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Abstract: As the world grapples with the pressing challenge of environmental sustainability, the
need for innovative solutions to combat air pollution has become paramount. Air pollution is a
complex issue that necessitates real-time monitoring of pollution sources for effective mitigation.
This paper explores the potential of swarm algorithms applied as a novel and efficient approach
to address this critical environmental concern. Swarm algorithms offer a promising framework
for coordinating fleets of drones to collaboratively monitor and analyze air pollution sources. The
unique capabilities of drones, including their agility, accessibility, and versatility, make them ideal
candidates for aerial data collection. When harnessed in a swarm, these drones can create a dynamic
and adaptable network that provides a more comprehensive and fine-grained understanding of air
pollution dynamics. This paper delves into the conceptual foundations of using swarm algorithms in
drone-based air pollution monitoring.
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1. Introduction

In the current day, the global community confronts numerous environmental obstacles,
one of the most significant being the preservation of the air we collectively inhale. A
prominent issue is air pollution [1], which arises from the expansion of factories, urban
areas, and human activities that have detrimental effects on air quality.

Air pollution is a constant source of concern in modern cities and has been linked to
numerous health problems. Pollutants are present in every area of our atmosphere, ranging
from harmful gasses to minute particle matter, and they directly endanger our circulatory
and respiratory systems. Using knowledge from a large corpus of research, we investigate
the complex ways various contaminants present harmful impacts on human health.

One of the most noticeable and immediate effects of air pollution is its assault on
the respiratory system. Inhaling polluted air can result in a range of respiratory issues,
from persistent wheezing and coughing to potentially fatal dyspnea. The aggravation of
symptoms can put those who already have a medical condition like asthma or chronic
obstructive pulmonary disease (COPD) at risk. Air pollution damages the cardiovascular
system by entering the bloodstream and not just affecting the lungs. Research has revealed
a concerning connection between cardiovascular illnesses, such as heart attacks and strokes,
and air pollution. Particulate matter, particularly tiny PM2.5, works as a sneaky collaborator
to undermine the health of the heart and blood vessels. These are just two instances of the
wide range of effects on human health. Long-term exposure to high air pollution levels has
negative effects on mortality rates. Due to the negative effects that air pollution can have
on fetal development, pregnant women are particularly vulnerable, as well as several other
groups [2].

This study examines swarm algorithms [3] as a powerful and economical approach to
identifying the root cause of problems in instances when standard methods such as camera
feeds or human investigation are not feasible.
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The integration is built on the conceptual foundations that explore the theoretical
principles of swarm algorithms and fuzzy systems [4] used for monitoring air pollution
with drones. The distinct characteristics of swarm algorithms are examined, highlighting
their adaptability and effectiveness in coordinating groups of drones for collaborative
analysis of pollution sources. In addition, fuzzy systems play a crucial role in enhancing
the decision-making capabilities of the monitoring system. Fuzzy logic, a mathematical
framework that deals with uncertainty and imprecision, allows for incorporating human-
like reasoning into the system. In the context of air pollution monitoring, fuzzy systems can
assist in handling complex and ambiguous data, providing a more nuanced understanding
of environmental conditions. This integration of swarm algorithms and fuzzy systems
creates a comprehensive approach that leverages the strengths of both methodologies for
robust and intelligent air pollution monitoring with drones.

Factories, automobiles, and diverse human activities collectively generate a combi-
nation of pollutants in the atmosphere. This matter transcends particular locations and
impacts both metropolitan centers and serene rural regions. Given the escalating severity
of air pollution, it is imperative to develop more effective methods for monitoring and
regulating it continuously. The conventional techniques for monitoring air pollution are
subject to constraints, particularly when considering the dynamic nature of pollution levels
over time. Therefore, it is imperative we adopt novel and inventive methodologies.

An effective approach involves employing swarm algorithms, which draw inspiration
from the cooperative behavior observed in animal groupings. These algorithms provide a
versatile method for monitoring and analyzing pollution sources. An essential aspect of
transforming our approach to air pollution is integrating swarm algorithms with drone
technology [5,6]. Drones are valuable instruments due to their agility, user-friendliness, and
ability to gather aerial data [7]. However, their computing capabilities are rather restricted,
making them an ideal match for swarm behavior. Their capabilities are highly suitable for
effectively monitoring air pollution, as evidenced by their increasing utilization for this
specific purpose in recent years [8].

