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Abstract: In open environments, multimodal sentiment analysis (MSA) often suffers from low-quality
data and can be disrupted by noise, inherent defects, and outliers. In some cases, unreasonable
multimodal fusion methods can perform worse than unimodal methods. Another challenge of
MSA is effectively enabling the model to provide accurate prediction when it is confident and to
indicate high uncertainty when its prediction is likely to be inaccurate. In this paper, we propose an
uncertain-aware late fusion based on hybrid uncertainty calibration (ULF-HUC). Firstly, we conduct
in-depth research on the issue of sentiment polarity distribution in MSA datasets, establishing a
foundation for an uncertain-aware late fusion method, which facilitates organic fusion of modalities.
Then, we propose a hybrid uncertainty calibration method based on evidential deep learning (EDL)
that balances accuracy and uncertainty, supporting the reduction of uncertainty in each modality of
the model. Finally, we add two common types of noise to validate the effectiveness of our proposed
method. We evaluate our model on three publicly available MSA datasets (MVSA-Single, MVSA-
Multiple, and MVSA-Single-Small). Our method outperforms state-of-the-art approaches in terms of
accuracy, weighted F1 score, and expected uncertainty calibration error (UCE) metrics, proving the
effectiveness of the proposed method.

Keywords: hybrid uncertainty calibration; multimodal sentiment analysis; uncertainty-aware late
fusion; expected uncertainty calibration error; noise

1. Introduction

Sentiment analysis can be applied in various domains, including marketing, customer
service, brand management, political analysis, and social listening [1]. It has emerged
as a highly active research area due to the enormous volume of data generated daily on
social media platforms and the World Wide Web. This abundance of data provides a
rich source for sentiment analysis research and applications. The conventional sentiment
analysis model primarily concentrates on analyzing text-based content [2]. Nonetheless,
advancements in technology have provided individuals with the means to express their
opinions and emotions through various channels, including text, images, and videos. Due
to these developments, sentiment analysis is transitioning from a focus on a single modality
to considering multiple modalities. This shift brings about novel possibilities in sentiment
analysis, driven by the rapid growth of this field. The integration of complementary data
streams facilitates enhanced sentiment detection, surpassing the limitations of text-based
analysis [3].

Recent advancements in multimodal sentiment analysis architectures can be catego-
rized into ten distinct categories [4]. Different fusion methods have various strengths and
limitations. Although multimodal fusion can solve the limitations of a single modality,
in real open environments, multimodal data are usually disturbed by noise, defects, and
abnormal points, making it difficult to satisfy the complementarity and consistency of
multimodality [5]. In the past few years, numerous researchers have conducted studies
on sentiment analysis based on images and text. However, many existing approaches in
this field either rely on a straightforward concatenation of features extracted from different
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modalities [6] or only capturing coarse-level relationships between images and text [7].
Indeed, in the real open world, the sentiment polarity of text and visual content is not
always completely aligned, which is one of the key challenges that need to be addressed
for reliable multimodal learning.

In recent years, numerous studies have used MVSA datasets [8] (MVSA-single, MVSA-
multiple) as benchmarks for exploring the sentiment analysis of images and text. These
studies have pointed out that in the real open world, the sentiment polarity of text and
visual content is not entirely consistent. Therefore, researchers often preprocess MVSA
datasets by removing samples with opposite sentiment polarities. If one modality expresses
a neutral sentiment, while the other modality is positive or negative, they are classified
as positive or negative. Indeed, even after removing samples with opposite sentiment
polarities, there are still a considerable number of inconsistent sentiment samples in the
MVSA datasets. For convenience, we can classify samples where one modality expresses a
neutral sentiment while the other modality is positive or negative as inconsistent samples,
while samples where both modalities have consistent polarities can be categorized as
polarity-consistent samples.

To conduct in-depth research, we classify the data in the filtered MVSA datasets,
where one modality expresses a neutral sentiment while the other modality is positive or
negative as inconsistent samples. On the other hand, samples where both modalities have
consistent polarities are referred to as polarity-consistent samples. In Figure 1, detailed data
analysis of the filtered MVSA datasets shows that a considerable proportion of samples
exhibit inconsistent polarities. For example, MVSA-single contains 42.5% of samples
with inconsistent polarities, while MVSA-multiple has 26.0% of samples with inconsistent
polarities. We understand that within the samples, we define as having inconsistent
polarities, one modality’s data are neutral while the other is positive or negative. This
means that we would need to incur an additional cost of 42.5% or 26.0% to inform our
classifier that these originally neutral data points need to be classified as either positive
or negative. This poses a significant challenge for any model. Indeed, looking at it from
another perspective, when a modality’s sentiment is initially neutral, the classifier needs
to learn to associate it with a positive or negative sentiment in conjunction with the other
modality. The classifier must effectively address the high uncertainty that arises during
the polarity transformation process to achieve consistent and balanced learning between
modalities. This entails capturing the nuanced relationships between modalities and
understanding how they contribute to the overall sentiment analysis task. The classifier
must strike a balance and minimize the ambiguity inherent in polarity conversion to achieve
reliable and accurate results.

In particular, we should note that for the MVSA-multiple dataset, each pair is shown
to three annotators, and each annotator independently judges the sentiments of the text and
image. For the same text–image pair, the sentiment polarities given by different annotators
are mostly different, indicating the widespread presence of high uncertainty in the model
learning process. We must address the issue of high uncertainty in the model learning
process to make our model’s classification more robust.

