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Abstract: While deep neural networks (DNNs) have been widely and successfully used for time
series classification (TSC) over the past decade, their vulnerability to adversarial attacks has received
little attention. Most existing attack methods focus on white-box setups, which are unrealistic as
attackers typically only have access to the model’s probability outputs. Defensive methods also
have limitations, relying primarily on adversarial retraining which degrades classification accuracy
and requires excessive training time. On top of that, we propose two new approaches in this paper:
(1) A simulated annealing-based random search attack that finds adversarial examples without
gradient estimation, searching only on the l∞-norm hypersphere of allowable perturbations.
(2) A post-processing defense technique that periodically reverses the trend of corresponding loss
values while maintaining the overall trend, using only the classifier’s confidence scores as input.
Experiments applying these methods to InceptionNet models trained on the UCR dataset benchmarks
demonstrate the effectiveness of the attack, achieving up to 100% success rates. The defense method
provided protection against up to 91.24% of attacks while preserving prediction quality. Overall,
this work addresses important gaps in adversarial TSC by introducing novel black-box attack and
lightweight defense techniques.

Keywords: time series classification; adversarial attack; adversarial attack defense

1. Introduction

Time Series Classification (TSC) has become a popular topic with the development of
sensor technology, and can have benefits in scenarios in health care, power consumption
monitoring, and to industrial observations [1,2]. In the past decade, several Deep Neural
Network (DNN)-based methods such as InceptionTime [3], ResNet [1] and TapNet [4] have
been proposed to solve the problem and achieve high performance. However, DNN is
vulnerable to adversarial attacks, where small and imperceptible perturbations added to
clean samples can mislead the classifier to give wrong predictions [5].

Adversarial attacks on DNNs are divided into white-box attacks and black-box at-
tacks based on whether the attacker obtains model information. If all the information
such as the model structure, training samples, model parameters and so on, of the vic-
tim model is revealed to the attacker, the attack approach is called a white-box attack,
while a black-box attack can only access the predicted label or the confidence scores of all
classes [6]. Besides, there are also grey-box attacks where only part of the information is
available compared to white-box attacks. Gradient-based attacks like the Fast Gradient
Sign Method (FGSM) [7], Basic Iterative Method (BIM) [8], Projected Gradient Descent
(PGD) [9], C&W(Carlini and Wagner) [10] and so on calculate the gradient of loss and craft
perturbation along the upward direction of loss function. Score-based attacks exploit the
confidence score of every class. Attackers estimate the gradient through the confidence
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scores [11–13] or randomly search perturbations to minimize the margin loss [14]. Besides,
decision-based attacks can only get the predicted label. To defend adversarial attacks,
most works train a robust model through adversarial training [9,15,16] or perform data
pre-processing [17–20], and few works have focused on dynamic inference [21,22] and
score post-processing [5].

Adversarial attacks and defense mainly focus on Image Classification and have been
studied quite thoroughly in the field. Although more and more DNN models are applied
to TSC, few researchers work on the adversarial attack of DNN models used for TSC,
and even less works have focused on corresponding defense. The adversarial attack
and corresponding defense are demonstrated in Figure 1. Papers such as [2,23] propose
gradient-based methods in white-box settings which require the gradient of the model, and
it is unrealistic because the classifier is usually a block-box to attackers. Therefore, we focus
on the score-based attack in black-box setting and corresponding defense approach, where
only predicted confidence scores are needed for both attacks and defense. Black-TreeS [13]
adopts tree search strategy to find important positions and estimate gradients at the selected
positions. TSadv [24] solves an optimization problem using the differential evolution
algorithm without estimating the gradient. In [25], an adversarial transformation network
on a distilled model is utilized to perform both black-box and white-box attacks. Existing
defense against adversarial attacks on TSC adopts adversarial training strategy which
adds adversarial examples to the training set and retrain the model [23,25,26]. However,
adversarial training leads to high training cost and accuracy reduction by enlarging the
original training set.