Integrating swarm algorithms with drones offers the capacity to provide immediate
and comprehensive observations of the dynamic variations of air pollution. This study
seeks to investigate the potential utilization of swarm algorithms in conjunction with drones
to monitor air pollution sources more efficiently. An important objective is to achieve this
without requiring constant human intervention. Additionally, the study aims to address
the challenge of parameterizing swarm algorithms, which is typically a complex task.

An area of particular emphasis is a swarm algorithm that draws inspiration from the
behavior of Carthaginian war elephants [9]. This technique has the potential to greatly
enhance pollution source detection by increasing accuracy efficiency, and yielding superior
results and improving simplicity of usage. The study plan entails incorporating swarm
behavior with deliberate adaptations to accommodate wind patterns and establish a re-
silient scanning system. Supplementary agents positioned at the periphery of the search
region have a vital function in verifying pollution’s origins, enhancing the entire system’s
dependability. This study is located at the convergence of environmental science, artificial
intelligence, and drone technology.

The next section of the study will provide a thorough explanation of the theoretical
underpinnings of swarm algorithms, specifically focusing on the approach inspired by
Carthaginian war elephants. This project endeavors to integrate swarm algorithms with
drone technology to provide a contemporary and precise solution for monitoring air pollu-
tion in real-time. Additionally, it attempts to establish a theoretical basis for scalable and
flexible pollution management techniques by utilizing swarm algorithms. The objective of
this comprehensive investigation extends beyond immediate considerations of air pollution.
Its objective is to establish a detailed plan for a future in which cutting-edge technologies
like drones and heuristic approaches collaborate to tackle the pressing environmental issues
of our era.
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As we investigate swarm algorithms and their incorporation for air pollution scanning,
it is evident that this work extends beyond a mere scientific quest; it represents a dedication
to the environment. Addressing air pollution involves more than technological solutions;
it requires comprehending and minimizing the issues most effectively. By employing
ingenuity, cooperation, and mindful effort, we can discover the appropriate measures to
achieve a future where air pollution could become a remote recollection.

2. Material and Methods

The Carthaginian War Elephant Swarm Optimization (CWESO) algorithm, introduced
in the paper “The Elephant in the Room: Swarm Algorithms Inspired by Warfare”, is a
custom-designed algorithm created with the explicit goal of being highly adaptable to
different input functions and with a simple approach to parameterization. The following
is an examination of the distinctive qualities of this algorithm and its derivation from the
cooperative actions witnessed in historical battlefields.

The CWESO is based on the cooperation and strategic actions of Carthaginian war
elephants. These elephants, renowned for their coordinated locomotion across many land-
scapes, serve as a paradigm for an algorithm that surpasses traditional adaptation. Instead,
it transforms the process of identifying pollution sources. The system emulates the synchro-
nized movements and communication observed in Carthaginian war elephants. It utilizes
ideas of collaboration, adaptability, and strategic decision-making to enhance the precision
and effectiveness of identifying pollution sources. Just like how elephants on the battlefield
can be used to make coordinated decisions, the algorithm promotes teamwork among the
individual pieces, which in this case are the drones. The program facilitates instantaneous
connection and exchange of information, allowing drones to collaboratively navigate and
adapt to evolving air pollution patterns. The system enables drones to adapt to different set-
tings, drawing inspiration from the battlefield behavior of Carthaginian war elephants. The
versatility of the monitoring system guarantees its continued effectiveness in response to
variations in wind patterns, meteorological conditions, and dynamics of pollution sources.
The program integrates tactical movement patterns influenced by how Carthaginian war
elephants navigate intricate terrains. By adhering to these patterns, drones optimize their
routes to methodically cover large areas, hence improving the overall efficiency of identi-
fying pollution sources. This section examines the potential benefits of the Carthaginian
War Elephant Swarm algorithm in monitoring air pollution. The algorithm offers a hopeful
foundation for effectively monitoring pollution sources by improving source identification
accuracy and adapting efficiently to changing environmental conditions.

In short, the Carthaginian War Elephant algorithm is a swarm algorithm that draws
inspiration from the coordinated movement and strategic actions exhibited by Carthaginian
war elephants. Now, let us analyze the functioning of this algorithm:

1. Initialization:

• The algorithm begins by initializing a data frame (‘result_data’) to store outcomes,
x-coordinates (‘x’), and y-coordinates (‘y’);

• Unique positions for virtual elephants are generated randomly distanced from
each other within a specified range (‘lb’ to ‘ub’);

• Each elephant position is associated with a random movement capability.