However, it is regrettable that the current studies [9–11] on multimodal sentiment
analysis rarely focuses on uncertainty calibration, thus overlooking the crucial significance
of uncertainty calibration in improving model performance. Recently, there have been stud-
ies [12,13] focusing on improving model performance from the perspective of uncertainty
calibration, whereas these methods often discuss the issue from an unimodal perspective,
neglecting the challenge of inconsistent sentiment polarities across different modalities,
which poses a new challenge to uncertainty calibration.
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(a) (b)

Figure 1. Consistency analysis of sentimental polarity in the filtered MVSA-Single and MVSA-
Multiple datasets. In our case, we consider samples where one modality expresses neutral sentiment
while the other modality expresses positive or negative sentiment as instances of inconsistent senti-
ment polarity. (a) MVSA-Single. (b) MVSA-Multiple.

Therefore, it is necessary to conduct further research to explore how to achieve effective
uncertainty calibration in multimodal sentiment analysis. By accurately estimating and
calibrating the uncertainty of models, we can enhance their reliability and robustness,
thereby better addressing the differences in sentiment expression across different modalities
and providing more accurate and consistent sentiment analysis results.

Based on the above analysis, we propose an uncertain-aware late fusion method based
on hybrid uncertainty calibration (ULF-HUC) to enhance the calibration and classification
of the model. The main contributions of this paper are summarized as follows:

• We propose a hybrid uncertainty calibration (HUC) method, which utilizes the labels
of both modalities to impose uncertainty constraints on each modality separately,
aiming to reduce the uncertainties in each modality and enhance the calibration ability
of the model.

• We propose an uncertain-aware late fusion (ULF) method to enhance the classification
ability of the model.

• We add common types of noise, such as Gaussian noise and salt-and-pepper noise,
to the test set. Experimental results demonstrate that our proposed model exhibits
greater generalization ability.

The rest of the paper is organized as follows. In Section 2, we put our approach in the
context of relevant existing work. Then, in Section 3, we present a detailed description of
our proposed method. In Section 4, we conduct an experimental evaluation and analysis
of our approach. Finally, Section 5 provides a summary of our findings and concludes
the paper.

2. Related Work
2.1. Multimodal Sentiment Analysis

With the transformation of social media, there has been an explosive emergence of
internet information, such as images, voice, and videos, greatly enriching the content
available on social media platforms. Multimodal sentiment analysis can help social me-
dia platforms better understand users’ emotions and needs. Xu et al. [14] introduced an
alternating co-attention mechanism in their work. The alternating co-attention mechanism
allows for reciprocal interaction between the image and language modalities, enhancing the
understanding and representation of both modalities in the joint modeling process. In [15],
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they introduced a fusion framework that revolves around a Bidirectional Associative Mem-
ory (BAM). Unlike traditional data-level or score-level fusion strategies, this framework
leverages a cognitive model of multisensory integration to enhance fusion performance.
Kumar et al. [16] proposed a hybrid deep learning model that employed decision-level
multimodal fusion to integrate these modalities in online content, enhancing the accuracy
of sentiment prediction at a more detailed level. Jiang et al. [17] proposed a fusion extrac-
tion network model for multimodal sentiment analysis. The model utilizes an interactive
information fusion technique to dynamically learn visual-specific textual representations
and textual-specific visual representations. This approach aims to effectively combine
and process multimodal information for improved sentiment analysis results. In [18], the
researchers proposed a novel method called cross-modal Semantic Content Correlation
(SCC) to capture complementary multimodal information for joint sentiment classification.
This approach aims to leverage the semantic content shared between the two modalities to
improve the accuracy of sentiment classification. Guo et al. [19] introduced a layout-driven
multimodal attention network (LD-MAN) for end-to-end sentiment recognition in news
articles. This approach allows for a comprehensive understanding of the news articles’
sentiment by integrating both textual and visual information synergistically.

In [20], they introduced an image–text interactive graph neural network for sentiment
analysis. The network utilized a graph structure where the node features were initially
derived from text and image features. Ye et al. [21] proposed a sentiment-aware multimodal
pre-training (SMP) framework for multimodal sentiment analysis. The SMP framework
addresses the challenges in multimodal sentiment analysis by incorporating cross-modal
contrastive learning, sentiment-aware pre-training objectives, and semantic information
capture. In this article [22], the authors proposed a Gated Fusion Semantic Relation (GFSR)
network, which aims to explore semantic relations for sentiment analysis in social media.
This fusion process integrates both global and local information to capture the semantic
relations between images and textual descriptions, leading to improved sentiment analysis
results in the context of social media. Liu et al. [23] introduced the Scanning, Attention, and
Reasoning (SAR) model for multimodal sentiment analysis to effectively comprehend and
predict sentiment tendencies in multimodal content. The SAR model comprises several
components designed to handle different aspects of the analysis process.

2.2. Multimodal Uncertainty Calibration

Over the past decade, neural networks have made significant strides and have found
applications in a wide range of fields. However, as their use has expanded, the need for
confidence in neural network predictions has become increasingly important. Traditional
neural networks cannot often provide certainty estimates and can suffer from issues such
as overconfidence or underconfidence, leading to poorly calibrated predictions [24].

In safety-critical applications, obtaining reliable and accurate uncertainty estimates
from deep neural networks is crucial [25]. A well-calibrated model should provide accurate
prediction when it is confident and indicate high uncertainty when its prediction is likely to
be inaccurate [26]. However, uncertainty calibration is challenging since, there is no ground
truth available for uncertainty estimates. To address this problem, Krishnan et al. [27]
proposed an optimization method that leverages the relationship between accuracy and
uncertainty as a reference for uncertainty calibration. They introduced a differentiable loss
function called Accuracy versus Uncertainty Calibration (AvUC) that enables the model to
learn to provide well-calibrated uncertainties while also improving accuracy.