Figure 1. Adversarial attack and corresponding defense on TSC.

In view of these limitations, we propose square-based black-box adversarial attack
and defense approaches on TSC. In terms of attack, we focus on the black-box setting where
attackers can only access the confidence scores. Instead of estimating the gradient of the
classifier, a simulated annealing-based random search method is adopted to find the adver-
sarial examples minimizing the margin loss. In terms of defense, a post-processing-based
defense strategy is proposed. The post-processing module takes the output confidence
scores as inputs and flips the trend of the margin loss periodically. However, the global
trend remains unchanged. Overall, the contributions of this paper are mainly as follows:

• We propose a more realistic scored-based black-box attack approach on TSC through
simulated annealing-based random search algorithm without gradient estimation.
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• We propose a post-processing-based defense approach against scored-based black-box
attacks on TSC where only output confidence scores are needed. The trend of the loss
function is flipped locally while the global trend of the loss function is not changed.
Besides, the accuracy of the classifier is not affected.

• We carry out experiments on multiple time series datasets to demonstrate the effec-
tiveness of both the attack and defense approaches.

2. Materials and Methods
2.1. Background

In this paper, only a univariate time series was considered. A time series is a se-
quence of data indexed in time order, and we can describe a time series as a vector
X = [x1, x2, . . . , xt] ∈ Rt. Each time series has a label K, which indicates the class of
the time series. The goal of TSC is to get a classifier f : Rt → RK mapping input time series
x of length t to probabilities of x belonging to the K classes.

Given the confidence scores Y = f (X) ∈ RK, the predicted class K of the classifier is
K = arg max

K′=1,2,...,K
fK′(X). The target of score-based black-box adversarial attack is to find a

sample X′ within the l∞-norm ball of radius ϵ that satisfies:

arg max
K′=1,2,...,K

fK′(X′) ̸= K, ∥X′ − X∥∞ ≤ ϵ. (1)

If the predicted class K′ is determined, it is called a targeted attack, while in an untargeted
attack, the value of K′ is arbitrary except for K. In this paper, we only focus on untargeted
attack under l∞-norm restriction since the computational complexity is quite low. The target
can be transformed to an optimization problem minimizing the margin loss Lmargin:

min
X′

Lmargin( f (X′), K) = min
X′

fK(X′)−max
K′ ̸=K

fK′(X′), ∥X′ − X∥∞ ≤ ϵ, (2)

where fK′(X′) represents the confidence scores of sample X′ belonging to class K′ given by
classifier. The optimization step terminates when Lmargin drops below 0. The target of the
defense is to prevent attackers from finding qualified samples.

Simulated annealing is a probabilistic technique for approximating the global optimum
of a given function. Given the objective function g(x) and the starting point x0, we randomly
select a neighbor x1 of x0 each time. Then we calculate the values of both g(x0) and g(x1)
and the amount of change ∆g = g(x1)− g(x0). For minimization problems, we update x0
to x1 with a probability min(e−∆g/T , 1), where T is a hyperparameter called temperature
which declines with the iterations.

2.2. Methods
2.2.1. Square-Based Attack

Our attack is generally based on the random search algorithm which is a family
of numerical optimization methods that do not require the gradient of the problem.
This differentiates it from classical black-box attack methods which typically estimate
the gradient of the problem. We adopt a simulated annealing algorithm which belongs to
the random search algorithm to reach the goal in (2). Compared to the simplest random
search algorithm of hill climbing, simulated annealing is more able to jump out of the
local optimum. The main idea of our method is to sample a random noise vector δ within
the l∞-norm ball of radius ϵ and add it to current X′ to form X′′. If X′′ improves the
objective function, we update X′ to X′′, and on the contrary, we update X′ to X′′ with
certain probability.

Unlike classical random search methods that search in the l∞-norm ball of radius ϵ
for candidate vector δ, we just search on the boundary of the l∞-norm ball. In other words,
the search space satisfies ∥δ∥∞ = ϵ. Besides, we just modify a decreasing fraction p of the
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perturbation vector δ continuously. In this way, the changes of every step are localized and
maximized under the assumption that successful l∞-perturbations usually have values ±ϵ
in all the components [14].