2. Elephant movement and outcome evaluation:

• For each elephant position, the algorithm iterates through the y-coordinates
based on the elephant’s movement capabilities;

• Outcomes are evaluated for each position, and the results are stored in the
‘result_data’ data frame;

• Additionally, the algorithm implements a lance attack direction, adding further
outcomes to the data frame.

3. Variability in elephant movement:
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• The algorithm introduces variability in elephant movement by considering dif-
ferent types of ranges for lance attacks;

• For each type of range, the algorithm calculates outcomes for the current position
with varying offsets.

4. Removing duplicates and sorting:

• Duplicate positions are removed from the result data frame to ensure unique
configurations;

• The data frame is then sorted based on the evaluated outcomes.

5. Selection of top positions:

• The algorithm retains only the top ‘criter’ number of positions from the sorted
result data frame.

6. Troop movement simulation:

• For each selected position, the algorithm simulates troop movements;
• Unique random positions for troops are generated around the selected position;
• The troop positions are sorted for systematic movement.

7. Line of attack and outcome evaluation:

• For each troop position, a line of attack is generated;
• Outcomes are evaluated for each attack position along the line of attack.

8. Final selection and return:

• The algorithm selects the top outcome from all evaluated positions and returns
the corresponding x and y coordinates.

In summary, the Carthaginian War Elephant Algorithm emulates the collaborative and
strategic behaviors of Carthaginian war elephants between each elephant, and in the final
stage, it scans the battlefield using much more precise agents called “troops”. It evaluates
outcomes based on various positions, introduces variability in movement, and selects
optimal troop positions for attacks. The algorithm aims to find the most favorable positions
that maximize the overall outcome, making it a dynamic and adaptive swarm algorithm
without passing function-specific parameters other than criter, representing how many
outcomes we want to store.

To better represent the behavior of each agent, the whole algorithm can be divided
into two steps, discussed below.

After an initial investigation, it became clear that using this approach showed very
promising results when applied in a simulated environment in a fictional domain. The
simulation was built with a blend of Python-based tools and a tailor-made benchmarking
tool for monitoring the values calculated by microcontrollers. Python, known for its vast
array of libraries and frameworks, enabled the development of a dynamic simulation
environment. A dedicated program was developed in Python to replicate the movements
of drones and implement the influence of wind factors. The CWESO algorithm, which
formed the foundation of the simulation, was tasked with creating stochastic movements,
computing results, and developing movements in accordance with the specified criteria,
which was initially proposed in R and had to be rewritten to Python to allow for the use
in MicroPython controller boards with replacement of official Numpy module with ulab
module, for the same reason the fuzzy logic had to be simplified as the official fuzzy logic
modules are not yet ported to microcontrollers. In addition, a customized benchmarking
tool was created to assess and illustrate the algorithm’s performance using plotly. The
purpose of this tool is to monitor and assess the algorithm’s efficiency and efficacy in
different simulated scenarios. We were able to evaluate the algorithm’s capacity to adjust
and discover optimal solutions in a changing environment, yielding significant insights into
its performance. However, after careful examination and further analysis, we have reached
a clear and certain conclusion that translating this achievement into real-life situations
may be difficult due to external circumstances. The primary difficulty is the widespread
influence of the wind, a powerful force that significantly affects the feasibility of this
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technique. Our examination uncovered a crucial relationship between the wind’s intensity
and the resulting data spread within the assigned search area. The complicated link
between these factors adds a high level of complexity, which greatly reduces the practicality
of implementing the proposed approach in real-world, non-simulated environments. As
the wind intensity increases, the previously positive results reported in the controlled,
artificial environment become more scattered and, as a result, make the methodology
less dependable.

Essentially, although the initial exploration of the simulated realm showed promising
signs, the shift to real-world implementation requires a reassessment of the technique’s
effectiveness. The significant impact of external factors, particularly the wind component,
highlights the necessity of adjusting and improving the methods to match the complexities
and unpredictability of real environmental conditions. This marks a significant milestone
in our continuous pursuit of novel solutions that connect theoretical potential with real-
world application.