While significant research efforts have focused on quantifying and reducing predictive
uncertainty, most existing methods [28,29] are designed for unimodal data, neglecting
the challenges posed by uncertainty calibration in multimodal data. To bridge this gap,
Ma et al. [30] identified the issue of over-confidence on partial modalities in existing mul-
timodal learning paradigms. They proposed a measure to evaluate confidence reliability
and introduce a regularization strategy to enhance confidence calibration. In [31], they pro-
posed a simple soft maximum distribution matching loss function that demonstrates how
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to jointly learn well-calibrated and well-ranked unimodal uncertainty estimation, leading
to a significant improvement in multi-modal classification performance. Kose et al. [32]
proposed a novel error alignment uncertainty (EaU) optimization method and introduced
the EaU calibration loss to guide the model in providing reliable uncertainty estimates
that are correlated with model errors. In [33], the proposed method is based on uncer-
tainty quantification techniques, which enable the adoption of a principled approach to
reduce the number of patterns required to explain model predictions. The output classifier
scores represent the probability of well-calibrated predictions. Wang et al. [34] proposed a
non-parametric calibration method that aims to estimate uncertainty as accurately as possi-
ble, given an unknown data distribution. This approach enables multimodal uncertainty
calibration without increasing model complexity or training costs.

However, despite the improved performance of multimodal models compared to
unimodal ones, it has been observed that they still fail to fully harness the potential of
multiple modalities [35]. For low-quality datasets, it is necessary to address the uncer-
tainty within each modality to calibrate the overall uncertainty of the model and improve
the performance of multi-modal models. To tackle this issue, in this paper, we propose
an uncertain-aware late fusion method based on hybrid uncertainty calibration (ULF-
HUC) that introduces a new approach to address multimodal uncertainty calibration.
This approach aims to enhance the performance of multimodal models by reducing the
uncertainties associated with individual modalities and improving their calibration.

3. Methodology
3.1. Framework Overview

To address the issue of uncertainty estimation in the fusion of different modalities, we
propose an uncertain-aware late fusion method based on hybrid uncertainty calibration
(ULF-HUC) to enhance the interpretability and robustness of a multimodal sentiment
analysis model.

The architecture of this model, as shown in Figure 2, consists of four main components:
unimodal backbones, ENN heads, hybrid uncertainty calibration (HUC), and uncertain-
aware late fusion (ULF) method. Firstly, similar to most methods, we utilize BERT [36] to
extract textual feature information and ResNet [37] to extract image feature information. To
reduce the bias introduced by the heterogeneity between different modalities in the overall
model, for each modality, we take the pooler output of the backbone of the unimodal
model as input information for the ENN Head. The ENN Head primarily utilizes the
method of Evidence Deep Learning (EDL) [38]. This approach overcomes the limitations of
softmax-based Deep Neural Networks (DNNs) by incorporating the evidence framework,
specifically Dempster–Shafer Theory (DST) [39], and Subjective Logic (SL) [40]. The model
is trained using the Evidence Deep Learning (EDL) [38] loss function and regularized
using our proposed Hybrid Uncertainty Calibration (HUC) module, which considers the
outputs of EDL for both modalities. In contrast to traditional sentiment classification
predictions, we employ a late fusion method based on uncertainty estimation to make
more accurate sentiment analysis judgments. This approach allows for a more reliable and
robust estimation of uncertainties and consequently improves the overall performance of
the multimodal sentiment analysis model.
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Figure 2. Illustration of our model’s overall framework diagram. This model consists of four main
components: unimodal backbones, ENN heads, hybrid uncertainty calibration (HUC), and uncertain-
aware late fusion (ULF) method. The Evidential Neural Network (ENN) head predicts the evidence e
to build the Dirichlet distribution of class probability p.

3.2. Unimodal Backbone Model

Traditional sentiment analysis methods have primarily focused on replacing different
deep learning modules to improve performance. However, these approaches often lack
interpretability and fail to effectively address the issue of uncertainty estimation caused by
different modalities. Therefore, in contrast to previous methods, we will utilize mainstream
unimodal baseline models and concentrate on reducing the uncertainty issues arising
during the modality learning process. By leveraging well-established unimodal models as
the foundation, our approach aims to enhance interpretability while effectively tackling
uncertainty estimation problems associated with different modalities. This strategy allows
us to build upon existing knowledge and expertise in unimodal sentiment analysis, leading
to a more reliable and interpretable multimodal sentiment analysis model.

For convenience, let T = {T1, T2, . . . , Ti, . . . , Tn} represent the input of n text samples.
For each sample Ti, we feed it into a textual backbone model, such as BERT. Then, we
extract the pooler output of BERT as the output Ob for the text modality, as shown below:

Ob = fb(Ti; θb), Ob ∈ RZ, (1)

where θb represents the parameters of the BERT, and Z is the hidden size of BERT. Similarly,
let I = {I1, I2, . . . , Ii, . . . , In} represent the input of n image samples. For each image Ii, we
utilize a visual baseline model, such as ResNet, to obtain the average pooling output Or for
the visual modality, as shown below:

O
′
r = fr(Ii; θr), O

′
r ∈ RH×W×D, (2)

where θr represents the parameters of the ResNet, H, W, and D, respectively, represent
the three dimensions of the pooled output. To obtain a pooled output similar to the text
modality, we reshape the result of Or to obtain the output for the image modality, denoted
as Or. This can be represented as:

Or = reshape
(

O
′
r

)
, Or ∈ RL, (3)
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where L = H × W × D, and the function of reshape represents the transformation of the
input tensor into a new shape format. It allows us to convert the three-dimensional output
of the image modality into a format that aligns with the one-dimensional output.

