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Abstract: The incorrect operation of protective relays and circuit breakers will significantly compro-
mise the safety and stability of power systems. To promptly detect the faults of the relay protection
system and the circuit breakers in time and to ensure the operational reliability of these protective
devices, this paper proposes a fault tracing method for a relay protection system–circuit breaker
based on improved Random Forest. Firstly, an analysis is conducted to identify the causes of incorrect
operation of the protective relay and the circuit breaker. The fault types and corresponding alarm
messages for the relay protection system and the circuit breaker are categorized, and the alarm
feature set is constructed. Then, the Random Forest is improved and trained to develop the fault
tracking model. Finally, the operation evaluation process is developed to determine the incorrect
operations of the protective relay and the circuit breaker, and the fault tracking model and fault
tracking process are then employed to locate the faults of the relay protection system and the circuit
breaker. The experimental results demonstrate the method’s capability to accurately track faults in
the relay protection system and the circuit breaker, thereby assisting operation and maintenance
personnel in troubleshooting and highlighting its promising practical potential.

Keywords: relay protection system; circuit breaker; improved Random Forest; fault tracing

1. Introduction

The continuous development of power systems and the incremental improvement of
infrastructure have significantly increased the requirements for reliability and maintenance
in order to guarantee the uninterrupted and dependable operation of power systems [1].
Protective relays (PRs) and circuit breakers (CBs) serve as control and protection equipment
in power systems. They detect faults or exceptions in the power grid and promptly isolate
faulty equipment to minimize the impact of the fault, thereby reducing the power grid
losses [2]. Thus, the reliable operation of the relay protection system and the CB is crucial
for maintaining a safe and stable power system. When the PR or CB fails to operate or
operates incorrectly, it is an important research topic to accurately diagnose the faults in
the relay protection system and the CB.

The increasing prevalence and integration of the Internet of Things (IoT), blockchain,
and other computer and communication technologies have accelerated the growth of smart
grids and smart substations within the power system [3,4]. The secondary system has
realized intelligence, informatization, networking, and communication standardization,
which provides sufficient data support for fault diagnosis and location in the intelligent
substation [5]. However, informatization and networking also lead to the diversity and
complexity of alarm messages. Massive alarm messages reduce the efficiency of diagnosing
the incorrect operation of PRs or CBs and locating faulty secondary devices [6]. Data
mining techniques such as artificial neural networks and machine learning are employed
in power system fault diagnosis and localization to effectively leverage alarm information
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and enhance fault detection efficiency and accuracy [7]. A fault tracking architecture based
on big data technology is proposed for smart substations [6]. The framework includes
a big data platform that enables the data mining of various alarm messages, including
device alarms, generic object-oriented substation event (GOOSE) alarms, sampled value
(SV) alarms, and device self-checking alarms in the smart substation. This platform elim-
inates the message barriers between the safety isolation zone and multiple supervisory
systems. In addition, fault diagnosis methods and handling methods have been proposed
for merger units, intelligent terminals, and fiber optic links in the process layer of smart
substations [8]. The FP-growth algorithm is applied using the Hadoop framework and
MapReduce model to discover frequent items and strong correlations among anomaly
signals, aiming to identify potential defects [9]. Previous studies [10–12] have conducted
a correlation analysis between secondary device faults and alarm messages, enabling the
matching of faulty devices and fault causes through the discovery of correlation rules
between fault messages and faulty devices. However, the current matching approach faces
challenges in handling uncertainty and incomplete messages, and it also lacks generaliza-
tion. The long short-term memory (LSTM) network has been employed to automatically
diagnosis faults during the relay protection test [13]. However, deep learning methods
are less explanatory and have high requirements for training samples, which makes it
challenging to obtain perfect samples.

Communication failures may occur in the secondary circuit due to transmission delays,
network attacks, and other interferences, subsequently affecting the normal operation of
the secondary equipment or potentially causing maloperation [3,14]. Moreover, communi-
cation among secondary devices occurs through the network, leading to a loss of one-to-one
correspondence in signal transmission between equipment. Consequently, issues such as
hidden logic circuits and challenging communication troubleshooting arise. In [15], a com-
munication network model is proposed to establish a correlation between communication
links and physical aspects among secondary devices. This model then identifies communi-
cation faults by analyzing message transmission paths. Moreover, a communication fault
diagnosis model based on a deep confidence network is developed in [16], demonstrating
high accuracy and fault tolerance when dealing with untrustworthy messages. In [17], a
fault localization method for communication networks is proposed. This method utilizes
deep neural networks and effectively performs localization, even when multiple faults
and untrustworthy alarms are present. Matrix modeling is used in [18] to construct the
connectivity state matrix and logical node model of the secondary system. The matrix
algorithm is also integrated with a back-propagation neural network to propose a fault
localization method for the secondary system. The secondary circuit topology is converted
into fault map data, and the fault location portability of the secondary circuit is improved
by training a graph neural network as a fault location model [19].

Contrary to the fault diagnosis and fault localization mentioned earlier, fault tracing
refers to the process of finding the cause of incorrect operations in PRs and CBs using
alarm messages in the substation [6,20]. A fault tracing method is proposed utilizing
the information difference graph model [21]. By marking the components, this technique
enables the tracing of interaction relationships within the graph model. Thus, it effectively
overcomes the limitations of conventional fault tracing methods that depend heavily
on expert experience and logical topological relations. The Bayesian suspected degree,
as proposed in [22], addresses the issue of missed judgments caused by lost alarms by
calculating the probability of faults in PRs and CBs. The method proposed in [23] offers
comprehensive and intuitive state information, the timely identification of hidden system
hazards, and accurate fault causality tracing. It enhances the operational state monitoring
and risk control capabilities of communication networks. The Recurrent Neural Network
(RNN) has been employed to localize secondary device faults by extracting the temporal
features of the alarm messages [24]. This method does not consider the effect of timing
disorder in alarm messages on their accuracy. The Decision Tree and Gradient Boosting



Electronics 2024, 13, 582 3 of 37

Decision Tree have been proposed in [25,26], respectively, as fault tracing models to trace
the causes of device faults of the relay protection system.

The CB and relay protection system (composed of a merging unit, protective relay,
and intelligent terminal) belong to the primary side and secondary side of the power
system, respectively. However, their communication connection is established through
optical fiber. During the fault isolation, the relay protection system detects faults and issues
trip commands, while the CB acts as an actuator and trips upon receiving the tripping
command. Therefore, the causes of PR and CB rejections or maloperations include device
faults in the PR and CB, device faults in other secondary devices in the relay protection
system, and communication faults between these devices. However, most existing methods
study the fault diagnosis of CBs or relay protection systems separately, without considering
the interactions between the relay protection system and the corresponding CB. Moreover,
they fail to comprehensively diagnose the device and communication faults of the relay
protection system and CB and explore the reasons for the incorrect operation of the PR
and CB.

To ensure the operational reliability of the PR and CB, and considering the correlation
between the relay protection system and the CB in terms of topology and action logic, this
paper proposes a fault tracking method for the relay protection system and CB (denoted as
the RPS-CB). This paper first analyzes the causes of incorrect operations in PRs and CBs.
It then establishes a correspondence between fault types and alarm messages in the relay
protection system and the CB to create an alarm feature set. Subsequently, an improved
Random Forest model is developed by integrating the Re-Relief F algorithm and a weighted
voting strategy. The improved Random Forest model is trained for fault tracking. Finally,
the operation evaluation process is utilized to identify PRs and CBs that were operated
incorrectly. A fault tracing process based on the improved Random Forests is proposed to
determine fault types in relay protection systems and CBs.

This paper is structured as follows: Section 2 describes the fault types and alarm
messages of relay protection systems and CBs; Section 3 introduces the fault tracing
model and fault tracing process based on improved Random Forest; Section 4 presents the
algorithm validation and case study; and Section 5 concludes.

2. Fault Types and Alarm Feature Sets for the Relay Protection System–Circuit Breaker

To facilitate fault tracking for the RPS-CB, a comprehensive analysis of the root causes
behind the erroneous functioning of both the PR and CB components is imperative. Sub-
sequently, based on the causes above, a systematic categorization of the corresponding
relationships between fault types and alarm messages about the RPS-CB can be established.
Lastly, a specialized representation method for effectively capturing and managing alarm
messages is devised to facilitate fault tracking procedures.

2.1. Reasons for Incorrect Operation of Protective Relays and Circuit Breakers

The PR receives the SV message and compares it with the protection setting value
to determine the fault and issue a trip signal. The transmission path for the SV message
is as follows: electronic transformer → merging unit → SV message → protective relay.
Therefore, besides the faults of the PR, the causes of PR rejection also include exceptions in
SV messages, errors in protection setting value configuration, network errors, and faults in
other related secondary devices. In contrast to the PR rejection, PR maloperation refers to
the abnormal PR function, which is mainly caused by abnormal SV sampling messages,
incorrect protection setting values, and algorithm logic errors. The main reasons for PR
rejection and malfunction are illustrated in Figure 1.
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The CB trips upon receiving the GOOSE message sent by the PR; the transmission path
of the GOOSE message is as follows: protective relay → GOOSE message → intelligent
terminal → circuit breaker. The operation state of the CB can be affected not only by the
rejection and maloperation of the PR but also by CB faults, abnormal GOOSE messages,
and communication faults. These factors contribute to the CB rejection and maloperation,
as illustrated in Figure 2.
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The analysis above reveals that the incorrect operation of the PR and CB can be
attributed to faults within the relay protection system and the CB. Specifically, CB rejection
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and maloperation are directly linked to PR rejection and maloperation. This paper focuses
on developing a fault tracking model and process for the RPS-CB (relay protection system
and corresponding CB), aiming to investigate the relationship between system faults and
the incorrect operation of the PR and CB.

2.2. Fault Types and Corresponding Alarm Messages of the RPS-CB

The fault tracing object mainly contains merging units, PRs, intelligent terminals, CBs,
and the communication links between these devices. When the PR and CB fail to operate
normally, corresponding alarm messages are issued by these devices to facilitate mainte-
nance and repair. To achieve the fault tracking of the PR’s and CB’s incorrect operation, the
faults of the protection relay and circuit breaker system (PR and CB) have been classified as
device faults and communication faults, after consulting the literature [27,28] and relevant
industry technical specifications. The fault types and their corresponding alarm messages
are presented in Tables 1 and 2.

Table 1. Device fault types and corresponding alarm messages.

Devices Alarm Messages Fault Types Number

Merging unit

Merging unit self-check alarm, sampling anomaly, merging
unit synchronization anomaly, SV total alarm of the

merging unit/PR, PR blocking, etc.
DSP module fault 000001

Merging unit self-check alarm, protection SV total alarm,
invalid protection SV data, protection blocking, etc. AC input module fault 000010

Merging unit self-check exception/alarm, input/output
self-check circuit error, GOOSE/SV total alarm, GOOSE/SV
communication interruption, chain break occurs when the

merging unit receives GOOSE from measurement and
control device, etc.

Input/output
module fault 000011

Power fault alarm of the merging unit Power module fault 000100

Abnormal synchronization of the merging unit,
synchronization signal interruption of the merging unit,

protection blocking, etc.
Sampling out-of-step 000101

Merging unit GOOSE/SV configuration error, input/output
configuration error, GOOSE/SV receiving plate error, etc. Configuration error 000110

Protective relay

PR self-check alarm, CPU anomaly, fixed value verification
error, device parameter sequence error, FLASH self-check

anomaly, etc.

CPU module
error/exception 000111

PR self-check alarm, SV total alarm, protection SV sampling
exception, protection blocking, etc. SV module fault 001000

PR self-check alarm, GOOSE total alarm, intelligent
terminal GOOSE total alarm, reclosing lockout, etc. GOOSE module fault 001001

The power fault alarm of the protective relay Power fault of the
power module 001010

Input/output communication interruption of the PR, the
transmission state has not returned, input circuit exception,

input circuit self-check error, device locking, etc.
Longitudinal channel fault 001011

Inconsistent protection setting value, self-checking error of
setting value, inconsistent panel configuration, inconsistent

configuration file, SV/GOOSE configuration error, etc.
Configuration error 001100
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Table 1. Cont.

Devices Alarm Messages Fault Types Number

Intelligent terminal

Intelligent terminal self-check alarm, memory error, check
error, GOOSE double receiving inconsistency, etc. CPU module fault 001101

Intelligent terminal self-check alarm, GOOSE total alarm,
GOOSE/SV communication interruption, chain break

occurs when the intelligent terminal receives GOOSE from
merging unit, etc.