The influence of wind dynamics on drone-based air pollution monitoring is a crucial
component that greatly affects the precision and dependability of the findings. The presence
of wind, a dynamic and unpredictable factor, adds intricacies that need to be meticulously
taken into account to guarantee the efficiency of pollution detection approaches. As air
currents transport pollutants away from their origin, the levels and dispersion of these
pollutants might differ in terms of space and time. The scattering of pollutants can provide
difficulties in precisely determining the precise origin and accurately evaluating the con-
centration of pollutants at specific locations. The wind’s influence introduces fluctuations
in pollutant concentrations, particularly in outdoor settings, leading to variability. This
variability can be significant at various elevations and distances from sources of pollution.
Drones, equipped with pollution level measuring sensors, may face difficulties in accu-
rately capturing these fluctuations, resulting in potential mistakes in the gathered data.
Wind conditions also directly affect the navigational skills of drones [10]. Powerful gusts
can impact the stability and maneuvering capabilities of drones, perhaps causing them to
deviate from their intended flight paths. This divergence can lead to an uneven distribution
of data collecting, which can impact the thoroughness of the pollution mapping process.

The displacement of contaminants in the atmosphere, directed by air currents, might
alter the manner in which sensors on unmanned aerial vehicles measure and analyze
pollution levels. Fluctuations in sensor readings caused by the dynamic nature of wind-
induced pollution dispersion necessitate meticulous calibration and consideration of wind-
related variables to guarantee the accuracy of air quality assessments.

The complex movement of wind presents substantial difficulties in precisely deter-
mining the origins of pollution. Pollutants can form intricate and interrelated dispersion
patterns when they travel across long distances. Drones that depend on conventional
algorithms for identifying pollution sources may have challenges in differentiating between
nearby and faraway sources, affecting the accuracy of determining the source. Adaptive
techniques are crucial for addressing the influence of wind on air pollution measurements.
Incorporating up-to-date weather information into the drone’s operational framework
enables flexible modifications in flight routes and sampling techniques.

Furthermore, the integration of edge drones strategically placed at the boundaries
of the search region acts as stationary markers, assisting in capturing alterations in envi-
ronmental dynamics caused by wind. When it comes to using drones for monitoring air
pollution, it is crucial to prioritize the comprehension and reduction of the impacts caused
by wind dynamics. The study showcases a complete strategy for addressing wind-related
difficulties by integrating advanced algorithms, real-time weather data, and strategic drone
deployment. As technology advances, it will be essential to consider the complex relation-
ship between wind and pollutant measurements to improve the precision and dependability
of environmental evaluations carried out using drone-based techniques.

To tackle potential issues arising from environmental conditions, we implemented a
strategic improvement to the algorithmic framework. This improvement entailed deploying
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either four or eight additional drones strategically positioned at the edges of the actively
surveyed search plane. The major purpose of integrating these edge drones was to establish
fixed reference points within the spatial domain. The drones remained stationary at a
constant height, acting as stable reference points to counteract extrinsic factors such as
changes in wind patterns. The immobile characteristics of these boundary drones played a
crucial role in collecting the nuanced fluctuations in environmental circumstances. When
exposed to the force of prevailing winds, these immobile drones served as dependable
indicators of alterations in the environmental dynamics over the designated search area.
The real-time data on wind perturbations played a crucial role in making algorithmic
adjustments, allowing our system to react dynamically to changing conditions. Through
careful placement of drones along the periphery of the search region, we successfully
converted them into sentinel nodes that detected changes in the surroundings. This enabled
us to consider and incorporate these modifications into our algorithmic decision-making
process. The agile relocation of our drones, guided by the knowledge obtained from the
stationary edge drones, resulted in a search approach that was more prompt and adaptable,
hence improving the overall strength and effectiveness of our exploratory endeavors.

The incorporation of edge drones into our system is distinguished by its inherent
simplicity, utilizing easily accessible sensors [11] to assess both the initial value and wind
intensity. This efficient method enables quickly gathering crucial information, establishing
the basis for a strong operational structure. The primary operations of these edge drones
encompass the computation of wind intensity, ongoing refreshes of the pertinent data,
and a flexible placement mechanism to synchronize with the mean values obtained from
initial measurements.