The scheme of our algorithm is demonstrated in Algorithm 1. Before the iterations
begin, we initialize the perturbation vector δ by sampling uniformly from ±ϵ. First, the
algorithm selects the length w of the continuously changing part of δ based on a piecewise
decreasing hyperparameter p, and sample uniformly from ±ϵ for w times. Then we replace
an arbitrary continuous sequence of length w in vector δ with the sampled values, and a
new sample X′′ is derived from adding δ to X. We accept the new sample with a probability
if the value of objective function increases, and if the value drops, the new sample is
accepted. When the new sample is accepted, we update X′ to X′′. Finally, we update the
value of two hyperparameters. More specifically, the value of p reduces by half at iteration
n ∈ {10, 50, 100, 200, 500, 1000, 2000, 4000, 8000}, and the value of T changes every iteration
with the attenuation rate γ to γT.

Algorithm 1: Simulated annealing-based adversarial attack
Input : classifier f , time series X, label K, radius of l∞-norm ball ϵ, length of time

series s, fraction of change p(0 < p < 1), fraction decline function dp,
temperature T, temperature decline function dT , temperature attenuation
rate γ(0 < γ < 1) and number of iterations N

Output : adversarial example X′

1 δ← Uniform({−ϵ, ϵ})l , X′ ← X + δ, i← 1;
2 while i ≤ N and X′ is not adversarial do

/* replace any continuous sequence of length w in vector δ with
uniformly sampled values */

3 w← ⌊p ∗ l⌋, δp ← Uniform({−ϵ, ϵ})w ;
/* s is the starting index of the continuous sequence replaced */

4 s← Uniform({0, 1, . . . , l − w}) ;
5 δs:s+w ← δp ;
6 X′′ ← X + δ ;

/* simulated annealing part */
7 ∆L← Lmargin( f (X′′), K)− Lmargin( f (X′), K) ;

8 if ∆L < 0 or Uniform([0, 1]) < e
−∆L

T then
9 X′ ← X′′

10 end
11 i← i + 1, p← dp(p), T ← dT(T) = γT ;
12 end

2.2.2. Post-Processing-Based Defense

Traditional defense methods like adversarial training retrain the model with adver-
sarial examples, which affects the accuracy of the classifier and suffers from high training
cost. Our defense strategy encapsulates the defense function into a post-processing module
independent from the classifier. It means we only slightly adjust the output confidence
scores while the accuracy of the classifier is not affected. Besides, since the post-processing
module is independent from the classifier, the training steps do not involve parameters of
the classifier. Therefore, the training cost is low.

Black-box attacks iterate along the decreasing direction of the objective function
no matter whether the attack is based on gradient estimation or random search.
Therefore, the main idea of our approach is to modify the confidence scores which flips
the trend of the objective function. Along the direction of adversarial attack, the value of
the objective function increases. As a result, the attacker cannot achieve the adversarial
examples. However, our aim is to mislead the attackers instead of the users. In order to
minimize the difference of confidence scores, the global trend of the objective function
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should be preserved. Therefore, we flip the trend piecewise and periodically to get adver-
sarial examples.

Lmargin in (2) is adopted as the objective function in this paper, and for each confidence
score vector and label predicted by the classifier f , the value of loss is Lmargin( f (X), K),
denoted as ls. Based on Chain rule, the trend of

ld = β− α ∗ ls, β ∈ [0, 1], α > 0 (3)

is opposite to the trend of ls. Let P be the predicted confidence score and ls = g(P).
The derivative of ls can be expressed as g′(P), and the derivative of ld is −α ∗ g′(P) based
on Chain rule. Under the condition that α > 0, the derivative of ld has the opposite sign of
the derivative of ls. Therefore, when proper values are assigned to α and β, we can obtain
the constructed confidence scores of ld through gradient descent. We divide the value of
ls ranging from 0 to 1 into intervals of length t, and the interval ranges from ⌊ls/t⌋ ∗ t to
(⌊ls/t⌋+ 1) ∗ t. Let the midpoint of the interval be lm, and it can be expressed as

lm = (⌊ls/t⌋+ 1/2) ∗ t. (4)