3.3. ENN Head

Existing deep learning models typically employ a softmax layer on top of deep neural
networks (DNNs) for classification tasks. However, these softmax-based DNNs are unable
to estimate the prediction uncertainty of classification problems effectively. This is because
softmax scores inherently provide point estimates of the predicted distribution [41], and
softmax outputs tend to be overly confident even of mispredictions [42]. Therefore, to
address the issues caused by softmax-based approaches, we introduce methods such as
Dempster–Shafer Theory (DST) [39] and Subjective Logic (SL) [40], which form the core of
the ENN Head.

For convenience, we will uniformly record the output Ob and Or of the benchmark
model of text mode and image mode as Ox. To better evaluate the evidence support
information for each modality, we first apply a linear fully connected layer to the outputs
of the unimodal baseline models. This can be expressed as follows:

Oc = Liner(Ox; θx), Oc ∈ RM, (4)

where θx represents the parameters of the Liner, and M is the number of categories in
the multimodal classification task. Different from the traditional softmax-based method,
according to the relevant theories of DST and SL, ENN Head generates evidence to support
classification through a linear fully connected layer. The evidence refers to the metrics
obtained from the input data to support classification. It represents the information or
observations that contribute to the classification decision. We can obtain the representation
of the evidence through the expression of the relevant non-negative activation function,
such as exp:

e = exp(clamp(Oc)), e ∈ RM, (5)

where the clamp function controls the output of the fully connected layer within a range to
prevent the impact of numerical offset on classification. Specifically, In the case of an M-class
classification problem, Subjective Logic assigns belief mass bm to each class based on the
Dirichlet distribution and assigns overall uncertainty mass u to the entire class framework.
The association between bm and u can be represented by the following equation:

u +
M

∑
m=1

bm = 1, (6)

where u ≥ 0 and bm ≥ 0 for m = 1, . . . , M. The belief mass bm of a single category m is
calculated using the evidence em of a single category m, and the em≥ 0. In this way, belief
mass bm and uncertainty u can be easily calculated by setting the following equations:

bm =
em

S
and u =

M
S

, (7)

where S =
M
∑

m=1
βm represents the Dirichlet strength. Based on the DST and SL theories, βm

is connected to the learned evidence through the equation βm = em + 1. That is to say, by
using the equation bm = (βm − 1)/S, we can easily obtain the subjective opinion from the
corresponding parameters of the Dirichlet distribution.

3.4. Hybrid Uncertainty Calibration
3.4.1. EDL Loss

Evidence Deep Learning (EDL) plays a crucial role in enabling the sentiment analysis
model to handle situations where the sentiment of a particular sample is ambiguous
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or unknown. By incorporating uncertainty into the model, it can effectively “know the
unknown”, acknowledging cases where sentiment analysis may be challenging due to a
lack of clear evidence or conflicting signals. In this paper, let yi = {yi1, . . . , yiM } be an
one-hot M-dimensional label for sample i with yij = 1 and yiM = 0 for all m ̸= j. Then, unlike
the traditional cross-entropy loss, the Bayesian risk based on the Dirichlet distribution can
be represented as the loss function of EDL [38]. The following is the representation of the
EDL loss function:

LEDL =
M

∑
j=1

yij
(
ψ(Si)− ψ

(
βij

))
+ γtKL(p, β), (8)

where ψ(·) is the digamma function, and the second term is Kullback–Leibler (KL) diver-
gence [38]. γt is a balancing factor that determines the trade-off between the expected
classification error and KL-regularization. p represents the likelihood of each class in an
M-class classification problem, and β is the Dirichlet strength vector.

3.4.2. HUC Loss

The calibration of uncertain estimates focuses primarily on calibrating the outputs of
the ENN Head. While there have been numerous methods based on EDL that have been
explored, accurate quantification of uncertainty estimation from DNNs remains an open
research problem, despite recent progress in probabilistic deep learning for improving
model robustness. A well-calibrated model should exhibit confidence in its predictions
when accurate and display high uncertainty when making inaccurate predictions.

Currently, mainstream calibration methods involve differential approximations to the
accuracy versus uncertainty (AvU) [27] defined in Equation (9) as a utility function. This
utility function can be computed for a mini-batch of data samples during the model training
process. The AvU utility function is optimized to achieve well-calibrated uncertainties,
where the model provides lower uncertainty for accurate predictions and higher uncertainty
for inaccurate predictions. To estimate the AvU metric during each training step, the outputs
within a mini-batch can be grouped into four different categories: (1) accurate and certain
(AC), (2) inaccurate and certain (IC), (3) accurate and uncertain (AU), and (4) inaccurate
and uncertain (IU). This categorization allows for quantifying the relationship between
accuracy and uncertainty, providing insights into the model’s calibration performance. This
utility function can be calculated using the following formula:

AvU =
nAC + nIU

nAC + nIC + nAU + nIU
, (9)

where the nAC, nIC, nAU and nIU indicate the number of samples under the four prediction
scenarios mentioned above.

However, excessive calibration using traditional methods can introduce new issues in
uncertainty estimation. Inspired by this observation, we propose to focus on calibrating
the accurate and uncertain (AU) and inaccurate and certain (IC) cases. In Figure 3, a
toy example is presented to illustrate the four possible EDL outputs. The objective is to
calibrate the predictive uncertainty of the EDL model. For accurate predictions, the model
is encouraged to learn a skewed and sharp Dirichlet simplex, as shown in Figure 3a. On
the other hand, for incorrect predictions, the model should provide an unskewed and flat
Dirichlet simplex, as depicted in Figure 3d.

To achieve this calibration, we propose to regularize the EDL training process by
minimizing the expectations of the IC and AU cases, as shown in Figure 3b,c, respectively.
By minimizing these cases, we can encourage the other two cases (AC and IU) and promote
the desired behavior in the model’s uncertainty estimation. Consequently, if a sample
is assigned a high EDL uncertainty, it is more likely to be incorrect, allowing for the
identification of unknown sentiment. By prioritizing the calibration of these cases, we aim
to address the specific challenges associated with uncertainty estimation in these scenarios.
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This approach allows us to refine the model’s uncertainty estimates and improve its overall
calibration performance.