In order to control these drones efficiently, we have incorporated a fuzzy system [12]
that reacts appropriately only when the wind speed surpasses a specific threshold, requiring
a modification in the drone’s course. This allows us to represent variable values within the 0
to 1 range, indicating the degree to which an element belongs to a specific set. By adopting
this methodology, we emulate human reasoning [13] while simultaneously accounting for
the imperfect and subjective nature of real-world pollution measurements. Fuzzy logic finds
extensive application in control systems [14], artificial intelligence, and decision-making
processes that involve substantial ambiguity and uncertainty [15–17]. The tool’s capacity to
manage intricate, practical situations renders it a significant asset in diverse applications,
enhancing the development of computer systems that are more adaptable and reminiscent
of human behavior [18,19]. Specifically, we utilize fuzzy logic to govern the actions of the
drones based on the prevailing wind force and direction. This strategic implementation is
particularly valuable due to wind conditions’ inherently “fuzzy” nature. Winds, by their
very nature, exhibit variability and uncertainty. Fuzzy logic provides an ideal solution in
this context, allowing for nuanced and adaptive responses to the dynamic environmental
factors affecting drone navigation. The decision to incorporate fuzzy logic stems from its
ability to effectively handle imprecise and uncertain information. In the context of wind
management, the fuzzy system reacts discerningly only when the wind speed surpasses
a predefined threshold, indicating the need for a course modification. Fuzzy logic, as a
mathematical framework, excels in capturing and addressing the uncertainty inherent in
decision-making processes. Unlike classical binary logic, fuzzy logic introduces degrees
of membership, enabling a more nuanced representation of truth that aligns with the
inherently imprecise nature of environmental variables.

By strategically employing fuzzy logic, we were able to reduce the effects of wind
while maintaining a satisfactory level record of particle density. This method allows us to
achieve a well-rounded balance between our aims. When there is a notable decrease in
the number of particles and the direction of the wind is identifiable, our system smartly
adapts its trajectory to align with the accurate route. The collective decision-making process
among the drones is crucial in optimizing the effectiveness of the search operation. By
ensuring that all drones autonomously align with a consensus direction, we can fully
exploit the capabilities of our search field without incurring any inefficiencies. On the
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other hand, in the event of a lack of agreement among the drones, they respond as a group
by increasing the area being searched. Expanding the area under examination has the
benefit of maintaining the coverage of prospective sources inside the field but at the cost of
speeding up the search for solutions.

In order to fix this problem and improve the flexibility and effectiveness of our system,
we are introducing a supplementary group of drones called “scout” drones. These entities
imitate the actions of scout bees, exploring their surroundings to find the best options and
communicating with each other to coordinate the entire group toward a better outcome.
This scout drone mechanism incorporates advanced techniques inspired by nature’s effec-
tive scouting procedures to enhance the search process and direct the collective intelligence
of the drone swarm toward optimal results. The seamless combination of edge drones and
scout drones demonstrates a comprehensive strategy for tackling search and reconnaissance
operations, utilizing both simplicity and complexity to achieve improved performance.

3. Results

After successfully incorporating both edge drones and scout drones into our system,
the results generated by our advanced code show great potential in a simulated environ-
ment based on real-world collected data. Our approach efficiently identified the global
optimum, the main source of pollution, without the need for extensive scanning of the
whole search area or reliance on traditional camera feeds. The seamless cooperation be-
tween edge drones and scout drones has greatly improved the efficiency and precision
of our detecting process. Our solution combines complex algorithms and state-of-the-art
drone technology to efficiently identify targets while reducing the time and resources
typically needed for such tasks. The nimbleness and independence of our edge drones
were crucial in accelerating the detection process, allowing us to quickly pinpoint the
origin of pollution. This innovative approach, characterized by cleverness and accuracy,
signifies a fundamental change in how environmental monitoring and resource utilization
are conducted.

Moreover, removing the need for exhaustive search patterns and camera feeds is
a significant advancement in optimizing our system. By using the distinct capabilities
of edge and scout drones, we have successfully surpassed the restrictions of traditional
approaches, providing a stronger and more efficient solution to the task of detecting and
resolving environmental pollution at its source. Essentially, the effective execution of
our combined drone system signifies a significant achievement in the field of pollution-
detecting technology. The results obtained not only confirm the effectiveness of our method
but also establish the foundation for a more sustainable and efficient future in the field of
environmental monitoring and repair.

The fusion of the Carthaginian War Elephant Swarm Optimization algorithm with a
fuzzy decision system and drone technology has produced encouraging outcomes in the
pursuit of effective and instantaneous air pollution surveillance.