The value of lm − ls decreases from t/2 to −t/2 as ls and increases from n ∗ t to
(n + 1) ∗ t, but the value ranges are the same across different intervals. It does not meet the
requirement that the global trend of the objective function is preserved. The trend of lm − ls
is opposite to that of ls and adding a constant term to lm − ls does not change the property
within the interval. To preserve the global trend, the constant term should increase as the
value of ls increase to another interval, and lm satisfies the requirement. Thus, we can add
lm to α ∗ (lm − ls), constructing

ld = lm − α ∗ (ls − lm), (5)

and it is in accordance with (3) with β = (1 + α) ∗ lm. If α = 1, ld and ls have the same
domain, and the value of ld increases as ls increases to a value in the next interval.

To mislead attackers, the margin loss Lmargin calculated from the adjusted confi-
dence scores should be close to ld. Besides, to reserve the prediction confidence, the
change of the largest probability should be minimized. Thus, the target is to solve the
optimization problem:

min
P′
|Lmargin(softmax(P′), K)− ld|+ µ · |softmaxK(P′)− PK|, (6)

where P and P′ are the original and perturbed confidence scores and µ is the hyperparame-
ter that balance between the two objectives.

The scheme of our algorithm is demonstrated in Algorithm 2. First, we calculate
the margin loss of the predicted confidence scores ls, and we can calculate the constant
term lm along with the constructed loss ld based on ls. We then optimize the modified
confidence score vector with two objectives: (1) minimizing the difference between the
margin loss of the constructed confidence score vector and the constructed loss, and
(2) minimizing the change of the highest probability value. The algorithm is mainly
designed to defend the attack method proposed in previous sections. Since the attack
method is also a black-box to the defense method where the defense method is agnostic to
attack details, it can also defend other score-based black-box attacks. Besides, a confidence
score vector P′ whose margin loss is close to the value of ld is generated given the original
margin loss ls. Moreover, the highest probability value of P′ is close to that of the original
confidence score vector P.

It is easy to prove the effectiveness of our approach. Let A denote a point on the curve
of ld in Figure 2. The attacker finds another point B in the neighbourhood of A, so B either
locates in the same interval of A or the adjacent intervals. If B locates in the same interval of
A, the attacker accepts B when B is on A’s left side (constructed margin loss decreases). If B
is located in another interval, the attacker accepts B if B falls within the interval to the right
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of A’s interval. Thus, the attack either succeeds when jumping out of the rightmost interval
or fails when converging to the leftmost point of an interval. Actually, it is difficult to jump
into the right interval, let alone the rightmost one, especially when the perturbation is small
and the period is large.

Algorithm 2: Post-processing-based adversarial attack defense
Input : confidence scores predicted by classifier P, label K, number of iterations

N and hyperparameters period t, α(α > 0) and µ(µ > 0)
Output : modified confidence score vector P′

1 ls ← Lmargin(P, K);
/* lm is the midpoint of the interval */

2 lm = (⌊ls/t⌋+ 1/2) ∗ t;
/* ld is the constructed loss */

3 ld = lm − α ∗ (ls − lm);
4 P′ ← P;
5 optimize P′ with loss function
|Lmargin(softmax(P′), K)− ld|+ µ · |softmaxK(P′)− PK| for N epochs

Figure 2. The original margin loss ls and constructed margin loss ld when t = 0.2, α = 1. The trends
of ls and ld are the same globally, but they are opposite locally.