β = [1.5, 15, 1.5] β = [15, 15, 15] β = [1.5, 2, 1.5] β = [1.5, 1.5, 1.5]
u = 0.17 u = 0.07 u = 0.60 u = 0.67

(a) (b) (c) (d)

Figure 3. Typical examples of EDL outputs. We set the number of classes as three, and the second
class as the correct output. For a well-calibrated model, the ideal prediction scenarios are AC (a)
and IU (b). The IC (c) and AU (d) cases represent scenarios where the model’s calibration needs
improvement to reduce uncertainty in accurate predictions and reduce overconfidence in inaccurate
predictions. (a) AC. (b) IC. (c) AU. (d) IU.

What sets our approach apart is that we propose a hybrid uncertainty calibration
(HUC) method, where we calibrate the EDL for both modalities. In this method, we aim to
achieve calibration across multiple modalities by considering the unique characteristics
and challenges associated with each modality. By combining the calibration efforts for both
modalities, we can potentially improve the overall calibration performance of the model.
The HUC method takes into account the specific requirements and considerations of each
modality to effectively calibrate the uncertainty estimates. Specifically, for text modality,
we achieve the HUC method by taking into account the logarithm constraint between the
confidence p(i)T and uncertainty u(i)

T :

LHUC_T = −ζq ∑
i∈{ŷ(i)T =y(i)T and ŷ(i)V =y(i)V }

p(i)T log
(

1 − u(i)
T

)
−

(
1 − ζq

)
∑

i∈{ŷ(i)T ̸=y(i)T or ŷ(i)V ̸=y(i)V }

(
1 − p(i)T

)
log

(
u(i)

T

)
, (10)

where p(i)T refers to the maximum class probability of an input text sample, and u(i)
T rep-

resents the associated evidential uncertainty for that particular text sample. Obviously,
for image modalities or other modalities, we can easily obtain HUC calibration methods
similar to text modalities, such as LHUC_V . Here, T and V represent the text modal and
image modal, respectively.

In the Hybrid Uncertainty Calibration (HUC) method, we can explain the basis for
the two penalties using the example of the text modality. The first penalty aims to pro-
vide low uncertainty ( u(i)

T → 0) when both modalities of the model make accurate pre-

dictions ( ŷ(i)T = y(i)T and ŷ(i)V = y(i)V , p(i)T → 1). The second penalty aims to provide high

uncertainty ( u(i)
T → 1) when at least one modality of the model makes an inaccurate pre-

diction ( ŷ(i)T ̸= y(i)T or ŷ(i)V ̸= y(i)V , p(i)T → 0). The significance of these constraints is to make
the uncertainty of both modalities decrease as much as possible.

To better balance the importance of accurate and inaccurate predictions during different
stages of model training, we introduce an annealing factor [43] ζq = ζ0 exp{−(lnζ0 /Q)q},
where ζq ∈ [ζ0, 1]. In the early stages of training, inaccurate predictions dominate, so we set
ζ0 to a small positive constant, and thus ζq is also a small value. As a result, the second
penalty for IC loss receives more punishment. As the training progresses from the initial
stage to the total number of training periods Q, the ζq factor increases exponentially from
ζ0 to 1.0. In other words, in the later stages of training, accurate predictions from both
modalities become dominant, and therefore, the first penalty for AU loss should receive a
larger punishment. This annealing factor helps to dynamically adjust the balance between
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the penalties based on the training stage, allowing for effective uncertainty calibration
across different modalities.

3.5. Uncertainty-Aware Late Fusion

Through feature extraction using a single-modality baseline model and the hybrid
uncertainty calibration in the training process, the current objective is to provide reliable fu-
sion, especially for low-quality data. As mentioned in the previous sections, the uncertainty
exhibited by different modalities’ data are inconsistent. Traditional fusion methods may
overlook the problem of widely existing modality uncertainty, thus failing to effectively
address the model’s uncertainty.

The Uncertainty-aware Late Fusion (ULF) algorithm follows the flow described in
Algorithm 1. Unlike previous methods, we combine uncertainty estimation methods to
fuse the outputs of the ENN heads of the two modalities at the decision level. Specifically,
considering that the quality of different modalities may vary, we introduce the uncertainty
estimation of each modality to guide the dynamic fusion of information from different
branches. Therefore, if both modalities make the same prediction, the decision fusion
mechanism selects that prediction as the final one. If one modality predicts neutrality, the
decision fusion mechanism selects the prediction from the other modality. Lastly, if neither
of the above cases applies, it means the predictions from the two modalities are conflicting,
i.e., one is positive and the other is negative. In this case, we utilize uncertainty estimation
to guide the fusion mechanism, selecting the prediction from the modality with lower
uncertainty as the final result.

Algorithm 1 Algorithm of Uncertainty-aware Late Fusion (ULF)

Input: The text sample Ti and the image sample Ii.
Output: The classification output Yi for sample i.