3.1. Implementation of the Carthaginian Elephant Swarm Optimization Algorithm

The CWESO algorithm, which draws inspiration from the coordinated movements
and strategic actions of Carthaginian Elephants, has been effectively implemented in a
virtual setting. The algorithm showcased its versatility by adjusting to several input
functions with minimum parameterization. The program employs a distinctive strategy
by imitating the cooperative behaviors witnessed in elephants during military conflicts,
promoting instantaneous communication and exchange of information among unmanned
aerial vehicles.

The CWESO algorithm consists of several crucial parts. Firstly, virtual elephants are
initialized with random positions and movement capabilities. Then, the outcomes for each
position are evaluated. Next, there is variability in movement, followed by the removal of
duplicates. The top positions are selected, and a troop movement simulation is conducted.
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The algorithm, as illustrated in Algorithm 1 and Figure 1, is both simple and adaptable,
making it a highly promising choice for identifying pollution sources of different kinds. It
has minimal impact on computational power while significantly improving the speed of
obtaining results. This is particularly advantageous considering the limited battery storage
of smaller and more affordable drones.

Algorithm 1. CWESO algorithm

1: Initialize result_data with columns outcome, x, and y
2: Generate unique elephant positions within the specified range
3: for each elephant position in elephant positions
4: Generate random movement capabilities for the elephant
5: for each y value based on elephant movement capabilities
6: Calculate outcome of the current position and add to result_data
7: Generate random value of lance_direction
8: for each range in {5, 10}
9: Calculate outcome of lance_direction * range point and add to result_data
10: Remove duplicate positions and sort result_data by outcome
11: Select the top criter number of positions in result_data
12: for each row in result_data
13: Generate random positions for troops around the given position with precision
14: for each troop position
15: Generate a line of attack around the troop position
16: for each attack position on the line
17: Check if the attack is within range
18: If within range, calculate outcome and add to result_data
19: Order result_data by outcome
20: Select the top row of result_data
21: Return a list containing result_data
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Figure 1. Graphical representation of actions done by agents (drones) at each step. (a) In the first part
of the algorithm, the drones behave like elephants when they scan over one axis while diverging to
random left or right by the amount of “lance distance” and direction chosen at random. (b) In the
second part, the drones adapt the behavior of troops where they are concentrated much narrowly,
and they scan across the second axis based on the best results from the previous iteration.
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3.2. The Influence of Wind Factor on Algorithm Performance

The introduction of real-world measurement settings into simulated systems revealed
the significant influence of external elements, namely wind dynamics. The wind’s intensity
displayed a crucial association with the spread of data throughout the search area. The
previously encouraging outcomes observed in controlled settings became sporadic and less
dependable as wind strength escalated, underscoring the want for adaptable approaches.

3.3. Incorporation of Edge Drones

To address the difficulties presented by wind dynamics, a strategic improvement was
implemented by integrating edge drones. The drones, strategically placed at the edges of
the search aircraft, functioned as fixed reference points to counteract external forces. The
edge drones supplied instantaneous data on wind-induced environmental disturbances,
allowing for adaptive modifications to the algorithm. The findings, depicted in Figures 2–4,
showcase the system’s capacity to adjust to varying wind conditions.
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Figure 2. Graphical representation of results when applied to the simulated environment. (a) This
represents each stage of best points in each run and the troops stage. In blue, we see all points
considered best by each agent. The red point is the outcome, which is also the global known
resolution. (b) Graph B represents the results after including the “wind” factor in our simulation,
which unfortunately scatters the best solution towards “local optimums”.

3.4. Application of Fuzzy Logic

Implementing a fuzzy logic system was incorporated into the swarm algorithm [19]
to guide the scout drones and control edge drones, ensuring a well-balanced approach
to objectives in the presence of different wind conditions. In addition, scout drones were
introduced to improve adaptability and efficiency. These drones, which were influenced by
the scouting techniques of bees, were deployed to identify the most favorable conditions
and communicated with each other to coordinate the swarm towards an optimal outcome.
Incorporating edge and scout drones demonstrated a comprehensive strategy for tackling
obstacles in search and reconnaissance operations while implementing fuzzy logic, which
facilitates nuanced decision-making by drones, enabling adaptation to the variability and
uncertainty of wind conditions. Because wind is a very dynamic factor, using typical binary
logic in code was impossible. The fuzzy system considers wind force and its direction,
introducing degrees of membership based on each sensor measurement to represent en-
vironmental parameter variations. Based on that membership, the drones communicate
the wind influence between each agent, and the swarm is effectively steered to adjust to
wind influence. Adjusting the single drone and communicating its position contributes