2.3. Experiments

We select InceptionTime as the TSC classifier, and conduct experiments on four
UCR datasets: UWaveGestureLibraryAll, OSU Leaf, ECG5000 and ChlorineConcentration.
We evaluate the effectiveness of our attack and defense methods with difference settings of
the ϵ value. The evaluation matrices are
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ASR = NAS/NTS,

DSR = NDS/NAS,

AQT = ∑
x∈AS

QTx/NAS,

MQT = median(QT),

(7)

where ASR is the average success rate, NAS is the number of adversarial examples, NTS
is the number of all samples, NDS is the number of defended adversarial examples, AS is
the adversarial example set, QTx is the query times of sample x until the attack succeeds,
AQT is the number of average query times of successful adversarial attacks and MQT is
the number of median query times of successful adversarial attacks.

The parameter setting of InceptionTime is kernel size 40, number of filters 32, bottle-
neck size 32 and depth 6. We evaluate the performance of attack and defense approaches
with ϵ ranging in {0.05, 0.1, 0.15} to observe the impact of perturbation intensity. The
initial value of the fraction of change p is 0.05, and the initial value of the temperature T is
100 with decay rate 0.99. In terms of defense, we set the period t to 0.05, hyperparameter α
to 1 and hyperparameter µ to 1, and the objective function is optimized for 250 epochs. All
the experiments are conducted on a machine with 9 NVIDIA Tesla V100 GPUs with 32 GBs
memory(only one GPU is needed for each experiment, and the GPU utilization approaches
100%). We exploit the sktime package to build the DNN model and implement the attack
and defense approaches through TensorFlow. The version of core software is python 3.10.4,
sktime 0.24.1, tensorflow 2.14.0 and numpy 1.26.2.

3. Results

Table 1 shows the classification accuracy of the TSC classifier and the number of classes
of the four datasets: UWaveGestureLibraryAll, OSU Leaf, ECG5000 and ChlorineConcen-
tration. The accuracy of the TSC classifier InceptionTime exceeds 85% for all four datasets
with more than two classes.

Table 1. TSC classifier accuracy and number of classes of different datasets.

Dataset TSC Classifier Accuracy Number of Classes

UWaveGestureLibraryAll 95.20% 8
OSU Leaf 94.21% 6
ECG5000 94.09% 5

ChlorineConcentration 87.66% 3

Figure 3 shows the ASR with ϵ ranging in {0.05, 0.1, 0.15} over successive iterations,
and (a–d) correspond to the results of four UCR datasets. It is clear that as the ϵ increases,
the ASR also increases accordingly. The ASR from the highest to the lowest is: ChlorineCon-
centration, UWaveGestureLibraryAll, OSU Leaf and ECG5000.

Figure 4 shows the AQT with ϵ ranging in {0.05, 0.1, 0.15} over successive iterations,
and (a-d) correspond to the results of four UCR datasets.

Figure 5 shows the DSR with ϵ ranging in {0.05, 0.1, 0.15} of the four datasets: UWaveG-
estureLibraryAll, OSU Leaf, ECG5000 and ChlorineConcentration. It is clear that as the
value of ϵ increases, the DSR decreases accordingly.

Table 2 shows the performance of our proposed attack and defense methods across
four different datasets under varying values of ϵ, and the table reports the results on four
main evaluation metrics: ASR, AQT, MQT and DSR.

We compare the ASR of our approach with existing adversarial attack methods on
UWave dataset setting ϵ to 0.3, and the results are shown in Table 3.
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(a) (b)

(c) (d)

Figure 3. ASR curve of different ϵ values. Each figure shows the result of one dataset. (a) UWaveGes-
tureLibraryAll; (b) OSU Leaf; (c) ECG5000; (d) ChlorineConcentration.

(a) (b)

(c) (d)

Figure 4. AQT curve of different ϵ values. Each figure shows the result of one dataset. (a) UWaveGes-
tureLibraryAll; (b) OSU Leaf; (c) ECG5000; (d) ChlorineConcentration.
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Figure 5. DSR curve of different ϵ values in four datasets: UWaveGestureLibraryAll, OSU Leaf,
ECG5000 and ChlorineConcentration.