1: Obtain the Oc
(Ti) and Oc

(Ii) for the text modality and image modality classifiers accord-
ing to Equation (4);

2: Obtain the uncertainty estimates u(Ti) and u(Ii) for the text modality and image modality,
respectively, according to Equation (7);

3: if Oc
(Ti) == Oc

(Ii) then
4: Yi = Oc

(Ti)

5: else if Oc
(Ti) == “neutral” then

6: Yi = Oc
(Ii)

7: else if Oc
(Ii) == “neutral” then

8: Yi = Oc
(Ti)

9: else if u(Ti) < u(Ii) then
10: Yi = Oc

(Ti)

11: else
12: Yi = Oc

(Ii)

13: end if
14: return Yi

In Line 1, the outputs of the unimodal models are obtained based on Equation (4). In
Line 2, the uncertain outputs of each modality are obtained based on Equation (7). Lines 3 to
13 describe the execution process of the newly proposed late fusion strategy. In Line 14, the
final classification output Yi is returned. It is evident that the time complexity of Algorithm 1
primarily depends on the classification output of the unimodal models, which is related
to the model’s parameters. It is worth noting that in the process of hybrid uncertainty
calibration, we have focused on reducing the uncertainties of both modalities. Therefore,
the uncertainty-aware late fusion method is theoretically feasible, and we will validate the
effectiveness of this method in the experimental phase. Furthermore, our algorithm can
serve as a guideline for future research on fusion problems based on uncertainty estimation.
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4. Experiments
4.1. Experiment Setups
4.1.1. Datasets

We assess our model’s performance using three publicly available multimodal sen-
timent datasets: MVSA-Single, MVSA-Multiple [8] and MVSA-Single-Small [44]. MVSA-
Single comprises 5129 samples annotated by a single annotator, while MVSA-Multiple
consists of 19,600 samples annotated by three annotators. The MVSA-Single-Small dataset
is derived from the MVSA-Single dataset using the same method as [44]. Each sample
in both datasets represents a tweet that includes a text–image pair collected from Twitter.
To ensure a fair comparison, we preprocess the original MVSA datasets following the
approach used in [9]. This involves removing noisy tweets where the textual label and
visual label do not align. We randomly divide the datasets into training, development, and
test sets using an 8:1:1 split ratio. For the MVSA-Single-Small dataset, we followed the
same division strategy described in [44,45], resulting in the training set, validation set, and
test set consisting of 1555, 518 and 519 image-text pairs, respectively. Therefore, we have
obtained the sample counts for different sentiment categories in three MVSA datasets, as
shown in Table 1.

Table 1. Sentiment categories of the processed MVSA datasets.

Dataset Positive Neutral Negative Total

MVSA-Single 2683 470 1358 4511
MVSA-Multiple 11,318 4408 1298 17,024

MVSA-Single-Small 1398 470 724 2592

4.1.2. Evaluation Metrics

In our research, to comprehensively evaluate the performance of our model, we utilize
accuracy and weighted F1 as evaluation metrics, which are widely used in sentiment
analysis tasks. Weighted F1 refers to a metric that calculates the F1 score by considering
the class imbalance in the dataset [10,46]. It assigns higher importance to minority classes
to address the potential bias caused by imbalanced class distribution. Additionally, to
assess the calibration and uncertainty calibration of the model, we adopt the Expected
Uncertainty Calibration Error (UCE) as a measure, following the approach used in previ-
ous studies [27,47]. UCE is introduced to measure the miscalibration of uncertainty and
represents the expected difference between model error and uncertainty. These metrics
provide insights into the calibration and uncertainty calibration performance of our model.

UCE is a metric that quantifies the expected difference between the model’s error and
its uncertainty. UCE aims to assess how well the model’s predicted uncertainty aligns with
its actual error. The predictions of the neural network are partitioned into J bins of equal
width, where the jth =

(
j−1

J , j
J

]
represents the interval. UCE is defined by Equation 11 in

the referenced paper [47], where N represents the total number of samples, Bj represents
the index set of samples with predicted confidence in the interval jth:

UCE =
J

∑
j=1

∣∣Bj
∣∣

N
∣∣err

(
Bj
)
− uncert

(
Bj
)∣∣, (11)

where the model error and uncertainty for each bin are defined as follows:

err
(

Bj
)
=

1∣∣Bj
∣∣ ∑

i∈Bj

1(ŷi ̸= yi) and uncert
(

Bj
)
=

1∣∣Bj
∣∣ ∑

i∈Bj

ui, ui ∈ [0, 1]. (12)
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4.1.3. Implementation Details

To train our network and achieve better performance, we have chosen the Adam
optimization algorithm as our optimizer. For this sentiment analysis task, we set the optimal
learning rate for Adam to 5 × 10−5. We trained our model for 50 epochs, with a batch size
of 32. Additionally, we set the dropout rate to 0.5 and set the gradient accumulation steps
to 8. All the experiments are performed on an AI Lab online server with the following
specifications: three 24 G Nvidia GeForce RTX 3090 graphics cards with 12 vCPU Intel(R)
Xeon(R) Platinum 8255C CPU @ 2.50 GHz, 43 GB of memory, Alibaba Cloud Computing,
Hangzhou, China.

4.2. Comparison with Existing Methods
4.2.1. Comparative Methods

We compare our proposed method with different approaches, including single-modal
models, multi-modal models, and uncertainty estimation methods. For the text modality,
Bag-of-Words (BoW) [48] is a model that originated in the fields of Natural Language
Processing and Information Retrieval. BERT [36], on the other hand, is a pre-trained text
model that we have fine-tuned for our task. Regarding the image modality, ResNet [37] is a
popular and strong single-modal baseline model for image classification tasks.

Similar to [44,45], ConcatBow and ConcatBert involve concatenating the outputs of
the image-based model with the outputs of BoW and BERT, respectively. On the other
hand, Late Fusion takes the average of the predictions from the image classifier and the
BERT model. MultiSentiNet [9] is a model that extracts object and scene information from
images as visual semantic features. HSAN is indeed a model based on image captions
for multi-modal sentiment analysis [6]. Co-MN-Hop6 [7] proposes a co-memory network
that models the mutual influences between images and text iteratively. CFF-ATT [11]
introduces a multimodal cross-feature fusion model that is based on attention mechanisms.
Sentiment Multi-Layer Neural Network (Se-MLNN) [10] combines multiple visual features
and contextual text features to accurately predict overall sentiment. MLFC-SCSupCon [46]
introduces the MLFC module, which combines a convolutional neural network (CNN) and
a Transformer to address the redundancy problem and reduce irrelevant information in
each modality’s features. Moreover, MLFC-SCSupCon employs supervised contrastive
learning to enhance further its ability to learn standard sentiment features from the data.