I/O module fault 001110

The power fault alarm of the intelligent terminal Power fault of the
power module 001111

Intelligent terminal self-check alarm, GOOSE configuration
error, input configuration error, GOOSE receiving platen

error, etc.
Configuration error 010000

Circuit breaker

Control circuit disconnection, control power fault Control loop fault 010001

Abnormal voltage of the closing coil, too little current of the
closing coil, too short a current time of the closing coil,

excessive current of the closing coils, excessive current time
of the opening and closing coils

Closing coil fault 010010

Loop locking of the switching circuit, abnormal total travel,
the frequent start of the energy storage motor, long pressing

time of the energy storage motor, wellhead pressure
exception, energy storage anomaly of the spring

Operating
mechanism fault 010011

Long opening time of the contact, non-simultaneous
movement of the contact, excessive shell temperature

Transmission
mechanism fault 010100

Excessive moisture content, SF6 gas leakage Contact fault 010101

Switch

Switch communication interruption, data non-renovation,
IED port communication fault, port indicator lights off, etc. Communication link fault 010110

Switch link interruption, port forwarding message
inconsistency, broadcast storm, etc. Port fault 010111

StNum/SqNum jumping of GOOSE message, SV message
counter jumping, etc.

Communication
packet loss 011000

The power fault alarm of the switch Power fault 011001

Table 2. Communication fault types and corresponding alarm messages.

Communication Link Alarm Messages Fault Types Number

Merging unit–
Protective relay

SV total alarm, SV sampling
exception, input circuit

exception, etc.

Merging unit device
exception, self-test

exception/alarms, etc.

Merging unit output
port fault 011010

PR device exception,
self-check alarm, input
circuit exception, input

circuit self-check error, etc.

Protective relay input
port fault 011011

- Communication optical
fiber fault 011100
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Table 2. Cont.

Communication Link Alarm Messages Fault Types Number

Protective relay–
Intelligent terminal

Intelligent terminal GOOSE
communication interruption,

no input message, input
circuit exception, input

circuit self-check error, etc.

PR output communication
interruption, GOOSE

communication interruption,
self-check

exception/alarm, etc.

Protective relay output
port fault 011101

Intelligent terminal device
exception, self-check
exception/alarm, etc.

Intelligent terminal
input port fault 011110

- Communication optical
fiber fault 011111

Bus merging unit–
Line merging unit

Merging unit input circuit
self-check error, input

exception, self-check alarm,
SV total alarm,

Invalid/abnormal SV data,
SV communication

interruption, etc.

Bus merging unit device
exception, self-check
exception/alarm, etc.

Bus merging unit
output port fault 100000

Line merging unit device
exception, self-check
exception/alarm, etc.

Line merging unit
input port fault 100001

- Communication optical
fiber fault 100010

Intelligent terminal–
Switch

Intelligent terminal exception, output test error, circuit
breaker no action, intelligent terminal feedback

Intelligent terminal
output port fault 100011

2.3. Alarm Feature Set

To make the expression of the alarm messages and the training of the fault tracking
model more convenient, the alarm feature set is constructed according to the fault types
and alarm messages in Tables 1 and 2, as shown in Equation (1).

Xi = {XSVi, XGOOSEi, XSCi, XCOMi} (1)

where Xi denotes the ith alarm feature set, which contains the SV alarm subset XSVi, the
GOOSE alarm subset XGOOSEi, the device exception alarm subset XSCi, and the communi-
cation alarm subset XCOMi.

The SV alarm subset XSVi reflects the sampling state of the merging unit and PR, as
shown in Equation (2). 

XSVi ={XSV_MUi, XSV_PRi}
XSV_MUi ={SMA, SSA, SSE, SCE, . . .}
XSV_PRi ={SMA, SSA, SEA, SCE, . . .}

(2)

where XSV_MUi and XSV_PRi are the sampling alarm subsets of the merging unit and protec-
tive relay, including SV total alarm SMA, abnormal sampling alarm SSA, synchronization
exception alarm SEA, sampling configuration error SCE, etc.

The GOOSE alarm subset XGOOSEi reflects the switching quantity status of the merging
unit, PR, and intelligent terminal, as shown in Equation (3).

XGOOSEi ={XGOOSE_MUi, XGOOSE_PRi, XGOOSE_ITi}
XGOOSE_MUi ={GMA, GDE, GBC, . . .}
XGOOSE_PRi ={GMA, GDE, GBC, . . .}
XGOOSE_ITi ={GMA, GDE, GBC, . . .}

(3)
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where XGOOSE_MUi, XGOOSE_PRi, and XGOOSE_ITi are the subsets of the switching alarm
features of the merging unit, PR, and intelligent terminal, respectively, which include
GOOSE total alarm GMA, GOOSE data exception GDE, GOOSE interruption GBC, etc.

The device exception alarm subset XSCi reflects the operation status of the merging
unit, PR, intelligent terminal, and CB, as shown in Equation (4).

XSCi ={XSC_MUi, XSC_PRi, XSC_ITi, XSC_CBi, XSC_EXi}
XSC_MUi ={SCAN, SPF, SDL, . . .}
XSC_PRi ={SCAN, SPF, SDL, . . .}
XSC_ITi ={SCAN, SPF, SDL, . . .}

XSC_CBi ={SCL, SSC, SSL, . . .}
XSC_EXi ={SCAN, SPF, SBC, . . .}

(4)

where XSC_MUi, XSC_PRi, XSC_ITi, XSC_CBi, and XSC_EXi are the subsets of the device self-test
alarm features of the merging unit, PR, intelligent terminal, CB, and switch, respectively,
which include device self-test SCAN, power fault alarm SPF, device lockout SDL, etc. and
CB control loop disconnection SCL, closing coil voltage exception SSC, closing coil loop
blocking SSL, and switch communication interruption SBC, etc.

The communication exception alarm subset XCOMi reflects the communication status
of the merging unit, protective relay, intelligent terminal, and circuit breaker, as shown in
Equation (5). 

XCOMi ={XCOM_MUi, XCOM_PRi, XCOM_ITi, XCOM_EXi}
XCOM_MUi ={CSV, CSOI, CSOI, CSIE, . . .}
XCOM_PRi ={CSV, CGOOSE, CSOI, CSIE, . . .}
XCOM_ITi ={CGOOSE, CSOI, CSIE, . . .}
XCOM_EXi ={CBC, CREF, CIED, . . .}

(5)

where XCOM_MUi, XCOMPRi, XCOM_ITi, and XCOM_EXi are the subsets of the communication
alarm features of the merging unit, PR, intelligent terminal, and switch, respectively, which
include SV interruption CSV, GOOSE interruption CGOOSE, input/output communication
interruption CSOI, input circuit self-check error CSIE, etc. and switch self-check fault CBC,
data non-renovation CREF, port IED communication fault CIED, etc.

When incorrect operation occurs in the PR or CB, the relevant devices in the corre-
sponding spacing send out alarm messages. When the alarm message is received, the
corresponding position element of the alarm feature set is set to 1; otherwise, the corre-
sponding position element is 0.

3. Fault Tracking Based on Improved Random Forest

Fault tracing is determining the cause of incorrect operations in the PR and CB through
alarm messages. Its essence is a multi-classification problem with alarm messages as
classification features and fault types as classification results. However, fault types and
alarm features in relay protection systems and CBs are diverse and complex. The alarm
features of some fault types overlap, which may lead to inaccurate classification. In addition,
certain faults may occur less frequently, causing data imbalance problems.

Random Forests are widely used as a multi-classification algorithm in the field of
classification and prediction. The Random Forest is an integrated learning classification
model consisting of multiple decision trees. High-dimensional datasets with complex
features, such as alarm messages of the RPS-CB, can be effectively handled by random
sampling. Training with partial samples and features can reduce the impact of noise on
the overall performance of Random Forest and improve robustness. During the training
process, the Random Forest will come to evaluate the contribution of each feature to the
classification, in which the feature with the largest contribution is used as the node attribute
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of the decision tree. Therefore, the classification process of the Random Forest has good
interpretability, which is conducive to adjusting and improving the algorithm for fault
tracing problems. In addition, the results of Random Forest are voted or averaged by
multiple decision trees, which can reduce the variance of the model and improve the
generalization ability. In summary, Random Forest is suitable for dealing with multi-
classification problems in the RPS-CB.

This paper improves the Random Forest, establishes the mapping relationship be-
tween alarm messages and fault types through model training (as shown in Equation (6)),
constructs the fault tracking model based on the improved Random Forest, and proposes
the fault tracking process based on the improved Random Forest to achieve fault tracking
of the causes of incorrect PR and CB operations.

Y = T(X) (6)

where T( ) is the fault tracking model with improved Random Forest, X is the alarm
feature set, and Y is the set of classification labels, which consists of the fault numbers
in Tables 1 and 2. To facilitate the input and output of the fault tracking model, Y is
represented in the form of a vector. For example, the fault number 000001 can be represented
as the vector {0, 0, 0, 0, 0, 0, 1}.

3.1. Improved Random Forest and Model Training

The Random Forest combines the Bootstrap method to form an ensemble learning
model of multiple decision trees. Through the voting strategy, the robustness of the
Random Forest is improved without feature scaling. The Random Forest is suitable for
the fault tracing of the RPS-CB, which involves complex fault features with faults. This
paper proposes an improved Random Forest that combines a feature selection algorithm
and a weighted voting strategy. The feature selection algorithm eliminates the useless
features and retains the features that impact model training and classification. The weighted
voting strategy determines the weights of each decision tree according to the classification
performance, which strengthens the impact of decision trees with good classification
performance and further improves the accuracy of the fault tracking.

3.1.1. Feature Selection Algorithm

In constructing decision trees for Random Forests, each node randomly selects some
features of the training samples to form a feature candidate set and then selects the optimal
features from the feature candidate set as the node features. In the Random Forest, the
samples are classified from the root node to the leaf nodes of each decision tree. After
passing through each node, they will be classified according to the node feature and then
go to the next child node to continue classification until they reach a leaf node. The samples
are classified as the category of the leaf node. However, due to the wide variety of alarm
messages of the RPS-CB and the high dimensionality of the alarm features, there is a
likelihood that the feature candidate set will contain features that are not relevant to the
samples assigned to the node. Supposing the node features are selected unreasonably,
in such a case, the samples may be classified into the wrong leaf nodes along the wrong
paths, leading to classification errors and reducing the classification performance of the
Random Forest.

This paper addresses the problems by employing the Re-Relief F algorithm to evaluate
alarm features within the training set. Weights are assigned based on their contribution to
the classification, enhancing the selection probability of features with significant contribu-
tions and high weights. Furthermore, it reduces irrelevant and redundant features in the
candidate set, improving the generalization ability and reducing overfitting. The Re-Relief
F algorithm [29] is a feature selection algorithm applied to multi-classification problems.
This algorithm first calculates the distances from the sample to the nearest neighbor samples
of different classes and the distances to the nearest neighbor samples of the same class.
Then, it takes the ratio of the two distances as the weights of the features. By emphasizing
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features that exhibit strong proximity within classes and significant gaps between classes,
the Re-Relief F algorithm improves the effectiveness and quality of the resulting feature
subspace. The corresponding weight of the sample feature A of the Re-Relief F algorithm,
w[A], is calculated as follows:

w[A] =

n
∑

i=1
∑

y ̸=class(Ri)

P(y)
1−P(class(Ri))

k
∑

j=1
diff(A, Ri, Mj(y))

n
∑

i=1

k
∑

j=1
diff(A, Ri, Hj)

(7)

where n denotes the number of sample sampling, Ri is a random sample in the training
set, k is the number of samples that are close neighbors to R, Mj(y) denotes the jth nearest-
neighbor sample of different category c, Hj denotes the jth nearest-neighbor sample in the
same category as R, P(y) denotes the ratio of the number of target samples of category
y to the total number of samples, class(Ri) denotes the category that Ri belongs to, and
the function diff(A, Ri, Rj) is to compute the distance of the sample instances Ri and Rj
concerning feature A:

diff(A, Ri, Rj) =

{
0, Ri(A) = Rj(A)
1, Ri(A) ̸= Rj(A)

(8)

where Ri(A) and Rj(A) are the feature values of the samples Ri and Rj corresponding to
feature A.

The calculation process for the feature weights of the alarm features is as follows,
based on the definition of the Re-Relief F algorithm:

1. Input training set Dtrain. The sample sampling number m is 10, and the number of
feature dimensions is N. Initialize n = 1.

2. Initialize i = 1.
3. Select a random sample Ri from Dtrain.
4. Randomly select the k nearest neighbor sample Hj of Ri with different class samples

and nearest neighbor samples Mj with different class samples.
5. If i < m, i = i + 1, return to step 3; otherwise, proceed to the next step.
6. According to Equation (7), the feature weight of the nth feature is calculated.
7. If n < N, n = n + 1, return to step 2; otherwise, output the feature weights of all alarm

features.