Table 2. ASR, AQT and DSR of different datasets with different ϵ values.

Dataset ϵ Value ASR AQT MQT DSR

UWaveGestureLibraryAll
0.05 59.45% 781.03 403 79.46%
0.1 94.96% 277.48 17 47.94%
0.15 99.91% 112.20 1 24.17%

OSU Leaf
0.05 40.27% 429.33 187 91.24%
0.1 82.74% 192.35 84 77.54%
0.15 93.36% 115.80 26 57.82%

ECG5000
0.05 33.75% 80.34 45 84.15%
0.1 38.36% 32.45 19 70.44%
0.15 51.41% 118.01 17 62.93%

ChlorineConcentration
0.05 98.28% 60.70 48 70.02%
0.1 99.13% 23.94 13 40.65%
0.15 99.55% 15.68 4 26.11%

Table 3. Comparison of ASR with existing adversarial attack methods on UWave dataset.

Matrix
Dataset

FGSM PGD NES [11] BlackTreeS [13] Our Approach

ASR 43.2% 58.0% 17.1% 100% 100% *

* Our attack achieves the ADR of 100% when ϵ = 0.2, and the ADR drops to 97.57% when ϵ = 0.3.

4. Discussion

If an attack method is able to achieve the same ASR against a more robust model,
then this indicates a higher level of effectiveness of the attack method. If a classifier
achieves high accuracy on its training and validation data, this can be an indication that
it is more robust when facing adversarial attacks. The reason is that a model that learns
the underlying patterns in the data very well, resulting in strong predictive performance,
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has gained a deeper understanding of the legitimate sample space. This makes it less
susceptible to being fooled by small perturbed variations that move examples outside that
natural data distribution. Therefore, we select datasets where the classifier achieves high
validation accuracy after training. The robustness of a classifier depends not only on the
accuracy achieved through training, as aforementioned, but also on the number of training
samples used. Insufficient samples can hinder a model’s ability to fully learn intricacies
of different classes. On top of that, we select the aforementioned four datasets from
UCR archive.

In terms of model selection, a classifier with higher accuracy indicates that an at-
tack would be more effective at reaching the same ASR. Therefore, we choose the state-
of-the-art InceptionNet model which achieves high classification accuracy as the classi-
fier. Evaluation of our approaches using other classifiers can be left for future research.
We choose the margin loss as the loss function because it directly optimizes the objective,
and papers on score-based black-box attacks in image classification domain also adopt this
loss function. We set the hyperparameter λ to 1, which means the two objectives are given
equal importance. Additionally, the first term represents the difference in margin loss and
the second term represents the difference in probability. Both terms have the same value
domain, so they have similar impact on the objective function. A detailed comparison of
different λ values can be left for future research. The number of optimization epochs is
determined during the optimization process, and it should be dynamically adjusted for
different datasets according to how quickly the optimization objective converges. However,
a large number of epochs does not lead to overfitting, since this is only an optimization
problem rather than one of model fitting.

From Figure 3, we can see that as the value of ϵ increases, representing a larger
allowable perturbation, the ASR also increases as expected. Intuitively, a larger value of
ϵ means it is easier for the adversarial example to cross decision boundaries and fool the
classifier. Besides, larger ϵ values imply a higher starting speed due to a more relaxed
constraint, but it does not necessarily translate to faster convergence. That’s because a larger
value of ϵ corresponds to a larger search space within which the adversarial perturbation
can vary. As the footnote to Table 3 indicates, even though a larger ϵ value of 0.3 allows
for greater flexibility, our attack method achieves better results with the ϵ value of 0.2 on
that dataset. This suggests that while a bigger ϵ value opens up a wider search space,
it also increases the chance of getting stuck in local minima when optimizing for the
attack objective.