To demonstrate the effectiveness of our uncertainty fusion method, we compare it
with several common uncertainty estimation methods. Trusted Multi-view Classification
(TMC) [49] and ETMC [50] are multi-view classification methods based on the Dempster–
Shafer Theory (DST). They provide reliable ensembles and decision interpretability. Quality-
aware Multimodal Fusion (QMF) [44] is a quality-aware multimodal fusion framework
that improves performance in terms of classification accuracy and model robustness. Fur-
thermore, we also compare our approach with various common uncertainty calibration
methods. Accuracy versus Uncertainty Calibration (AvUC) [27] enables a model to learn
not only improved accuracy but also well-calibrated uncertainties. Evidential Uncertainty
Calibration (EUC) [51] encourages the model to assign lower uncertainties to confident
predictions and higher uncertainties to less confident predictions.

4.2.2. Results and Analysis

Table 2 presents a performance comparison between our HUC-ULF model and the
baseline methods.
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Table 2. The results of different methods on MVSA-Single and MVSA-Multiple datasets. For the
data marked with an asterisk (*), it indicates that the method’s data does not explicitly state whether
weighted F1 is used or not.

Modality Model
MVSA-Single MVSA-Multiple

Acc (%) F1 (%) Acc (%) F1 (%)

Unimodal

BoW 51.00 48.13 66.00 59.88
BERT 71.11 69.70 67.59 66.24

ResNet 66.08 64.32 67.88 61.30

Multimodal

MultiSentiNet 69.84 69.84 * 68.86 68.11 *
HSAN 69.88 66.90 * 67.96 67.76 *

Co-MN-Hop6 70.51 70.01 * 68.92 68.83 *
CFF-ATT 71.44 71.06 * 69.62 69.35 *

ConcatBow 61.64 60.81 68.06 63.32
ConcatBert 68.51 67.84 69.65 65.75
Late fusion 74.28 73.16 69.29 65.81
Se-MLNN 75.33 73.76 66.35 61.89

MLFC-SCSupCon 76.44 75.61 70.53 67.97

Ours 77.61 76.59 72.06 68.83

We use weighted F1 and ACC as evaluation metrics, following [46] in MVSA-Single
and MVSA-Multiple. We made the following observations. Firstly, our model is competitive
with other strong baseline models on all three datasets. Secondly, the multimodal model
outperforms the unimodal models on all three datasets. Our model outperforms the current
state-of-the-art (SOTA) model on the MVSA-Single dataset, with an improvement of 1.17%
in ACC and 0.98% in weighted F1. Similarly, our model surpasses the SOTA model on the
MVSA-Multiple dataset, with an improvement of 1.53% in ACC and 0.86% in weighted F1.

To further demonstrate the effectiveness of our proposed model compared to other
uncertainty estimation methods, we conducted experiments on the same dataset splits
as [44], as shown in Table 3. The results show that our model outperforms the current SOTA
model on the MVSA-Single-Small dataset, with an improvement of 1.31% in ACC and 1.2%
in weighted F1. Overall, our model is comparable to the SOTA models. Specifically, the F1
values of the methods marked with an asterisk (*) should be considered for reference only.
This is because some of these methods do not provide a specific formula for calculating F1,
and others may not use the weighted F1 measure.

Table 3. For the MVSA-Single-Small dataset, the table displays the ACC and F1 performance (%) of
the designed model evaluation metrics.

Modality Model
MVSA-Single-Small

Acc (%) F1 (%)

Unimodal

BoW 66.67 64.59
BERT 74.53 73.15

ResNet 66.08 62.21

Multimodal

ConcatBow 65.32 64.32
ConcatBert 66.15 65.02
Late fusion 74.92 74.07

TMC 75.98 75.21
ETMC 76.11 75.34
QMF 78.07 76.86

Ours 79.38 78.06

We also observed in the experiments of Tables 2 and 3 that the ConcatBow and
ConcatBert fusion methods yield even lower accuracy compared to the unimodal models.
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This indicates that improper multimodal fusion methods may introduce additional noise to
the model, leading to a decrease in accuracy, whereas our model proves to be effective.

To validate the robustness of HUC, we evaluated HUC and comparative methods
based on Uncertainty Calibration Error (UCE) under Gaussian noise (for image modality)
and blank noise (for text modality), following previous works [52–55]. The experimental
results are shown in Figure 4.

Figure 4. The comparison of Expected Uncertainty Calibration Error (UCE) for three MVSA datasets
at different Gaussian noise, i.e., zero mean with variance of ε.

UCE represents the calibration error of model predictions, and a reliable and well-
calibrated model should provide lower calibration error, even with increased intensity of
data shift, although accuracy might decrease with data shift. From Figure 4, we observe
that HUC achieves lower UCE calibration error than all the methods under different noise
intensities. This indicates that HUC exhibits better generalization in the experiments.

It is worth noting that we also conducted experiments with different types of noise,
such as Salt–Pepper noise, as shown in Figure 5. The results demonstrate that HUC
outperforms the existing state-of-the-art methods (i.e., EUC and AvUC), highlighting the
superiority of our approach. Please note that when ε is 0.0, it means that no noise was
added to the test set. When ε takes values of 5.0 and 10.0, our method UCE exhibits lower
average values and biases on all three MVSA datasets compared to the contrastive methods.
This is especially evident in the low-quality MVSA-Multiple dataset, demonstrating the
superior generalization ability of our proposed method even in the presence of low-quality
multimodal data.