The higher the weight of an alarm feature, the better the alarm feature is for distin-
guishing between similar and different types of faults in the immediate neighborhood.
According to the feature weights, this paper improves the feature selection method in
the training process of Random Forest. First, the Bootstrap method is used to obtain the
training subsets required for decision tree training from the training set. Then, the features
with a weight of 0 are excluded from the training subsets. The remaining features are sorted
in descending order of weight and are evenly divided into high, medium, and low feature
subsets (Wh, Wm, and Wl). Finally, the same number of alarm features from the feature
subsets Wh, Wm, and Wl are randomly selected as the feature candidate set for the node of
the decision trees.

The improved feature selection method increases the probability that features favorable
for classification are selected, thus improving the classification performance of the decision
tree. Simultaneously, this method maintains the randomness of feature selection and
ensures robustness. In addition, the Re-Relief F algorithm compares the distances of the
nearest neighbor samples of the same class and different classes, considering the correlation
between alarm features, which is beneficial for distinguishing the types of faults with similar
alarm features (e.g., communication-related device faults and communication faults), and
thus reduces the probability of misclassification.
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3.1.2. Weighted Voting Strategy

The average voting strategy ignores the differences in the classification performance
of different decision trees in the Random Forest. It fails to give full play to the advantages
of an ensemble learning model. Since fault tracking is a multi-classification problem,
existing Random Forest-based methods primarily address binary classification problems
and regression problems using weighted voting strategies. Therefore, this paper proposes a
weighted voting strategy based on the Kappa coefficient to improve the overall performance
of the Random Forest.

The Kappa coefficient is a metric for evaluating the performance of multi-classification
models, which considers the classification accuracy and the consistency between classifi-
cations. It evaluates the multi-classification model performance more comprehensively
by correcting for the expected accuracy of the classifications. The Kappa coefficient is
computed as follows:

Kappa =

N
Y
∑

i=1
Nii −

Y
∑

i=1
Ni+N+i

N2 −
Y
∑

i=1
Ni+N+i

(9)

where N denotes the total number of test samples, Y is the total number of categories, Nii is
the number of correctly classified samples, and N+i and Ni+ are the number of true samples
in category i and the number of samples classified as category i, respectively.

The process of calculating the voting weight of the decision tree in the improved
random forest is as follows:

1. In addition to the training and validation sets needed for model training and validation,
prepare a test set.

2. Train the Random Forest using the training set to obtain a fault tracking model con-
sisting of T decision trees. Initialize t = 1.

3. Select the tth decision tree in the fault diagnosis model, and input the test set into
the decision tree for classification. Calculate the weight Kappat of the tth decision tree
based on Equation (9) and the classification results of the test set.

4. If t < T, then t = t + 1; return to step 3; otherwise, proceed to the next step.

The classification result of the improved Random Forest depends on the weighted
voting result of each decision tree classification result, as shown in Equation (10):

T(Xi) = argmax

{
K

∑
i=1

Kappai · I(ti(Xi)) = Y)

}
(10)

where ti(Xi) is the classification result of the ith decision tree; Kappai is the Kappa coefficient
corresponding to ti; I( ) is a schematic function, and the function value is 1 when the
classification result of the decision tree is related to a certain label in the classification label
set Y, and 0 otherwise; arg( ) is the function of taking the autocorrelation, which serves the
purpose of taking the classification with the highest number of votes.

3.1.3. Fault Tracing Model Training

Based on Random Forest training, combined with the Re-Relief F algorithm and
weighted voting strategy, the training process of the fault tracking model based on the
improved Random Forest is proposed as follows:

1. Sample the training set Dtrain T times using the Bootstrap method to obtain T sample
subsets. Compute the feature weights for the training set Dtrain. Initialize t = 1.

2. Select the tth training subset. Refer to Section 3.1.1 to construct the high, medium, and
low feature subsets (Wht, Wmt, and Wlt) corresponding to the training subset.

3. Input the tth training subset into the root node of the tth decision tree, and start
building the decision tree from the root node.
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4. If the sample set in the current node is non-empty and all samples belong to multiple
classes, this indicates that the current node is an internal node; proceed to step 4.
Otherwise, the current node is a leaf node that is not further split. Other nodes are
selected for further splitting. If all remaining nodes are leaf nodes, this indicates that
all the samples have been trained and the construction of the decision tree is complete;
proceed to step 8.

5. The current node contains samples with a total of M features. From Wht, Wmt, and Wlt,
m (m =

√
M/3, rounded down) features are randomly selected to form the candidate

feature set Dt of the current node.
6. Calculate the Gini coefficient of each feature in the candidate feature set D according

to Equation (11). The feature with the smallest Gini coefficient is removed from the
candidate feature set D as the optimal feature of the current node.

Gini(p) = 1 −
m

∑
k=1

p2
k (11)

where Gini(p) denotes the Gini coefficient of node p, k is the number of categories, and
pk denotes the classification probability.

7. Split the current node into two sub-nodes, and divide the samples contained in the
current node into two parts according to the optimal features and input into the
sub-nodes.

8. Repeat steps 4–8 for the sub-nodes.
9. If t = T, the Random Forest decision tree construction is completed; otherwise, t = t + 1,

so return to step 3 and continue to construct the decision tree.
10. According to Section 3.1.2, the voting weights of the decision trees in the Random

Forest are calculated, and the weighted voting result of this fault tracking model is
shown in Equation (10).

11. The training of the fault tracking model based on the improved Random Forest
is completed.

3.2. Fault Tracing Process Based on Improved Random Forest
3.2.1. Evaluation Process for PR and CB Operations

The classification object of the fault tracking model is the relay protection system and
its corresponding CB. Therefore, before invoking the fault tracking model, it is necessary to
identify incorrectly operated PRs and CBs. To this end, this paper develops the evaluation
process for PR and CB operations. Firstly, the PRs and CBs are assigned confidence degrees
according to alarm messages and fuzzy theory. Then, the confidence degrees of the PRs and
CBs are fused and compared to determine the appropriate protective measure to isolate the
faulty component. Finally, the incorrect operations of the main, near backup, and remote
backup PRs and CBs are determined based on the configuration rules for relay protection.
The specific steps of the evaluation process are as follows:

1. Suppose the fault diagnosis identifies R faulty components. SAM represents the set of
PRs and CBs that receive the alarm messages. Initialize r = 1.

2. Select the rth faulty component. Let C represent the number of CBs connected to the
rth faulty component. Initialize c = 1.

3. Search for the main and near backup PR corresponding to the cth CB. Assume the
rth faulty component has L neighboring lines, and search for the CB and the remote
backup PR on the neighboring lines. Query the alarm message set SAM and assign
confidence degrees to the operation states of the PR and CB. The assignment rules for
the confidence degrees of PRs and CBs [30] are shown in Table 3.

4. Calculate the fusion confidence degrees for the cth CB with the corresponding main
and the near backup PR. Calculate the fusion confidence degrees for the remote CB and
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remote backup PR of L adjacent lines. The calculation process of the fusion confidence
degrees is shown in Equation (12).

PMPCB = 1
2 (PMPR + PMCB)

PNPCB = 1
2 (PNPR + PNCB)

PRPCB = 1
2l

L
∑
1
(PRPRl + PRCBl)

(12)

where PMPCB, PNPCB, and PRPCB represent the fusion confidence degrees of the main,
near backup, and remote backup PRs with the corresponding CBs, respectively. PMPR,
PNPR, and PRPRl represent the confidence degrees of the main, near backup, and remote
backup PRs for the far end of the lth adjacent line, respectively. PMCB, PNCB, and PRCBl
represent the confidence degrees of CBs corresponding to the main, near backup, and
remote backup PR in the far end of the lth adjacent line, respectively.

5. Compare the fusion confidence degrees of the main, near backup, and remote backup
PRs. The protection that isolates the rth faulty component is the one with the highest
fusion confidence degree. Based on the alarm messages and the action logic between
different types of protection, evaluate the PR and CB operations. The operation
evaluation rules for PRs and CBs are shown in Table 4.

6. According to the evaluation rules, the PRs and CBs configured for the rth faulty
component are classified and placed into the set SNORM of the normal operation PRs
and CBs, the set SFP (SFN) of the PRs and CBs with no alarms (incorrect alarms), and
the set SRO (SFO) of the rejected (incorrect operated) PRs and CBs.

7. If c = C, proceed to the next step after searching all connected CBs of the faulty
components; otherwise, c = c + 1 and return to step 3.

8. If r = R, proceed to the next step after traversing all faulty components; otherwise, r =
r + 1 and return to step 2.

9. If SNORM ∪ SFP ∪ SFN ∪ SRO ∪ SFO = SAM, the PRs and CBs with alarm messages
have completed the operation evaluation; otherwise, there are PRs and CBs without
corresponding faulty components. Considering that the PRs and corresponding
CBs may be false alarms or maloperation, the PRs and CBs without corresponding
faulty components are classified into SFN and SFO simultaneously. Since both the
remote backup PR and the corresponding CB are backup protections for adjacent
components, it is necessary to avoid the normally operated remote backup PRs and
CBs as maloperation or rejection during the operation evaluation of the adjacent
component. Therefore, the SFN and SFO require the following operations:{

SFN = SFN − (SFN ∩ SNORM)

SFO = SFO − (SFO ∩ SNORM)
(13)

10. Since maloperation and false alarms have alarm messages, while rejection and missing
alarms do not, some of the PRs and CBs cannot be directly distinguished between the
cases of maloperation or false alarms and the cases of rejections or missing alarms.
Therefore, these PRs and CBs are divided into the pending set SUN and evaluated after
the fault tracking of the RPS-CB. The SUN is as follows:

SUN = SFN ∩ SFO + SFP ∩ SRO
SFN = SFN − SFN ∩ SFO
SFO = SFO − SFN ∩ SFO
SFP = SFP − SFP ∩ SRO
SRO = SRO − SFP ∩ SRO

(14)

11. Conclude the operation evaluation and output the evaluation results SNORM, SFP, SFN,
SRO, SFO, and SUN.
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12. Either SRO or SFO is not an empty set; there are incorrectly operated PRs and CBs,
and it is necessary to obtain the alarm messages of the corresponding spacings of
the intelligent substation for fault tracing to determine the fault types of the relay
protection system and circuit breakers. Either SFP or SFN is not an empty set; there
are missing and false alarms of the PRs and CBs, and it is necessary to check the
communication network between the substation and the control center or request the
re-uploading of alarm messages. SUN is not an empty set; there are PRs and CBs that
are indistinguishable from those of the evaluation rules, and it is necessary to carry
out secondary evaluation based on the fault tracking results.

Table 3. Assignment rules for confidence degrees of PRs and CBs.

PRs and CBs Lines Buses Transformers

Main
PRs 0.9913 (0.2) 0.8564 (0.4) 0.7756 (0.4)

CBs 0.9833 (0.2) 0.9833 (0.2) 0.9833 (0.2)

Near backup
PRs 0.80 (0.2) 0.75 (0.4)

CBs 0.85 (0.2) 0.8 (0.2)

Remote backup
PRs 0.70 (0.2) 0.70 (0.4) 0.7 (0.4)

CBs 0.75 (0.2) 0.75 (0.2) 0.75 (0.2)
Note: The values outside the parentheses represent the confidence degrees of PRs and CBs with alarm messages.
The values inside parentheses indicate the confidence degrees of PRs and CBs without alarm messages.

Table 4. Operation evaluation rules for PRs and CBs.

Highest Fusion
Confidence Degrees

Alarms of Main
PR and CB Operation Evaluation

Alarms of
Near Backup
PR and CB

Operation
Evaluation

Alarms of
Remote Backup

PR and CB
Operation Evaluation

The main protection
and corresponding CB

(1, 1) Normal (1, 1)
False alarm or

maloperation of the near
backup PR

(1, 1) Remote backup PR
and CB maloperation

(1, 0) False alarm of the
remote backup PR

(0, 1) False alarm or
maloperation of the CB

(1, 0) Missing alarm of
the CB

(1, 0) False alarm of the near
backup PR (1, 0) False alarm of the

remote backup PR

(0, 0) Missing alarm of the CB (0, 1) False alarm or
maloperation of the CB

(0, 1) Missing alarm of the
main protection (0, 1) Normal

(1, 0) False alarm of the
remote backup PR

(0, 1) False alarm or
maloperation of the CB

The near backup
protection and

corresponding CB

(0, 1)
Main protection

rejection (1, 1) Normal

(1, 1) Remote backup PR
and CB maloperation

(1, 0) False alarm of the
remote backup PR

(0, 1) False alarm or
maloperation of the CB

(0, 0) Main PR rejection (1, 0) Missing alarm of the CB

(1, 0) False alarm of the
remote backup PR

(0, 1) False alarm or
maloperation of the CB
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Table 4. Cont.

