The DLN is used to identify whether the IoT device is authenticated
or not, based on trained features. Then MSDQN is used to maintain the security, pri-
vacy, and reliability of the data transmission and also detects the DDoS, malware affected
health data.

4. Results and Discussions

This section provides an overview of the experimental results and an explanation
of the proposed method’s implementation. The identification of attacks in the IoT-based
healthcare system is carried out through implementation and simulation in Python, using
Open Flow environment with 4 GB RAM and i5 processor. The specifications considered in
this proposed method are given in the Table 1. The IoT devices responsible for healthcare
data transmission are deployed within an area of 250 m2 featuring a varying number of
nodes (i.e., 50, 60, 80, 90 nodes). Moreover, these IoT devices use a log-shadowing wireless
model as their channel mode.

Table 1. Graph representations.

Parameters Values

Area 250 m2

Number of nodes 50, 60, 70, 80, 90
MAC IEEE 802.5.14

Transmission 250 kbps
Packet size 40 bytes

Simulation time 400

4.1. Performance Measures’ Indicators

The performance of the proposed method is assessed through various key metrics,
including energy consumption, throughput, lifetime, accuracy, and mean Square Error
(MSE) for attack detection. These performance measures are described as follows:

• Energy consumption—this metric quantifies the amount of energy consumed by IoT
devices for transmitting data over the network. The energy consumption is directly
proportional to the distance between the devices;

• Throughput—is defined as the number of bits transmitted from one location to another,
typically expressed in bits per second;

• Lifetime—represents the duration until all devices within the network die during data
transmission. An IoT device is declared “dead” when it lacks the energy required for
data transmission;
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• Accuracy—in the context of malware and DDoS attack detection during healthcare
data transmission is defined as the ratio of correctly predicted observations to the total
number of observations. It is computed using the formula:

Accuracy =
TP + TN

TP + FP + FN + TN
, (8)

where, TP is true positive, TN is true negative, FP is false positive, and FN is false
negative.

• MSE—quantifies the amount of error caused by attacks on the IoT-based healthcare
system. It is computed as:

MSE =
1

ND
∑ND

j=1(IP − ÎP)
2
, (9)

where, MSE is mean Square Error, ND is number of data points, IP is actual input and
ÎP is output acquired through IoT communication.

4.2. Performance Analsys

This section provides a detailed analysis of the performance of the proposed method,
evaluated using two classifiers, Q Learning Network (QLN) and Deep Q Network (DQN).
These classifiers are used instead of the MSQDN for malware and DDoS attack detection.
The evaluation encompasses the same specification mentioned in Table 1. The performance
of the proposed method is assessed by conducting simulations with varying numbers of
IoT devices deployed within the test area. Specifically, the IoT devices are varied in number,
ranging from 50 to 90.

Tables 2–6 show the performances of the proposed method for 50, 60, 70, 80 and 90 IoT
devices, respectively. Upon reviewing these tables, it becomes evident that the proposed
method consistently outperforms QLN and DQN across various key performance metrics,
including energy consumption, throughput, lifetime, accuracy, and error rate. For instance,
the energy consumption of the proposed method with 90 IoT devices is 38 J, a notable
improvement compared to QLN and DQN. This low energy consumption translates to an
extended lifetime for the proposed method. Moreover, the proposed method demonstrates
a high classification ratio of 99.39% for malware and DDoS attack detection with 80 IoT
devices, surpassing QLN and DQN. This higher classification ratio significantly enhances
the system’s ability to effectively detect and prevent malware and DDoS attacks during
healthcare data transmission across the IoT-based system.

Table 2. Performance analysis of proposed method for 50 IoT devices.

Parameters QLN DQN Proposed Method

Energy consumption (J) 40 33 25
Throughput (bps) 1010 1280 1565

Lifetime (s) 256 282 373
Accuracy (%) 90.46 94.58 99.04

MSE 0.58 0.44 0.11

Table 3. Performance analysis of proposed method for 60 IoT devices.

Parameters QLN DQN Proposed Method

Energy consumption (J) 43 36 28
Throughput (bps) 1050 1320 1565

Lifetime (s) 276 299 378
Accuracy (%) 92.78 96.42 99.24

MSE 0.75 0.38 0.08
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Table 4. Performance analysis of proposed method for 70 IoT devices.

Parameters QLN DQN Proposed Method

Energy consumption (J) 54 42 32
Throughput (bps) 1070 1324 1578

Lifetime (s) 287 310 388
Accuracy (%) 90.45 94.51 99.12

MSE 0.95 0.54 0.09

Table 5. Performance analysis of proposed method for 80 IoT devices.

Parameters QLN DQN Proposed Method

Energy consumption (J) 61 49 36
Throughput (bps) 1135 1355 1590

Lifetime (s) 291 318 393
Accuracy (%) 91.62 92.78 99.39

MSE 0.83 0.72 0.08

Table 6. Performance analysis of proposed method for 90 IoT devices.

Parameters QLN DQN Proposed Method

Energy consumption (J) 71 56 38
Throughput (bps) 1190 1420 1620

Lifetime (s) 308 332 398
Accuracy (%) 91.62 92.78 99.52

MSE 0.78 0.42 0.09

4.3. Comparative Analysis

The performance of the proposed method is compared with LDQN [20] to determine
its effectiveness. In [20], there are two different phases, authentication and access control.
The DLN is used for authenticating the IoT device and also it avoids the intermediate
attacks. Subsequently, the LDQN is used in that to detect malware and DDoS attack during
the health care data transmission from one place to another place.

Table 7 shows the comparative analysis of LQDN [20] and proposed method in terms
of energy, throughput, lifetime, average accuracy, and MSE for 90 IoT devices. From
the analysis, we conclude that the performances of the proposed method are better than
the LDQN [20]. For example, the malware and DDoS attack detection using MSDQN
achieves an average accuracy of 96.26%, better than the LDQN [20]. Moreover, the energy
consumption of the proposed method is 38 J, which is less when compared to the LDQN,
that leads to improving the network lifetime and throughput. The throughput and lifetime
of the proposed method with 90 IoT devices are 1620 bps and 398 s respectively.

Table 7. Comparative analysis of the proposed method with LDQN in terms of energy, throughput
and lifetime.

Parameters LDQN [20] Proposed Method

Energy consumption (J) 42 38
Throughput (bps) 1599 1620

Lifetime (s) 395 398
Accuracy (%) 98.79 99.26

MSE 0.12 0.09
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5. Conclusions

In this paper, the DLN verifies the IoT device as to whether it is an authenticated device
or not and removes the intermediate attacks. The performances of proposed method are
better than the conventional classifiers, such as QLN and DQN. The DLN uses four signal
features to minimize data leakage, such as received strength of the signal, impulse response
of the channel, state information of the channel and received signal strength indicator. Then
the MSDQN uses the traffic features along with signal features for detecting the malware
and DDoS attack during the data transmission. This helps to preserve the medical data
from malware and DDoS attack. In the proposed method, the energy consumption is
38 J, throughput is 1620 bps, lifetime is 398 s, MSE is 0.09. The accuracy of the proposed
method with 60 IoT devices is 99.24%, which is high when compared to the QLN and DQN.
Moreover, the proposed method accuracy of attack detection is 99.26%, which is high when
compared to the LDQN. To improve the accuracy of the current technique, future study
should include non-optimized data searching in a deep learning concept.

The future scope of this research can be extended to IoT-assisted healthcare services
by incorporating autonomous control and human—computer interface (HCI) technologies
for ambient intelligence.
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