Existing black-box attacks on TSC have not focused on the query times of the classifier.
However, query efficiency is an important metric to evaluate attack performance, as it
measures how fast adversarial examples can be generated. Figure 4 shows AQT needed
to find successful adversarial examples for different ϵ values. We can see that generally,
a larger ϵ value requires fewer queries as the larger value of ϵ means attacks are easier
to succeed. However, Figure 4c is an exception because there is a special sample, but the
finding can be justified if we observe the MQT. As the value of ϵ increases, allowing larger
perturbations, the AQT converges more slowly due to the expanded change of jumping
out of local minima. Besides, the increasing rate of AQT decreases with larger ϵ values,
because fewer adversarial examples can be discovered in the same time period given the
larger search space, which decreases the dividend when calculating the AQT.

Table 3 shows that the proposed approach achieves a higher ASR than most existing
time series attack methods, demonstrating better attack performance. Critically, it reaches
the optimal ASR while using a smaller ϵ value than comparative methods. In addition,
the number of queries needed is comparatively low for the proposed approach. Together,
achieving top ASR with less perturbation severity (smaller ϵ values) and faster optimization
(lower queries) suggests the proposed approach introduces a better balance of attack
strength and query efficiency. Therefore, the low query counts demonstrated by the
proposed method can be used as a new performance baseline when evaluating time series
attack algorithms.
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Figure 5 shows that the DSR decreases as the value of ϵ increases because larger
ϵ values increases the defense difficulty. For the UWaveGestureLibraryAll and Chlo-
rineConcentration datasets with the ϵ value of 0.15, the ASR is almost 100% while the DSR
remains very low. This suggests that when some perturbation vectors are initialized under
this large ϵ value, they immediately form adversarial examples. The MQT is also very
small in this setting, with over half of adversarial samples constructed within 4 queries or
less. This low MQT provides further evidence that the large ϵ value of 0.15 is sufficient for
the perturbation to exceed the decision boundary in the first attempt for many samples,
resulting in the very high ASR and confirming our hypothesis.

Compared to existing TSC defense methods that use adversarial training, our defense
method has two advantages. First, adversarial training adds adversarial examples to
the training set, which decreases accuracy of clean samples, especially as the number of
samples increases. Second, enlarging the training set increases training costs such as time
and resource consumption. However, adversarial training enhances the classifier, while our
defense method leaves the classifier unchanged. Thus, adversarial training can distinguish
“immediate” adversarial samples generated right after attack begins.

5. Future Research

Some potential directions for future research include:

• Exploring additional random search methods like genetic algorithms as alternatives to
simulated annealing for perturbation optimization, and omparing the attack success
rates of different methods and analyze their relative advantages and disadvantages.

• The current defense approach has a limitation in that it is not effective against ad-
versarial examples where the starting perturbation already exceeds the range of the
constructed loss curve. A potential area of improvement is developing a supplemen-
tary post-processing module capable of handling such “immediate” adversarial inputs,
which is challenging given only access to confidence scores.

Overall, systematically comparing various random search attacks and exploring com-
plementary defense mechanisms are able to handle extreme initial perturbations and could
help strengthen adversarial machine learning techniques for both attack and defense.

6. Conclusions

In this paper, we propose a square-based black-box adversarial attack method along
with a corresponding post-processing-based defense approach. We perform an attack using
simulated annealing-based random search algorithm to find the adversarial examples on
the l∞-norm hypersphere. The defense is based on a post-processing module only requiring
the confidence scores predicted by a classifier, and the module flips the loss trend locally
without affecting the global trend. We conduct experiments on four UCR datasets training
with InceptionNet, and both attack and defense approaches achieve high performance.
Performance of the proposed attack is also compared to existing adversarial attacks. Results
show it achieves the best ASR while requiring few queries, indicating better efficiency.
This optimal combination of high ASR and low query count can potentially be used as a new
benchmark for evaluation of future time series adversarial attack methods. Additionally,
this defense approach can be applied to strengthen TSC models designed for real-world
scenarios such as ECG-based disease detection and industrial security monitoring.
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