Highest Fusion
Confidence Degrees

Alarms of Main
PR and CB Operation Evaluation

Alarms of
Near Backup
PR and CB

Operation
Evaluation

Alarms of
Remote Backup

PR and CB
Operation Evaluation

The remote backup
protection and

corresponding CB.

(0, 0) Main PR rejection
(0, 0) Near backup PR rejection

(1, 1) Normal

(1, 0) CB rejection

(1, 0) CB rejection (1, 0)
(0, 0) CB rejection

(0, 1) False alarm of the CB (0, 1) False alarm of the CB

(0, 0) Main PR rejection (0, 0) Near backup PR rejection

(1, 0) Missing alarm or
rejection of the CB

(0, 1) Missing alarm of the
remote backup PR

Note: The binary group (p, q) indicates whether the alarm message exists or not; p = 1 (q = 1) indicates that the PR
(CB) alarm message exists; p = 0 (q = 0) indicates that the PR (CB) alarm does not exist.

3.2.2. Fault Tracing Process

Since the improved Random Forest-based fault tracking model is a single-label and
multiclassification model, this model is unable to track multiple faults simultaneously in
the RPS-CB. In addition, faults in communication and neighboring devices may lead to
alarms from multiple devices, so fault tracking must differentiate between communication
faults and faults in adjacent neighboring devices. Furthermore, once faults are detected in
the RPS-CB, it is crucial to ascertain whether the CB rejection (maloperation) results from
PR rejection (maloperation) by examining the correlation between the operations of PR
and CB.

To solve the above problems, this paper divides complex faults into multiple simple
faults for fault tracking by dividing the alarm messages. Since communication faults simul-
taneously trigger alarms in adjacent devices, and the alarm messages for communication
faults and device faults differ, it is prioritized to determine whether a communication fault
is present. In the absence of a communication fault, the fault lies with adjacent devices
and fault tracking is conducted based on individual device faults. If a communication
fault exists, the alarm features related to the communication fault are removed from the
alarm feature set. If the alarm feature set is not empty, then fault tracking is conducted
according to multiple simple faults. Regarding multiple faults, the alarm messages are
divided into individual device faults, which are further subdivided into multiple single
faults for fault tracking.

According to the above problems and solutions, this paper proposes a fault tracking
process based on an improved Random Forest, as shown in Figure 3.

The specific steps of the fault tracking process are as follows:

1. Once a fault occurs in the power grid, the fault diagnosis algorithm diagnoses the
faulty component [30]. Subsequently, PRs and CBs are evaluated for their operation
according to Section 2.1, and incorrectly operated PRs and CBs are identified.

2. Drawing from previous engineering research [6], the alarm messages of the PRs, CBs,
and their associated secondary devices (merging units, protective relays, intelligent
terminals, and switches) located within the device spacings are collected within 6 s
following the fault. According to Section 2.3, these collected alarm messages form the
corresponding alarm feature set, denoted as X.

3. If alarm messages are not issued from adjacent devices, this situation may indicate
a single device fault or multiple faults of non-adjacent devices. The alarm feature
set is divided according to the device to obtain the alarm feature subsets of single
devices. If alarm messages are issued from adjacent devices, this situation may indicate
communication faults or multiple faults. In such cases, the alarm feature set is divided
based on the adjacent devices, resulting in subsets of alarm features for both the
adjacent devices and individual devices.
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4. The subsets of alarm features from adjacent devices are input to the fault tracking
model. If a communication fault is found in the output result, in such cases, the subset
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of the alarm features corresponding to the communication fault is removed from the
alarm feature set X to avoid repeated diagnosis.

5. If the alarm feature set X is empty, all alarm features have completed fault tracking
and output the communication fault type of the RPS-CB. If not, there are other non-
communication faults present, and it is then divided based on the individual device to
obtain subsets for alarm features of individual devices.

6. Alarm feature subsets of individual devices are input into a fault tracking model,
outputting device fault types of the RPS-CB.

7. For the PRs and CBs in the set SUN, a secondary evaluation is necessary to assess
whether they are rejected or missing (missing alarm or false alarm). The secondary
evaluation rules are shown in Table 5.

8. After combining the operation evaluation and the secondary evaluation results,
whether the CB rejection (maloperation) is caused by the PR rejection (malopera-
tion) or the faults in the relay protection system based on the fault tracking model
results is determined. If both the PR and the CB are incorrectly operated, and the CB
is not faulty, CB maloperation (CB rejection) is caused by the PR maloperation (PR
rejection). If the PR operates and the corresponding CB fails to trip, it is considered
that the CB rejection is caused by a device fault or a communication fault in the relay
protection system.

9. The relay protection system and CB faults that caused the PRs and CBs to operate
incorrectly are determined based on Figures 1 and 2.

Table 5. Secondary evaluation rules.

Alarm Status of PRs and
CBs in SUN

Status of the
Corresponding RPS-CBs Operation Evaluation

Alarm messages are available
Fault Maloperation

No faults False alarm

No alarm messages
Fault Rejection

No faults Missing alarm

4. Case Verification
4.1. Verifications of Operation Evaluation Process
4.1.1. Fault Cases in the IEEE 39-Bus System

In this paper, the accuracy of the operation evaluation is verified by the fault cases of
the IEEE 39-bus system (as shown in Figure 4). The fault cases and operation evaluation
results are shown in Table 6. In Figure 4, B represents the bus, L represents the line,
T represents the transformer, CB represents the circuit breaker, Lp represents the line
protection, Bp represents the bus protection, Tp represents the transformer protection, and
the suffixes m, p, and s represent the main, near backup, and remote backup protection,
respectively. For example, the line connecting B03 and B18 is L0318, and the transformer
connecting B02 and B30 is T0230; the CB near the B03 of L0318 is CB0318, and the circuit breaker
near the B18 side is CB1803. Lp0318m, Lp0318p, and Lp0318s represent the corresponding
main, near backup, and remote backup protection of CB0318, respectively. Bp03 is the
bus protection of B03, Tp0230m, and Tp0230p are the main and near backup protection of
the transformer.

Table 6 displays that Cases 1–10 simulate different single faults, including scenarios
with incorrect PR and CB operations, as well as the absence of alarms and rejections. The
proposed operation evaluation rules in this paper assess the operations of the PRs and CBs
configured for the fault component based on the operational logic among the main, near
backup, and remote backup protections, as well as between the PR and its corresponding
CB. For example, in Cases 1 and 2, there are no alarm messages of CB1803. Lp0318s operates
instead of CB1803 to isolate the fault in Case 2, while Case 1 lacks a backup protection
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PR. Thus, Case 1 represents the absence of an alarm message for CB0318, whereas Case 2
indicates CB0318 rejection.
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Similarly, in Cases 3 and 4, it is possible to distinguish between the rejection or missing
alarm of the PR by the operation state of the CB corresponding to the bus protection and
the backup protections. In Cases 5–7, the PR and CB fail to operate, and the missing alarm
occurs simultaneously. It can be seen from the evaluation results that the evaluation rules
can correctly identify the simultaneous rejections and missing alarms in a single fault. In
Cases 8–10, false alarms and the maloperations of PRs and CBs occur. It should be noted
that since the main and near backup PRs correspond to the same CB, the maloperation
and false alarm of the near backup PR cannot be directly judged by the corresponding
CB operation state. Therefore, Lp0203p in Case 9 will be divided into the pending set SUN
and will wait for the fault tracking results for secondary evaluation, as per step 10 of the
evaluation process in Section 3.2.1.

Unlike the single fault, the double faults in Cases 13–16 need to consider that the
adjacent fault components are configured with the same backup PRs and CBs. When the
PRs and CBs of a faulty component are evaluated, the remote backup PR and CB operation
due to another faulty component will be judged as maloperation. For example, when a
fault occurs in L0318 and L1718 in Case 13, and when evaluating the PRs and CBs operation
of L0318, CB1718 is a remote backup PR of L0318 and is operated due to the isolation of the
L1718 fault. This situation is a false alarm or malfunction in the evaluation rules. When
evaluating the PRs and CBs operation of L1718, CB1718 functions as a normal CB. Therefore,
during step 9 of the operation evaluation process, the evaluation results of PRs and CBs
between different faulty components are compared, and the above double fault situation is
corrected to avoid incorrect evaluation results.

The operation evaluation process proposed in this study accurately evaluates the
operating states of PRs and CBs, reducing the scope of fault tracking for subsequent
relay protection systems and CBs. Furthermore, this process can be applied not only to
single faults but also to false alarms or missing alarms, maloperation or rejection, adjacent
components configured with the same PRs and CBs, and other complex situations. The
proposed method makes the operation evaluation more comprehensive and practical, and
it is applicable to complex real-world scenarios in power systems.
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Table 6. Evaluation results for fault cases in the IEEE 39-bus power system.

No. Fault Details Brief Description of the
Alarm Messages

Faulty
Components Operation Evaluation

1 A fault occurs at B18, and the alarm message of
CB1803 is lost. Bp18, CB1817 B18

Missing alarm message
of CB1803

2 A fault occurs at B18, CB1803 fails to trip, Lp0318s
operates, and CB0318 trips.

Bp18, CB1817,
Lp0318s, CB0318

B18 CB1803 rejection

3 A fault occurs at B03, and the alarm message of
Bp03 is lost. CB0302, CB0304, CB0318 B03

Missing alarm message
of Bp03

4 A fault occurs at B03, Bp03 fails to operate, and
remote backup PRs operate.

Lp1803s, Lp0403s, Lp0203s,
CB1803, CB0403, CB0203

B03 Bp03 rejection

5 A fault occurs at L0318, Lp1803m fails to operate, and
Lp1803p operates.

Lp0318m, CB0318,
Lp1803p, CB1803

L0318 Lp1803m rejection

6 A fault occurs at L0318, CB1803 fails to trip, and the
alarm message of Lp0318m is lost.

Lp1803m, CB0318,
Lp1718s, CB1718

L0318

CB1803 rejection and
missing alarm message

of Lp0318m

7 A fault occurs at L0318, and the alarm message of
CB0318 is lost.

Lp0318m, Lp1803m,
Lp1718s, CB1718

L0318

CB1803 rejection and
missing alarm message

of CB0318

8 A fault occurs at L0318, CB1803 fails to trip, and the
alarm message of Lp0203s is wrong.

Lp1803m, Lp0318m, CB1817s,
CB1718, Lp0203s L0318

CB1803 rejection and false
alarm message of Lp0203s

9 A fault occurs at B03, CB0318 fails to trip, and
Lp0203p operates incorrectly.

Bp03, CB0302, CB0304,
Lp0203p, CB0203,
Lp1803s, CB1803

B03

malfunction or false alarm
of Lp0203p and
CB0318 rejection

10 A fault occurs at L0318, Lp1718s operates incorrectly,
and CB1718 trips.

Lp0318m, Lp1803m, CB0318,
CB1803, Lp1817s, CB1817

L0318
Lp1718s and

CB1718 malfunction

11 A fault occurs at T1213, and the alarm message of
CB1312 is lost. Tp1213m, CB1213 T1213

Missing alarm message
of CB1312

12 A fault occurs at T1213, CB1312 fails to trip, Lp1413s
and Lp1013s operate, and CB1413 and CB1013 trip.

Tp1213m, CB1213, Lp1413s,
Lp1013s, CB1413, CB1013

T1213 CB1312 rejection

13 A fault occurs at L0318, and the alarm message of
CB0318 is lost; a fault occurs at L1718.

Lp0318m, Lp1803m, CB1803,
Lp1817m, Lp1718m,

CB1817, CB1718

L0318, L1718
Missing alarm message

of CB0318

14 Faults occur at L0318 and B17, CB1803 fails to trip,
and the alarm message of Lp1817s is lost.

Lp1803m, Lp0318m, CB0318,
CB1718, Bp17,

CB1727, CB1716

L0318, B17

CB1803 rejection and
missing alarm message of

Lp1817s

15 A fault occurs at B03, and the alarm message of
CB0318 is lost; a fault occurs at B14.

Bp03, CB0302, CB0304, Bp14,
CB1404, CB1415, CB1413

B03, B14
Missing alarm message

of CB0318

16
A fault occurs at B18, Bp18 fails to operate, and

remote backup PRs operate. A fault occurs at T1213,
and the alarm message of Tp1213m is lost.

Lp0318s, Lp1718s, CB0318,
CB1718, CB1312, CB1213

B18, T1213
Bp18 rejection and missing
alarm message of Tp1213m

4.1.2. Fault Cases in the IEEE 118-Bus System

For the fault tracing method to be applied to larger and more complex power systems,
the evaluation rules must be capable of evaluating the operations of the PRs and CBs in
this power system to identify failed relay protection systems and CBs. This paper verifies
the applicability of the evaluation rules by testing them on fault cases in the IEEE 118-bus
power system (as shown in Figure 5). The circles in Figure 5 represent busbars, and the
lines connecting them are transmission lines. The numbering rules for lines, buses, CBs,
and PRs match those in Figure 4.