Electronics 2024, 13, 577 10 of 17

to improving the position of the whole swarm and provides a well-balanced approach by
guiding drones through decision-making that first considers primary mission objectives
and then simplifies dynamic environmental factors. Degrees of membership in fuzzy logic
effectively weigh factors, allowing drones to prioritize objectives based on prevailing wind
conditions without losing sight of wind influence on the source of pollution. This replicates
the imprecise and subjective nature of environmental conditions, enabling drones to make
decisions aligned with real-world scenarios’ fuzzy and uncertain nature (Figures 5 and 6).
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Figure 6. Graphical representation for simplified fuzzy membership for wind direction used by the
outer ring drones.

Drones in the outer ring (scouts and outer edge)have been bundled with a simplified
software fuzzy logic controller, an essential element that converts unprocessed wind speed
and direction data into practical and useful observations. The fuzzy logic controller operates
by performing the fuzzification process, in which accurate wind condition readings are
classified into fuzzy values. Wind speed is categorized into specific levels, from ‘No
Wind’ to ‘Very Strong Wind’, while wind direction is divided into sectors, such as ‘North-
Northeast’ or ‘Southwest’. It is, however, important to mention that the wind speeds could
also be easily adjusted to follow the well-known Beaufort scale, despite it being known to be
usually a very human-based fuzzy system that easily allows for such implementations and
could be even further specified if needed but it was simplified due to simulation restraints.

The calculation procedure during our simulations incorporates membership functions
that are simple linear representations but could also be built to precisely depict the nuances



Electronics 2024, 13, 577 12 of 17

and fluctuations of wind behavior in following regions influenced by natural factors such as
the presence of mountains or different atmospheric pressures. For example, a wind speed
measurement of 15.1 m/s can be classified as both Moderate and Strong Wind’ to different
degrees, reflecting the inherent uncertainty in environmental conditions. After the wind
data is subjected to fuzzification, the fuzzy logic controller employs a predetermined set of
rules constructed based on pre-established guidelines. According to a system rule, when
encountering a ‘Moderate Wind’ blowing from the southwest, the drone should increase
its height and slightly adjust its formation towards the northeast. These rules are flexible
and adjustable, refined by continuous observations and feedback from the environment,
improving the system’s accuracy and ability to respond.

The main advantage of the fuzzy logic system is its capacity to provide a range of
potential actions, effectively handling the uncertainty present in real-life situations. Our
swarm technique involves decision-making that goes beyond the boundaries of individual
drones, creating a collaborative environment where the actions of one drone impact the
collective movement of the entire flock. This collaboration guarantees that modifications
made by individual drones in reaction to specific wind conditions are seamlessly incor-
porated into the collective movement plan of the drone flock. By employing fuzzy logic,
wind measuring drones are capable of not only responding to immediate fluctuations in
wind conditions but also of proactively predicting and adapting their actions to include the
wind factor.

The rule set of the fuzzy logic system of the wind measurement drones is precisely
crafted manually to handle diverse wind situations effectively. These criteria, derived
from drone flight dynamics, are crucial in ensuring that the drones adjust their movements
properly to uphold the integrity of the air pollution monitoring mission. However, those
dynamics must be different based on the hardware used. The system has principles that
adapt to variations in wind velocity, ranging from calm to strong winds. For example, if
the system detects a ‘Strong Wind’ report, it will instruct the drone to ascend to reduce the
effects of turbulence and maintain stable circumstances for precise sensor measurements.

In addition, rules based on wind direction are designed to enhance the drone’s posi-
tional adjustments according to the identified wind direction. A directive may instruct a
drone to make a modest adjustment in its location towards the southwest when it detects a
northeastern wind. This adjustment would counteract the wind’s effect and stabilize the
drone’s position, allowing for efficient pollution monitoring. The rule set has advanced
protocols that consider both the velocity and orientation of the wind. These regulations
offer subtle and detailed answers to intricate wind situations. If a ‘Moderate Wind’ is
identified coming from the south, a rule may be triggered, instructing the drone to maintain
its present height but move slightly northward. This will optimize the drone’s capacity to
monitor areas with concentrated pollution caused by wind patterns.