Figure 5. The comparison of UCE for three MVSA datasets at Salt–Pepper noise with varying noise
rate ε.
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4.3. Ablation Study

To further validate the effectiveness of the proposed ULF-HUC model, we conducted
two ablation experiments on the three MVSA datasets in this section. Firstly, we compared
different component combinations (ULF and HUC) as shown in Table 4.

Table 4. Ablation results of our ULF-HUC.

ULF LHUC
MVSA-Single MVSA-Multiple MVSA-Single-Small

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

% % 74.28 73.16 69.29 65.81 74.92 74.07

% " 75.52 74.71 70.35 66.25 75.26 74.66

" % 75.39 74.80 70.29 66.08 75.14 74.21

" " 77.61 76.59 72.06 68.83 79.38 78.06

The symbol (%) indicates that the component is not used, while (") indicates that
the component is used. When neither component is used, it represents the late fusion
method. The ablation experiments demonstrate that the classification ability of the model
improves when ULF and HUC are added separately. The model achieves the best-expected
performance when ULF and HUC are combined in their entirety. The results demonstrate
that the fusion method of ULF-HUC makes the model more valuable, and the combination
of HUC and ULF helps increase the reliability of model fusion, reduce model uncertainty,
and improve overall model performance.

Next, we conducted experiments on different noise patterns by comparing ULF-
HUC with models without HUC. The results of the ablation experiments are shown in
Table 5. Our model with HUC exhibits reduced UCE calibration error under different noise
intensities. All experimental metrics show improvement, validating the effectiveness of
the model.

Table 5. Expected Uncertainty Calibration Error (UCE) results at different noise types with varying ε.
Small UCE(%) indicates the model is better calibrated.

Noise Type Model
MVSA-Single MVSA-Multiple MVSA-Single-Small

ε = 0.0 ε = 5.0 ε = 10.0 ε = 0.0 ε = 5.0 ε = 10.0 ε = 0.0 ε = 5.0 ε = 10.0

Gaussian
ULF-HUC (w/o LHUC) 27.03 42.57 45.38 31.55 38.87 41.72 26.46 35.56 46.47

ULF-HUC (full) 16.69 31.21 35.38 19.48 21.95 26.14 24.16 32.51 42.82

Salt-Pepper
ULF-HUC (w/o LHUC) 27.03 38.74 47.62 31.55 36.71 42.09 26.46 32.71 46.42

ULF-HUC (full) 16.69 30.01 35.32 19.48 21.70 25.19 24.16 30.00 41.23

4.4. Case Study

To further demonstrate the effectiveness of our model, we provide a case study where
we compare the predicted sentiment labels based on the ULF-HUC model and the model
without HUC. As shown in Figure 6, we can observe that it is not easy to accurately analyze
the user’s sentiment tendency in sentiment analysis tasks when the sentiment polarity of
the text and image is inconsistent.

For example, in the first data example in Figure 6, the image depicts a neutral sentiment,
while the text expresses a positive sentiment. Our model with HUC can correctly fuse
the modalities and make accurate predictions. In the second data example, we find that
the image is negative while the text is neutral, and when HUC is removed, the model’s
prediction becomes incorrect. Similarly, our model handles the problem of inconsistent
sentiment polarity between the two modalities in the third data example and makes the
correct judgment.

The case study in this section demonstrates that our model is better able to calibrate
uncertainty estimation, thereby improving the accuracy of predictions.
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Image Text ULF-HUC (Full) ULF-HUC (w/o LHUC)

“Empty looks good enough
:P”

positive negative

“Why do you get upset so
much? Take the quiz: ”

negative positive

“Let’s just say the other team
got wrecked ”

negative positive

Figure 6. Examples of misclassified by ULF-HUC (w/o LHUC) and correctly classified by
ULF-HUC (full).

5. Conclusions

To address the issue of traditional multimodal sentiment analysis methods being
unable to effectively solve the uncertainty estimation problem among different modalities,
we propose an uncertain-aware late fusion method based on hybrid uncertainty calibration
(ULF-HUC). The core idea of this paper is to introduce a late fusion strategy based on
uncertainty estimation and then use hybrid uncertainty calibration to learn the sentimental
features of the two modalities. To successfully implement this core idea, we propose a series
of methods. Firstly, we conduct an in-depth analysis of the sentiment polarity distribution
in sentiment analysis datasets. Secondly, to minimize the high uncertainty caused by
inconsistent sentiment polarities in different modalities, we propose a fusion strategy
based on uncertainty estimation. Next, to achieve a balance between model accuracy and
uncertainty, we use a learning method with hybrid uncertainty calibration, effectively
reducing uncertainty when the model is accurate and reducing certainty when the model
is inaccurate. Finally, we add different types of noise (namely Gaussian noise and Salt–
Pepper noise) to verify the model’s classification and calibration capabilities. Experimental
results show that our proposed ULF-HUC method overcomes the limitations of unimodal
models and improves performance after fusion. Additionally, our method outperforms the
comparison methods in terms of classification performance and calibration performance
on three MVSA datasets, improving evaluation metrics such as accuracy, weighted F1, and
expected uncertainty calibration error (UCE).

This research work has the following limitations: (1) The study focuses on multimodal
sentiment analysis. (2) The impact of noise on the model’s performance and how to mitigate
its effects is a relevant and worthy topic for further exploration.

In the future, to address the issue of disparate learning capabilities among different
modalities, we will consider methods that are more suitable for calibrating modality
learning capabilities in existing multimodal fusion strategies. Additionally, we will explore
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new methods for uncertainty calibration and consider the challenges of accuracy and
uncertainty estimation calibration brought by more complex multimodal fusion.
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