Table 7 presents the results of the operation evaluation for fault cases within the IEEE
118-bus power system. Cases 17–19 represent line faults characterized by CB rejections,
the missing alarm message, and the false alarm from the PR. Cases 20–22 involve bus
faults with CB rejections, missing alarm messages from CBs, and the false alarm of the
PR. Cases 23 and 24 encompass double faults, including the rejection and missing alarm
messages from the bus PR. The evaluation results demonstrate the accurate identification
of improperly functioning PRs and CBs for both single faults (Cases 17–22) and complex
faults (Cases 22 and 24).



Electronics 2024, 13, 582 20 of 37
Electronics 2024, 13, x FOR PEER REVIEW  19  of  37 
 

 

 

Figure 5. IEEE 118-bus power system. 

Table 7 presents the results of the operation evaluation for fault cases within the IEEE 

118-bus power system. Cases 17–19 represent line faults characterized by CB rejections, 

the missing alarm message, and  the  false alarm  from  the PR. Cases 20–22  involve bus 

faults with CB rejections, missing alarm messages from CBs, and the false alarm of the PR. 

Cases 23 and 24 encompass double faults, including the rejection and missing alarm mes-

sages from the bus PR. The evaluation results demonstrate the accurate identification of 

improperly  functioning PRs and CBs  for both single  faults  (Cases 17–22) and complex 

faults (Cases 22 and 24). 

False alarms of CBs and PRs occur in Cases 19, 21, and 22, respectively. The operation 

evaluation rule determines the protection type that isolates the faulty components by com-

paring the status of the main, near backup, and far backup PRs. Whether it is classified as 

a maloperation or a false alarm depends on whether the corresponding CB (PR) of the 

falsely alarmed PR  (CB) operates or not. Since  the corresponding PRs and CBs do not 

operate in these cases, they are judged as false alarms. 

In power systems of varying sizes and topologies, components are configured with 

main, near backup, and remote backup PRs and corresponding CBs. Based on the action 

logic of different types of protection, the complex PR and CB configurations are divided 

into  several mutually  independent  combinations  of  main,  near  backup,  and  remote 

backup PRs and corresponding CBs. Operation evaluation rules can be applied to evaluate 

each combination. Thus, the operation evaluation rules can evaluate the operational status 

of the PRs and CBs, even in larger and more complex power systems. 

The above cases prove that the operation evaluation rules can be applied in larger 

and more complex power systems, which lays the foundation for the application of the 

fault tracking model and fault tracking process in large-scale and complex power systems. 

Table 7. Evaluation results for fault cases in the IEEE 118-bus power system. 

Figure 5. IEEE 118-bus power system.

Table 7. Evaluation results for fault cases in the IEEE 118-bus power system.

No. Fault Details Brief Description of the
Alarm Messages

Faulty
Components Operation Evaluation

17 A fault occurs at L020021, CB021020 fails to trip, and
the alarm message of Lp020021m is lost.

Lp021020m, CB020021,
Lp022021s, CB022021

L020021

CB021020 rejection and
missing alarm message

of Lp020021m

18 A fault occurs at L020021, and Lp021020m fails
to operate.

Lp020021m, CB020021,
Lp022021s, CB022021

L020021 Lp021020m rejection

19 A fault occurs at L020021, and the alarm message of
Lp021020p is wrong

Lp021020m, Lp020021m,
Lp022021p,

CB020021, CB022021

L020021 False alarm of Lp021020p

20 A fault occurs at B038, CB038030 fails to trip, and the
alarm message of CB038037 is lost.

Bp038, Lp030038s,
CB038065, CB030038

B038

CB038030 rejection and
missing alarm message

of CB038037l

21 A fault occurs at B045, CB045044 fails to trip, and the
alarm message of CB046045 is wrong.

Bp045, Lp044045s, CB044045,
CB045046,

CB045049, CB046045

B045

CB045044 rejection and
false alarm or

maloperation of CB046045

22 A fault occurs at B045, CB045044 fails to trip, and the
alarm message of Lp046045s is wrong.

Bp045, Lp044045s, CB044045,
CB045046,

CB045049, Lp046045s
B045

CB045044 rejection and
false alarm of Lp046045s

23
A fault occurs at L020021, and the alarm message of

Lp020021s is wrong.
A fault occurs at B072, and Bp072 fails to trip.

Lp020021m, Lp021020m,
CB020021, CB021020,

Lp020021s; Lp024072s,
Lp070072s, Lp071072s,
CB022021, CB022021,

CB022021

L020021
B072

False alarm of Lp020021s
and Bp072 rejection

24

A fault occurs at B039, and the alarm message of
Bp039 is lost.

A fault occurs at L043044, and the alarm message of
Lp044043m is lost.

CB039037, CB039040,
CB039041, CB039042,

Lp043044m,
CB043044, CB044043

B039
L043044

Missing alarm message of
Bp039 and Lp044043m
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False alarms of CBs and PRs occur in Cases 19, 21, and 22, respectively. The operation
evaluation rule determines the protection type that isolates the faulty components by
comparing the status of the main, near backup, and far backup PRs. Whether it is classified
as a maloperation or a false alarm depends on whether the corresponding CB (PR) of the
falsely alarmed PR (CB) operates or not. Since the corresponding PRs and CBs do not
operate in these cases, they are judged as false alarms.

In power systems of varying sizes and topologies, components are configured with
main, near backup, and remote backup PRs and corresponding CBs. Based on the action
logic of different types of protection, the complex PR and CB configurations are divided
into several mutually independent combinations of main, near backup, and remote backup
PRs and corresponding CBs. Operation evaluation rules can be applied to evaluate each
combination. Thus, the operation evaluation rules can evaluate the operational status of
the PRs and CBs, even in larger and more complex power systems.

The above cases prove that the operation evaluation rules can be applied in larger and
more complex power systems, which lays the foundation for the application of the fault
tracking model and fault tracking process in large-scale and complex power systems.

4.2. Improved Random Forest Verification
4.2.1. Data Preprocessing and Sample Set Construction

In this paper, a representative line interval from a 220 kV intelligent substation (illus-
trated in Figure 6) is selected as a case study. Alarm messages are gathered from historical
records and simulation experiments to create sample datasets of relay protection systems
and CBs. The effectiveness and reliability of the improved Random Forest proposed in this
paper are assessed.
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The steps for preprocessing and sample preparation for alarm messages are as follows:

1. Collect the alarm messages of the relay protection systems or CBs from the secondary
system of the substation, and extract the names of stations, intervals, and devices.
Then, group the alarm messages according to the plant name and the interval name.

2. According to the engineering experience [6], take 6 s as a time window and calculate
the frequency of the alarm message within the time window. If an alarm appears only
1–2 times in a time window, regard it as a false alarm; regard an alarm that appears
three times or more as a real alarm.

3. According to the definition of the alarm feature set, map alarm messages to the
corresponding alarm feature set Xi. If the alarm message exists, set the alarm feature
at the corresponding position of the alarm feature set Xi set to 1; otherwise, set it to 0.

4. Label the alarm feature set Xi with fault type Yi; the numbering of the fault types is
detailed in Tables 1 and 2. Combine the alarm features Xi and the corresponding fault
type Yi as (Xi, Yi) and input into the sample set of fault tracking.

Based on the above steps, this paper constructs a fault sample set of relay protection
systems and circuit breakers with a total number of 16,107 samples, of which 11,183 are
training samples, 1604 are test samples, and 3320 are validation samples. The details of the
samples are shown in Tables 8 and 9.
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Table 8. Samples of device faults.

Devices Fault Types Total Number
of Samples

Number of
Training Samples

Number of
Test Samples

Number of
Validation Samples

Merging unit

DSP module fault 477 335 44 98
AC input module fault 371 257 37 77

Input/output module fault 530 366 54 110
Power module fault 310 214 31 65

Sampling out-of-step 197 137 19 41
Configuration error 366 259 31 76

Protective relay

CPU module error/exception 247 175 21 51
SV module fault 406 286 35 85

GOOSE module fault 572 406 49 117
Power fault of the

power module 591 405 65 121

Longitudinal channel fault 662 450 78 134
Configuration error 320 181 85 54

Intelligent terminal

CPU module fault 256 178 24 54
I/O module fault 651 457 59 135
Power fault of the

power module 641 448 57 136

Configuration error 546 387 48 111

Circuit breaker

Control loop fault 303 213 26 64
Closing coil fault 676 464 72 140

Operating mechanism fault 702 486 77 139
Transmission mechanism fault 635 443 62 130

Contact fault 306 213 29 64

Switch

Communication link fault 533 377 48 108
Port fault 666 442 90 134

Communication packet loss 500 351 44 105
Power fault 299 213 25 61

Table 9. Samples of communication faults.

Communication
Links Fault Types Total Number

of Samples
Number of

Training Samples
Number of

Test Samples
Number of

Validation Samples

Merging unit–
Protective relay

Merging unit output port fault 454 318 40 96
Protective relay input

port fault 362 253 33 76

Communication optical
fiber fault 524 367 48 109

Protective relay–
Intelligent terminal

Protective relay output
port fault 310 217 27 66

Intelligent terminal input
port fault 412 288 40 84

Communication optical
fiber fault 262 183 25 54

Bus merging unit–
Line merging unit

Bus merging unit output
port fault 500 350 46 104

Line merging unit input
port fault 466 326 44 96

Communication optical
fiber fault 511 358 44 109

Intelligent terminal–
Circuit breaker

Intelligent terminal output
port fault 543 380 47 116

4.2.2. Evaluation Indicators

Considering that the fault tracking of the RPS-CB is a multiclassification problem, this
paper chooses producer accuracy, user accuracy, overall accuracy, and the Kappa coefficient
to evaluate the classification performance. User and producer accuracy are used to evaluate
the classification performance of a certain category, and the overall accuracy and Kappa
coefficient are used to evaluate the overall classification performance of the algorithm. The



Electronics 2024, 13, 582 23 of 37

Kappa coefficient is defined as shown in Equation (9), and the producer accuracy (PA), user
accuracy (UA), and overall accuracy (OA) are defined as follows:

PA = Nii/N+i (15)

UA = Nii/Ni+ (16)

OA =
Y

∑
i=1

Nii/N (17)

4.2.3. Parameter Optimization of the Improved Random Forest

The number and maximum depth of decision trees are the main parameters affecting
the classification performance of the improved Random Forest. Reasonable parameter
settings can ensure good accuracy and generalization ability and prevent the fault tracking
model from being too complex, and therefore being large, which affects the training and
operation efficiency. For this reason, this paper adopts the hierarchical cross-validation
method. The overall accuracy OA is the evaluation index to tune the number of decision
trees (n_estimators) and the maximum depth (max_depth) of the improved Random Forest.

The process of 10-fold hierarchical cross-validation is as follows:

1. The training set is divided into ten groups, ensuring that the proportion of each fault
type in each group is consistent with the training set.

2. Nine groups are selected as the cross-validated training set to train the improved
Radom Forest, and the remaining group as the cross-validated validation set to verify
the training effect. This is repeated ten times to ensure that each group is selected as
the validation set for cross-validation.

3. The average of the overall accuracies of the ten cross-validations is counted as the
result of the cross-validation.

The maximum number of decision trees is determined through the optimization
process using 10-fold hierarchical cross-validation. The number of decision trees for the
improved Random Forest starts from one, and a hierarchical cross-validation is conducted
for each additional decision tree. The relationship between the number of decision trees
and the cross-validation results is visualized in Figure 7. As the number of decision trees
increases, the average overall accuracy shows an upward trend until it stabilizes at 50 trees.
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Following the selection of the optimal number of decision trees, the maximum depth
of the decision trees is optimized using 10-fold hierarchical cross-validation. The improved
Random Forest initializes its decision tree with a root node and performs hierarchical
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cross-validation for each subsequent node added incrementally. The relationship between
the maximum depth of the decision tree and the cross-validation results is visualized in
Figure 8. As the maximum depth of the decision tree increases, there is a tendency for the
average overall accuracy to rise until it stabilizes at a maximum depth of approximately 20.
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Decreasing the size of the Random Forest can reduce the computational burden and
improve the efficiency of operation while maintaining a high overall accuracy. Moreover,
an improved Random Forest-based model with large scale and deep depth can lead to
overfitting. Therefore, this paper sets the number of decision trees for the improved Random
Forest-based fault tracking model to 50 and sets the maximum depth to 20.

4.2.4. Comparisons of Fault Tracing Methods

In order to evaluate the classification effectiveness of the improved Random Forest,
this paper compares it with the existing fault tracking methods, which include the Decision
Tree [6,25], Gradient Boosting Decision Tree (GDBT) [26], Recurrent Neural Network
(RNN) [24], and Random Forest.

The comparison experiment of fault tracking methods is conducted as follows:
Firstly, the improved Random Forest and other existing methods are trained ten times

using the training set. Subsequently, the validation set is employed to validate each method
after every training iteration. The running time Ttest, the overall accuracy (OA), and the
Kappa coefficient (kappa) of the classification results of the validation set are recorded for
each validation result, as shown in Table 10. Finally, the optimal validation results of each
method are selected and compared with the user accuracy (UA) and producer accuracy
(PA) for each type of fault, as shown in Tables 11 and 12. All comparison experiments are
performed on a computer with a 2.2 GHz main frequency, a six-core processor (Intel Core
i7-8750H), and 32 G of RAM, utilizing the PyCharm programming tool.

Table 10. Statistical results.

No

[6,25] Random Forest [26] [24] This Paper

Ttest
(ms)

OA
(%)

Kappa
(%)

Ttest
(ms)

OA
(%)

Kappa
(%)

Ttest
(ms)

OA
(%)

Kappa
(%)

Ttest
(ms)

OA
(%)

Kappa
(%)

Ttest
(ms)

OA
(%)

Kappa
(%)

1 7 91.60 91.32 23 93.77 93.57 27 95.84 95.70 73 96.42 96.30 20 96.81 96.71
2 6 91.20 90.93 30 93.31 93.12 23 95.78 95.65 71 96.45 96.33 22 97.20 97.11
3 6 91.14 90.87 22 93.37 93.18 23 95.66 95.52 74 96.20 96.08 21 97.65 97.57
4 7 91.54 91.26 23 94.01 93.81 24 94.61 94.43 67 96.36 96.23 23 97.83 97.79
5 9 91.51 91.26 22 94.58 94.40 20 95.12 94.96 75 96.54 96.42 25 97.08 96.98
6 10 89.91 89.64 23 93.49 93.01 24 95.39 95.24 77 96.11 95.98 23 97.20 97.11
7 10 91.08 90.81 24 93.37 93.18 23 95.30 95.15 69 96.30 96.17 20 97.44 97.36
8 7 90.75 90.48 22 93.67 93.48 26 95.51 95.37 73 96.23 96.11 26 97.08 96.98
9 6 90.57 90.30 22 94.49 94.22 25 94.41 94.21 72 96.66 96.54 24 97.35 97.23
10 7 91.27 90.99 23 92.95 92.76 26 95.00 94.84 75 95.99 9586 23 97.11 97.01
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Table 11. Verification results of device faults.

Devices Fault Types
[6,25] Random Forest [26] [24] This Paper

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Merging
unit

DSP module fault 84.62 89.80 91.09 93.88 92.16 95.92 92.41 95.92 95.00 96.94
AC input module fault 85.19 89.61 87.80 93.51 90.00 93.51 94.50 94.81 97.37 96.10

Input/output module fault 88.60 91.82 90.27 92.73 92.04 94.55 100.00 93.64 96.36 96.36
Power module fault 100.00 95.38 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Sampling out-of-step 94.59 85.37 100.00 87.80 97.37 90.24 100.00 95.12 97.56 97.56
Configuration error 100.00 94.74 100.00 96.05 100.00 94.74 91.84 98.68 100.00 98.68

Protective
relay

CPU module error/exception 96.08 96.08 98.00 96.08 98.00 96.08 100.00 98.04 100.00 98.04
SV module fault 83.70 90.59 91.86 92.94 94.05 92.94 98.23 95.29 100.00 96.47

GOOSE module fault 92.59 85.47 94.83 94.02 94.74 92.31 100.00 94.87 97.44 97.44
Power fault of the power module 100.00 98.37 100.00 100.00 100.00 100.00 97.76 100.00 100.00 100.00

Longitudinal channel fault 98.40 91.79 98.47 96.27 98.48 97.01 98.18 97.76 97.76 97.76
Configuration error 96.23 94.44 100.00 94.44 98.11 96.30 88.57 100.00 100.00 100.00

Intelligent
terminal

CPU module fault 92.59 92.59 96.36 98.15 98.18 100.00 96.97 100.00 98.15 98.15
I/O module fault 85.92 90.37 89.51 94.81 93.57 97.04 100.00 94.81 96.32 97.04

Power fault of the power module 95.04 98.53 99.27 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Configuration error 99.06 94.59 100.00 97.30 100.00 98.20 100.00 97.30 100.00 98.20

Circuit
breaker

Control loop fault 100.00 100.00 100.00 100.00 100.00 100.00 97.79 100.00 100.00 100.00
Closing coil fault 93.38 90.71 97.08 95.00 97.12 96.43 92.96 95.00 97.86 97.86

Operating mechanism fault 81.17 89.29 87.84 93.53 91.72 95.68 96.95 94.96 97.12 97.12
Transmission mechanism fault 89.76 87.69 92.97 91.54 96.83 94.57 100.00 97.69 99.23 99.23

Contact fault 100.00 89.06 100.00 93.75 98.41 96.88 91.96 96.88 100.00 100.00

Switch

Communication link fault 82.35 90.74 85.22 90.74 89.29 92.59 96.24 95.37 95.50 98.15
Port fault 92.06 86.57 92.31 89.55 93.98 93.28 100.00 95.52 98.48 97.01

Communication packet loss 100.00 97.14 100.00 97.17 100.00 97.14 100.00 99.05 100.00 99.05
Power fault 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 12. Verification results of communication faults.

Communication
Links Fault Types

[6,25] Random Forest [26] [24] This Paper

UA (%) PA (%) UA (%) PA (%) UA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Merging
unit–Protective

relay

Merging unit output
port fault 87.13 91.67 87.88 90.63 91.92 94.79 91.14 93.75 92.08 96.88

Protective relay input
port fault 87.84 85.53 90.79 90.79 91.03 93.42 97.17 94.74 96.05 96.05

Communication optical
fiber fault 95.05 88.07 96.23 92.73 99.04 94.50 94.29 94.50 99.06 96.33

Protective relay–
Intelligent terminal

Protective relay output
port fault 77.63 89.39 88.41 92.42 89.86 93.94 91.86 93.94 95.52 96.97

Intelligent terminal
input port fault 86.05 88.10 91.76 92.86 91.86 94.05 91.23 94.05 94.19 96.43

Communication optical
fiber fault 80.36 83.33 94.12 88.89 94.34 92.59 98.18 96.30 98.11 96.30

Bus merging unit–
Line merging unit

Bus merging unit output
port fault 88.57 89.42 93.33 94.23 91.92 94.23 94.85 95.19 95.24 95.24

Line merging unit input
port fault 89.69 90.63 93.81 94.79 91.03 95.83 95.37 95.83 95.88 95.88

Communication optical
fiber fault 92.59 91.74 95.37 94.50 99.04 96.33 100.00 94.50 97.22 97.22

Intelligent terminal–
Circuit breaker

Intelligent terminal
output port fault 100 94.83 100 96.55 100 97.41 100.00 100.00 100 100

The average computing times of the validation process for the Decision Tree, Random
Forest, GDBT, RNN, and the proposed method are 7.5 ms, 23.4 ms, 24.1 ms, 72.6 ms, and
22.7 ms, respectively. Their highest overall accuracies are 91.60%, 94.58%, 95.84%, 96.54%,
and 97.83%; the corresponding Kappa coefficients are 91.32%, 94.40%, 95.70%, 96.43%,
and 97.79%, respectively. Based on the overall performance, the improved Random Forest
has high accuracy and computational efficiency, making it suitable for real-time systems.
Moreover, the improved Random Forest demonstrates superior user accuracy and producer
accuracy in classifying different fault types. Producer accuracy is the ratio of correctly
classified samples to all samples belonging to a category. In contrast, user accuracy is the
ratio of correctly classified samples to all samples classified as that category. Therefore,
the enhanced scheme presented in this paper effectively reduces the probability of the
misclassification of fault types.
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Some faults occur infrequently, resulting in an imbalance in sample sets, with certain
fault types classified as minority or majority classes. For example, the sampling out of step
of the merging unit, the CPU module error/exception and the configuration error of the
PR, the control loop fault and the contact fault of the CB, and the communication optical
fiber fault between the protection device–intelligent terminal are categorized as minority
class fault types. The comparison demonstrates that the proposed method achieves high
UA and PA in classifying minority classes. It supports the claim that the proposed method
exhibits excellent classification accuracy when dealing with fault tracking in unbalanced
data. While the other methods achieve 100% UA in the minority class, this merely indicates
that the other faults are not misclassified as the minority class. Furthermore, the lower
PA of the other methods in the minority class suggests that more minority class faults are
misclassified as other majority classes, resulting in a decrease in the UA of those majority
classes and ultimately lowering the overall classification performance.

When dealing with imbalanced classification problems, relying solely on accuracy and
recall metrics is insufficient to evaluate the performance of the classifier due to the influence
of the majority class. Therefore, this paper incorporates Kappa coefficients as voting
weights to assess the consistency between predicted and actual classes in the classification
results and to evaluate the classification bias of the decision trees. By employing a weighted
average strategy based on the Kappa coefficient, the results of decision trees with more
balanced classification performance carry greater significance, ensuring that the final
voting outcomes of the improved Random Forest exhibit high classification consistency
and low classification bias. Additionally, the Re-Relief F-based feature selection algorithm
measures the distance ratio between each sample and its nearest neighboring samples to
determine the importance of each feature for classification. Even in the presence of class
imbalance within the training set, the Re-Relief F algorithm selects features that effectively
differentiate between minority and majority classes, assigning them higher feature weights.
Since features with higher weights are more likely to be selected as node features, the ability
of the Random Forest to distinguish between minority and majority classes is enhanced.

Based on the above analysis, the approach proposed in this paper demonstrates
strong performance in terms of classification results both overall and for each fault type.
Additionally, it ensures a high accuracy rate for the classification of minority classes within
unbalanced data.

4.2.5. Comparison of Feature Selection Methods

In this paper, the Re-Relief F algorithm is utilized to evaluate feature importance in clas-
sification, with the objective of eliminating redundant features and enhancing classification
accuracy. To assess the impact of different feature selection methods on the classification
performance of fault tracking models, the Spearman correlation coefficient [31], Kendall
correlation coefficient [32], information gain (InfoGain) [33], and maximum correlation
minimum redundancy (mRMR) [34] are selected for conducting comparative experiments.
Among them, Spearman and Kendall correlation coefficients measure the importance of
features for classification by calculating the correlation between categories and features;
InfoGain uses information entropy to describe the degree of influence of features on the
classification results; and mRMR searches for the combination of features that have the
maximum correlation with the categories and the minimum redundancy among them.

The experimental procedure for comparing feature selection methods is as follows:
First, the feature weights of the alarm features are calculated according to the def-

initions of Spearman, Kendall, InfoGain, and mRMR, respectively. Then, these weights
are incorporated into the training process of the Random Forest. The features in the train-
ing subset are divided into three corresponding high, medium, and low feature subsets
(Wh, Wm, and Wl) based on their corresponding feature weights. The same number of
features from the three subsets are randomly selected as the candidate features of nodes.
Finally, each feature selection method is incorporated into the Random Forest algorithm
and repeated five times for training. The validation set is used to verify and compare the
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effects of different feature selection algorithms when combined with Random Forest. The
experimental results are presented in Table 13.

Table 13. Results of different feature selection algorithms.

No
Random Forest Spearman Kendall InfoGain mRMR This Paper

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

1 93.37 93.18 94.34 94.15 95.12 94.96 95.42 95.26 96.08 95.95 96.81 96.70
2 94.01 93.81 94.67 94.49 94.79 94.61 95.66 95.53 96.02 95.91 97.83 97.66
3 94.58 94.40 94.52 94.33 95.30 95.47 95.60 95.45 96.23 96.10 97.08 96.98
4 93.49 93.01 94.40 94.21 94.91 94.74 95.81 95.77 96.11 95.97 97.20 97.10
5 93.37 93.18 94.46 94.27 95.00 94.84 95.87 95.73 95.87 95.75 97.35 97.23

The Spearman and Kendall correlation coefficients measure the extent to which alarm
features contribute to classification by assessing the correlation between alarm features and
fault types. A comparison reveals that feature selection algorithms based on Spearman and
Kendall coefficients enhance both classification stability and accuracy to a certain degree.
Notably, the Kendall-based feature selection method demonstrates the best performance,
achieving an OA of 95.30% and a Kappa of 95.47% when combined with the Random Forest.

There is a correlation between fault types and alarm features in relay protection
systems and CBs. Moreover, duplication exists among features of different fault types.
InfoGain calculates the information gain for each alarm feature that corresponds to a specific
fault type. The higher the gain, the greater the impact on classification. Additionally, mRMR
comprehensively considers the correlation between alarm features and fault types, as well
as the redundancy within alarm features. In comparison with the correlation coefficient,
InfoGain and mRMR have a more prominent effect on the classification results.

Both the feature selection algorithm mentioned earlier and the proposed method
enhance the stability and accuracy of classification compared with the original Random
Forest. Additionally, the proposed method outperforms the other methods in terms of OA
and Kappa, demonstrating higher classification accuracy and consistency. The Re-Relief
F-based feature selection algorithm accentuates features with strong intra-class proximity
and significant inter-class differentials. This refined feature subset enables a more accurate
representation of the variations in fault types and their distances. In contrast to other
feature selection methods, the Re-Relief F-based approach proves to be more effective in
improving fault tracking outcomes for relay protection systems and CBs.

In addition, the feature selection method is a sample preprocessing method employed
before model training and does not participate in the process of training and running the
fault diagnostic model, so it does not affect the complexity and computational efficiency of
the proposed method.

4.2.6. Fault Tolerance in Case of Unreliable Alarms

The false and missing alarm message can result in errors and the loss of features in the
alarm feature set, thereby reducing the accuracy of the fault tracking model. To assess the
fault tolerance of the proposed method in handling unreliable alarms, a specific number
of alarm features in the validation set are chosen to undergo an inverse operation. This
operation involves setting the original “0” feature to “1” or the original “1” feature to “0”,
simulating false and missed alarms in the alarm messages.

The verification process is as follows:

1. An alarm subset with non-zero feature values is selected from the alarm feature set
of each validation set sample. Then, a certain number (u) of alarm features with a
value of “0” are randomly chosen, and their values are changed to “1”. This process
simulates the occurrence of false alarms.
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2. A certain number (v) of alarm features with a value of “1” are randomly chosen from
the alarm feature set of each validation set sample, and their values are changed to
“0”. This process simulates the occurrence of missed alarms.

3. The above methods are also utilized in the training and test sets to simulate false
alarms and missed alarms.

4. In this paper, the values of u and v are set in the range of [1, 2, 3] to simulate the
occurrence of false alarms and missed alarms for 1 to 3 alarm messages. Each value of
u and v is simulated five times to simulate the occurrence of false alarms and missed
alarms for different alarm features.

5. The processed training and test sets are used to train the fault tracking model, and the
processed validation set is fed into the fault tracking model to compare the classifica-
tion results in the case of false alarms and missed alarms. The OA and Kappa of the
classification results are counted, as shown in Table 14.

Table 14. Results in case of unreliable alarms.

No u = 1 (v = 0) u = 2 (v = 0) u = 3 (v = 0) v = 1 (u = 0) v = 2 (u = 0) v = 3 (u = 0)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

OA
(%)

Kappa
(%)

1 97.20 97.11 96.14 96.02 95.87 95.74 96.81 96.71 95.36 95.21 94.10 93.91
2 97.35 97.26 96.63 96.52 95.78 95.65 96.90 96.80 95.24 95.10 94.52 94.34
3 96.90 96.80 96.42 96.30 96.08 95.96 96.66 96.55 95.39 95.24 94.01 93.81
4 97.05 96.95 96.20 96.08 95.84 95.71 96.63 96.52 95.45 95.31 93.89 93.69
5 96.99 96.89 96.48 96.36 95.51 95.37 96.72 96.61 95.63 95.49 94.22 94.03

According to Table 14, despite the false and missing alarm messages, the proposed
method achieves a high overall accuracy and Kappa coefficient. This suggests that the
method has strong anti-interference and fault-tolerant capabilities. By comparing the
classification results with the same number of false and missing alarm messages, it is found
that missing alarms have a greater impact on the classification results. This phenomenon
is caused by the following two reasons: firstly, missing alarm messages may result in
crucial fault features being missed, preventing the fault tracking model from accurately
distinguishing between fault types; secondly, some fault types have fewer alarm features,
which further increases the missing probability of important alarm features.

Due to the unreliability of alarm messages, there may be some noises or missing alarm
features. In this paper, the Re-Relief F-based feature selection method is employed to
filter out the features with stronger relevance to the classification results and reduce the
interference of noise and redundant features. Randomly selecting features for training can
reduce the impact of missing or wrong features on a single decision tree. Even if a feature
is missing or wrong, it will only affect part of the decision tree, not all of the decision tree.

This paper employs weighted voting based on Kappa coefficients to assign higher
weights to decision trees that demonstrate greater reliability, thereby reducing the impact
of missing and erroneous alarm features on the final classification results. Moreover, the
result of the improved Random Forest is determined through weighted voting based on
the results of multiple decision trees, which can make up for the incorrect classification of
certain decision trees, thus improving the robustness of the model.

4.3. Case Analysis of Complex Faults

This section provides a detailed analysis of the fault tracing process based on the
improved Random Forest in various fault cases. The fault cases contain communication
faults in protection devices and intelligent terminals and double faults in neighboring and
non-neighboring devices. Through this case study, it can be proved that the proposed
method can accurately trace the complex faults of relay protection systems and CBs and
identify the causes of incorrect operation of PRs and CBs.
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The fault case takes a 220 kV substation in Shandong as an example, and its main
wiring is shown in Figure 9. Among them, 220 kV double buses (B11 and B12) connect
two outgoing lines (L11 and L12), two 110 kV double buses (B21 and B22, B31 and B32)
connect four outgoing lines (L21 and L22, L31 and L32), and two transformers (T1 and T2)
are connected between the buses.
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4.3.1. Case 1

Case 1 is a real fault case of a 220 kV substation with a line fault and CB rejection.
The fault scenario is as follows: a two-phase ground fault occurs on the 110 kV line L22
in Figure 9, and the main protection Lp22m detects the fault and sends out the tripping
signal. However, because of the output port fault of the protection device, the CB22 does
not receive the tripping signal and fails to trip. Therefore, CB failure protection Lp22f is
used as a backup protection to trip CB21, CBT12, CBB231, and CBB232 to isolate the faulty
line L22.

The alarm messages of the PRs and CBs are shown in Table 15. The alarm messages of
the secondary system of the substation are shown in Table 16.

According to Table 15, L22 is diagnosed as a faulty component. The corresponding
main and near backup protections for CB22 are Lp22m and Lp22p, and the CB failure
protection and corresponding CBs are Lp22f, CBT12, CBB231, and CBB232. The operation
states of the main, near backup, and remote backup PRs and their corresponding CBs are
(1, 0), (0, 0), and (1, 1). Their corresponding fusion confidence degrees are 0.5957, 0.2, and
0.72. According to the operation evaluation rules, it is concluded that Lp22m, Lp22f, CB21,
CBT12, CBB231, and CBB232 are normal, while the CB22 fails to trip.

The alarm features of the relay protection system and CB are extracted from the
secondary system alarm information in Table 16, as shown in Table 17. Alarm messages
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are issued by adjacent devices (PRs and intelligent terminals) at the same time. Based on
the fault tracking process in Figure 3, the alarm feature subset X1= {XGOOSE1, XSC1, XCOM1}
of the PRs and intelligent terminals is divided from alarm feature set X according to the
adjacent devices. The corresponding element in the alarm feature subset X1 of the alarm
messages in Table 9 is one, and the rest are zero, as shown in Equations (18)–(20) (due
to the large dimension of the alarm feature set, only the alarm feature set is shown with
non-zero elements). {

XGOOSE1 ={XGOOSE_IT1}
XGOOSE_IT1 ={1, 0, 1, 0, . . . , 0}

(18)

{
XSC1 ={XSC_PR1}

XSC_PR1 ={1, 0, 0, . . . , 1, 0, . . . , 0}
(19)


XCOM1 ={XCOM_PR1, XCOM_IT1}

XCOM_PR1 ={0, 0, 1, 0, . . . , 0}
XCOM_IT1 ={1, 0, 1, 0, . . . , 1, 1, 0, . . . , 0}

(20)

Table 15. Alarm messages of PRs and CBs in Case 1.

Substation Devices Statuses

HZ Station Line L22 protection Lp22m Operated
HZ Station Line L21 failure protection Lp22f Operated
HZ Station Line L21 Switch CB21 Tripped
HZ Station Transformer T1 switch CBT12 Tripped
HZ Station Busbar B21 Switch CBB231 Tripped
HZ Station Busbar B22 Switch CBB232 Tripped

Table 16. Alarm messages of the secondary system in Case 1.

Substation Interval Devices Alarms

HZ Station Interval 22 Line L22 Protection Lp22m Self-check alarm
HZ Station Interval 22 Line L22 Protection Lp22m Exception operation

HZ Station Interval 22 Line L22 Protection Lp22m Output communication
interruption

HZ Station Interval 22 Intelligent terminal GOOSE total alarm
HZ Station Interval 22 Intelligent terminal GOOSE interruption
HZ Station Interval 22 Intelligent terminal No GOOSE input messages

HZ Station Interval 22 Intelligent terminal GOOSE communication
interruption

HZ Station Interval 22 Intelligent terminal Input circuit
self-check error

HZ Station Interval 22 Intelligent terminal Input exception

Table 17. Alarm features of Case 1.

No. Feature Categories Alarm Features

1
GOOSE Alarm

GOOSE total alarm of the intelligent terminal
2 GOOSE interruption of the intelligent terminal

3 Device self-check
alarm

The self-check alarm of the protective relay
4 Exception operation of the protective relay

5

Communication alarm

Output communication interruption of the protective relay
6 No GOOSE input messages of the intelligent terminal
7 GOOSE communication interruption of the intelligent terminal
8 Input circuit self-check error of the intelligent terminal
9 Input exception of the intelligent terminal
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The subset of alarm features X1 is input into the fault tracking model based on the
improved Random Forest, and the output is:

Y1 = {0, 1, 1, 1, 0, 1} (21)

In looking at Table 2, the fault type is the output port fault of the PR, and there is
a communication fault in the fault tracing result. The alarm feature set X is empty after
removing the alarm feature subset X1, and the fault tracing result is the output port fault of
the PR. According to the fault tracing process in Figure 3, the CB refuses to trip without the
CB fault, and a communication fault occurs in the relay protection system. Therefore, the
CB rejection is caused by the output port fault of the PR.

In Case 1, the output port fault of the PR will cause the PR and the intelligent terminal
to issue alarm messages. The fault tracking process collects alarm messages from adjacent
devices that may have communication faults for fault tracking, which is conducive to
distinguishing device faults and communication faults.

4.3.2. Case 2

The adjacent device faults or communication faults in relay protection systems and
CBs may cause adjacent devices to issue alarm messages. Based on Case 1, this paper
simulates the simultaneous occurrence of an adjacent device fault and a communication
fault. It proves that the proposed method can distinguish between adjacent device faults
and communication faults. The details of Case 2 are as follows: a fault occurs at L22, and the
DSP module of the merging unit and output port fail at the same time, resulting in Lp22m
rejection. By the time the near backup protection (Lp22p) operates, CB22 starts tripping and
isolates the fault line L22.

The alarm messages of PRs and CBs in Case 2, based on the typical monitoring
information table of the 220 kV substation, are presented in Table 18. The alarm messages of
the DSP module fault are fused with Case 1 to obtain the alarm messages of the secondary
system in Case 2, as shown in Table 19.

Table 18. Alarm messages of PRs and CBs in Case 2.

Substation Devices Statuses

HZ Station Line L22 Protection Lp22p Operated
HZ Station Line L21 Switch CB22 Tripped

Table 19. Alarm messages of the secondary system in Case 2.

Substation Interval Devices Alarms

HZ Station Interval 22 Merging unit Total SV alarm
HZ Station Interval 22 Merging unit Sampling exception
HZ Station Interval 22 Merging unit Sampling exception
HZ Station Interval 22 Merging unit Device exception
HZ Station Interval 22 Line L22 Protection Lp22m Self-check alarm
HZ Station Interval 22 Line L22 Protection Lp22m Exception operation

HZ Station Interval 22 Line L22 Protection Lp22m Output communication
interruption

HZ Station Interval 22 Intelligent terminal GOOSE total alarm
HZ Station Interval 22 Intelligent terminal GOOSE interruption
HZ Station Interval 22 Intelligent terminal No GOOSE input messages

HZ Station Interval 22 Intelligent terminal GOOSE communication
interruption

HZ Station Interval 22 Intelligent terminal Input circuit self-check error
HZ Station Interval 22 Intelligent terminal Input exception
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According to Table 18, the operation states of the main, near backup, and remote
backup PRs and their corresponding CBs are (0, 1), (1, 1), and (0, 0). Their corresponding
fusion confidence degrees are 0.5917, 0.825, and 0.2. According to the operation evaluation
rules, it is concluded that Lp22p and CB22 are normal, while Lp22m fails to operate.

The alarm features of the relay protection system and the CB are extracted from the
secondary system alarm messages in Table 19, as shown in Table 20. Alarm messages
are issued by adjacent devices (merging unit with PR and PR with intelligent terminal)
simultaneously. Based on the fault tracking process of Figure 3, the alarm feature subset
X1= {XGOOSE1, XSC1, XCOM1} (Equations (18)–(20)) of the PR and the intelligent terminal,
and the alarm feature subset X2= {XSV2, XSC2, XCOM2} of the merging unit and the PR are
divided according to the adjacent device, as shown in Equations (22)–(24).{

XSV2 ={XSV_MU2}
XSV_MU2 ={1, 1, 1, 0, . . . , 0}

(22)


XSC2 ={XSC_MU2, XSC_PR2}

XSC_MU2 ={1, 0, 0, . . . , 1, . . . , 0}
XSC_PR2 ={1, 0, 1, . . . , 1, . . . , 0}

(23)


XCOM2 ={XCOM_MU2, XCOM_PR2}

XCOM_MU2 ={1, 1, 0, . . . , 0}
XCOM_PR2 ={0, 0, 1, 0, . . . , 0}

(24)

Table 20. Alarm features of Case 2.

No. Feature Categories Alarm Features

1
SV alarm

Total SV alarm of the merging unit
2 Sampling exception of the merging unit
3 Synchronization exception of the merging unit

4
GOOSE alarm

Intelligent terminal GOOSE total alarm
5 Intelligent terminal GOOSE interruption

6

Device self-check alarm

Device exception of the merging unit
7 The self-check alarm of the merging unit
8 The self-check alarm of the protective relay
9 Exception operation of the protective device

10 Output communication interruption of the merging unit

11

Communication alarm

SV communication interruption of the merging unit
12 Output communication interruption of the protective relay
13 No input GOOSE messages of the intelligent terminal
14 Communication interruption of the intelligent terminal GOOSE
15 Input circuit self-check error of the intelligent terminal
16 Input exception of the intelligent terminal

The alarm feature subsets X1 and X2 of adjacent devices are input into the fault
tracking model based on the improved Random Forest, and the output is as follows:{

Y1 = {0, 1, 1, 1, 0, 1}
Y2 = {0, 0, 0, 0, 0, 1} (25)

In looking at Tables 1 and 2, the fault types are the DSP module fault of the merging
unit and the output port fault of the protective relay.

There is a communication fault in the fault tracking results. The alarm feature set X is
not empty after excluding the alarm feature subset X1. Firstly, the communication fault is
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the output port fault of the PR, and then the alarm feature subset X3= {XSV3, XSC3, XCOM3}
of the merging unit is divided according to a single device.{

XSV3 ={XSV_MU3}
XSV_MU3 ={1, 1, 1, 0, . . . , 0}

(26)

{
XSC3 ={XSC_MU3, XSC_PR3}

XSC_MU3 ={1, 0, 0, . . . , 1, . . . , 0}
(27)

{
XCOM3 ={XCOM_MU3}

XCOM_MU3 ={1, 1, 0, . . . , 0}
(28)

The alarm feature subset X3 is input into the fault tracking model based on the
improved Random Forest, and the output is as follows:

Y3 = {0, 0, 0, 0, 0, 1} (29)

In looking at Table 1, the fault type is the DSP module fault of the merging unit,
consistent with the results of the subset X2. The result of the fault tracking is the output
port fault of the PR and the DSP module fault of the merging unit. According to the fault
tracking process in Figure 3, the PR rejection is caused by the DSP module fault of the
merging unit.

During the fault tracking process, the alarm feature subset of adjacent devices is input
into the fault tracking model to determine if there are any communication faults. The alarm
feature set is re-divided according to a single device for fault tracking after eliminating
the alarm feature subset of the communication fault. After two divisions of the alarm
feature set and fault tracking, the device faults and communication faults are distinguished.
Through the verification of Case 2, the fault tracking process does not incorrectly divide the
alarm features of the device and communication faults. It can accurately track the complex
scenario of device and communication faults.

4.3.3. Case 3

Case 3 simulates a complex fault scenario in which both the PR and the CB refuse to
operate, and faults in non-adjacent devices occur in the relay protection system. The details
of Case 3 are as follows: a fault occurs in L22, and the DSP module of the merging unit
fails, resulting in the Lp22m rejection. The Lp22p operates, but due to the configuration
error of the intelligent terminal, the CB22 does not receive the trip signal to refuse to trip.
Therefore, CB failure protection Lp22f is operated, and CB21, CBT12, CBB231, and CBB232 trip
and isolate the faulty line L22.

The alarm messages of PRs and CBs in Case 3, based on the typical monitoring
information table of the 220 kV substation, are presented in Table 21. By fusing the alarm
messages of the DSP module fault of the merging unit and the configuration error of the
intelligent terminal, the alarm messages of the secondary system of the Case 3 substation
are shown in Table 22.

Table 21. Alarm messages of PRs and CBs in Case 3.

Substation Devices Statuses

HZ Station Line L22 Protection Lp22p Operated
HZ Station Line L21 failure protection Lp22f Operated
HZ Station Line L21 Switch CB21 Tripped
HZ Station Transformer T1 switch CBT12 Tripped
HZ Station Busbar B21 Switch CBB231 Tripped
HZ Station Busbar B22 Switch CBB232 Tripped
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Table 22. Alarm messages of the secondary system in Case 3.

Substation Interval Devices Alarms

HZ Station Interval 22 Merging unit Total SV alarm
HZ Station Interval 22 Merging unit Sampling exception
HZ Station Interval 22 Merging unit Sampling exception
HZ Station Interval 22 Merging unit Device exception
HZ Station Interval 22 Intelligent terminal GOOSE total alarm
HZ Station Interval 22 Intelligent terminal GOOSE interruption
HZ Station Interval 22 Intelligent terminal No GOOSE input messages
HZ Station Interval 22 Intelligent terminal GOOSE communication interruption
HZ Station Interval 22 Intelligent terminal Input circuit self-check error
HZ Station Interval 22 Intelligent terminal Input exception

According to Table 21, the operation states of the main, near backup, and remote
backup PRs and their corresponding CBs are (0, 0), (1, 0), and (1, 1). Their corresponding
fusion confidence degrees are 0.2, 0.5, and 0.725. According to the operation evaluation
rules, it is concluded that Lp22p, Lp22f, CB21, CBT12, CBB231, and CBB232 are all normal,
while Lp22m and CB22 fail to operate.

The alarm features of the relay protection system and CB are extracted from the
secondary system alarm messages in Table 22, as shown in Table 23. There are no alarm
messages issued by neighboring devices at the same time in the alarm messages. According
to the fault tracking process of Figure 3, the alarm feature subset X3 = {XSV3, XSC3, XCOM3}
of the merging unit (such as Equations (26)–(28)) and the alarm feature subset X4= {XGOOSE4,
XCOM4} of the intelligent terminal are divided according to a single device, as shown in
Equations (30) and (31). {

XGOOSE4 ={XGOOSE_IT4}
XGOOSE_IT4 ={0, 0, 0, . . . , 1, . . . , 0}

(30)

{
XCOM4 ={XCOM_IT4}

XCOM_IT4 ={0, 0, 0, . . . , 1, . . . , 1, . . . , 0}
(31)

Table 23. Alarm features of Case 3.

No. Alarm Messages

1
SV alarm

Total alarm of the merging unit
2 Sampling exception of the merging unit
3 Synchronization exception of the merging unit

4 GOOSE alarm GOOSE configuration error of the intelligent terminal

5
Device self-check alarm

Device exception of the merging unit
6 The self-check alarm of the merging unit

7

Communication alarm

Output communication interruption of the merging unit
8 SV communication interruption of the merging unit
9 GOOSE panel configuration error of the intelligent terminal

10 Input configuration error of the intelligent terminal

The alarm feature subsets X3 and X4 of a single device are input into the fault tracking
model based on improved Random Forest, and the output is as follows:{

Y3 ={0, 0, 0, 0, 0, 1}
Y4 ={0, 1, 0, 0, 0, 0}

(32)
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In Table 1, the fault types are the faulty DSP module of the merging unit and the
misconfiguration of the intelligent terminal, which are identified as fault tracing results.
According to the fault tracing process in Figure 3, the protection rejection is caused by
the fault of the DSP module of the merging unit, and the protection rejection causes the
CB rejection.

Since the fault tracing model is designed as a single-input and single-output multi-
classification model, directly using alarm messages of complex faults as input does not
enable simultaneous identification of all fault types. Developing separate fault tracking
models for individual devices and communication faults results in multiple outputs and
inaccuracy results. In Case 3, the fault tracking process divides the alarm feature subset
based on individual devices, breaks down complex faults into multiple simpler faults for
tracking, and simultaneously determines the fault types of multiple faults occurring at
the same time. This study utilizes single-input and single-output fault tracking models to
achieve multi-label classification results, effectively addressing the challenge of achieving
complex fault tracking with a single model and mitigating the inaccuracies associated with
multiple models.

4.3.4. Scalability Analysis

Based on the fault tracing process in the above case study, it is evident that the fault
tracing in this paper consists of two parts: firstly, the identification of improperly operated
PRs and CBs, and secondly, the determination of fault types within the relay protection
systems and CBs associated with them.

The operation valuation rules are established based on the fundamental configurations
of main, near backup, and remote backup PRs. In Section 4.1, it is demonstrated that these
rules are applicable to both the IEEE 39-bus and 118-bus power systems. They effectively
identify incorrectly operated PRs and CBs in fault cases, thereby narrowing down the
fault tracing process to the corresponding substation intervals. This paper proposes a fault
tracing model and process for complex faults occurring in relay protection systems and
CBs. The alarm feature set is divided based on individual devices and neighboring devices,
allowing for the separation of complex faults into simple device faults and communication
faults. The above case study validates the feasibility of this division approach. Other types
of relay protection systems, such as busbar protection and transformer protection, also
incorporate essential components like merging units, protection devices, and intelligent
terminals within an intelligent substation. Consequently, these relay protection systems
can be further broken down into individual or adjacent devices for fault tracing.

In summary, this paper utilizes operation evaluation rules and a fault tracing process
to gradually convert the fault tracing problem into a fault categorization problem for basic
devices. It demonstrates that the proposed method is not only applicable to larger and
more complex power systems but also has good scalability for the fault classification of
different types of relay protection systems and CBs.

5. Conclusions

This paper presents a fault tracking method for the RPS-CB based on an improved
Random Forest algorithm. Firstly, the reasons for the incorrect operation of PRs and CBs
are analyzed, the fault types of a relay protection system–circuit breaker and corresponding
alarm messages are demonstrated, and the method of characterizing the alarm messages
is provided; secondly, the feature selection and voting strategy of the Random Forest
algorithm is improved, and the fault tracking model based on the improved Random
Forest is trained; then, the incorrectly operated PRs and CBs are identified through the
operation evaluation; finally, the fault tracking model and the process are utilized to derive
the reasons for the faults of the relay protection system and the CB and determine the case
of incorrect operation. The main contributions of this paper contain the following points:

1. A fault tracking model based on an improved Random Forest is constructed. This
model combines the Re-Relief F algorithm and the weighted voting strategy. The
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feature selection is optimized to ensure the stable classification performance of the
Random Forest. Higher weights are assigned to the decision trees with strong classifi-
cation performance, improving overall classification performance and accuracy.

2. An operation evaluation process is proposed for identifying PR and CB that are
incorrectly operated during complex faults, providing a target for fault tracking. The
complex faults verify the evaluation results, and it is confirmed that the evaluation
results are still reliable in the case of missing or false alarms.

3. A fault tracking process based on improved Random Forest is developed to realize
accurate tracking of complex faults such as device faults, communication faults and
multiple faults of the RPS-CB by dividing the alarm feature set and complex faults
into multiple simple faults.

After case validation and analysis, it is proved that the proposed method achieves
the fault tracing of the incorrect operations of PRs and CBs. This work not only provides
an important supplement to the fault diagnosis but also provides accurate and effective
references and suggestions, which helps to realize accurate operation and maintenance.

While fault tracing can accurately pinpoint faults in relay protection systems and
circuit breakers, it cannot prevent or anticipate them. Thus, our future research aims to
employ device operational data to evaluate the performance of the relay protection system
and CBs, predicting probable device failures and promptly alerting maintenance personnel
to perform necessary repairs or replacements. This approach aims to enhance the reliability
of both PRs and CBs.
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