In addition, the regulations also consider the potential influence of wind conditions on
the spread of pollution, which is vital for drones operating within urban areas to measure
pollution levels accurately. There are numerous additional uses of those rule sets that are
easier to write thanks to fuzzification and easier to maintain. For example, the drones on
the outer edges could be directed to maintain their position on a given side of the group,
considering specific wind patterns while moving to adjust the position of the flock on
the other side. This would ensure that the drones collectively concentrate their efforts on
locations with the highest pollution levels. In situations of very strong wind conditions, the
system may incorporate emergency and safety processes as well. An established regulation
may require drones to lower their height and limit their lateral motions in the presence
of strong winds. This precaution significantly reduces the likelihood of destabilization
or damage.

These regulations guarantee that the wind-measuring drones not only promptly react
to current wind conditions but also adjust their actions to maximize the collective capacities
of the entire group in monitoring air pollution. Each drone effectively contributes to
the collective aim of identifying pollution sources with precision and dependability by
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addressing a wide range of environmental circumstances. Due to wind conditions being
hard to specify in a single binary category, fuzzification of those input values into a fuzzy
logic system, despite it being simplified, yields very satisfactory results.

It is important to note that the fuzzy system in this approach was implemented in
a simplified form due to a lack of official modules available for microcontrollers, and
scikit-fuzzy (also known as kfuzzy) modules rely on Numpy and SciPy modules, which are
currently being ported towards microcontrollers, in case that this effort will be completed it
is important to note that the implementation could yield even further benefits as we could
implement reactions to measurements also based on fuzzy logic improving the precision of
adjustments greatly.

3.5. System Performance

The successful incorporation of both edge drones and scout drones into the environ-
mental monitoring system was crucial in swiftly and accurately identifying the sources of
pollution. The cooperative interaction between these two categories of drones, coordinated
by advanced algorithms, led to a remarkably effective and resource-efficient method for
identifying pollution. This successful fusion was a significant turning point in the field of
pollution detection technology, introducing a new era of adaptable and intelligent systems.
The edge drones were deliberately placed at the boundaries of the search plane to serve
as active guards that provide important fixed reference points against external factors,
namely the unpredictable movements of the wind. Their stationary placements at uniform
elevations allowed them to stabilize the entire system, acting as dependable indications of
environmental disturbances produced by changing wind conditions. The real-time data on
environmental changes played a crucial role in adapting the behavior and decision-making
of the drone swarm.

4. Discussion

This study represents a notable advancement in the field of air pollution monitoring by
combining swarm algorithms, notably the Carthaginian War Elephant Swarm Optimization
(CWESO) method, with fuzzy system and drone technology. The favorable results and
inventive approaches derived from this study create opportunities for future advancements
in the realm of ecological preservation. The incorporation of edge drones played a crucial
role in tackling the difficulties presented by ever-changing climatic conditions, such as
wind dynamics. Nevertheless, further investigation could explore the optimization of
edge drone deployment more extensively by taking into account variables such as altitude
modifications, alternative positioning tactics, or the integration of supplementary sensors
to improve data gathering.

Investigating the interaction between edge drones and other technologies, such as
sophisticated weather prediction models, can enhance the algorithm’s ability to adapt
to practical situations [20]. Moreover, the utilization of fuzzy logic in controlling scout
drones demonstrates the possibility of integrating more advanced decision-making systems.
Potential future research might investigate the application of machine learning method-
ologies [21] to facilitate the acquisition and adjustment of strategies by drones, leveraging
historical data and dynamic environmental circumstances. Implementing this adaptive
learning strategy has the potential to improve the overall effectiveness and self-governance
of the swarm system [22].

The effective amalgamation of swarm algorithms and drone technology in this work
necessitates contemplating expanding the implementation. Examining the practicality of
using bigger groups of drones in various geographical locations or urban settings could
offer valuable information on the potential to expand and the strength of the suggested
approach. Furthermore, the comprehensive understanding of global air pollution dynamics
could be enhanced by investigating the potential combination of satellite data and widely
accessible ground-based sensor networks in public areas. Recent research, such as the study
“Boundary layer structure characteristics under the objective classification of persistent
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pollution weather types in the Beijing area” [23], sheds light on the importance of classifying
persistent pollution weather types. This classification provides a framework for objectively
characterizing atmospheric conditions, including the structure of the pollution boundary
layer. The pollution boundary layer serves as a dynamic interface between the Earth’s
surface and the atmosphere, acting as a reservoir for various pollutants. The intricate
interplay between meteorological factors and pollutant behavior within this layer can
significantly influence the efficacy of air pollution algorithms. Therefore, a comprehensive
discussion on the impact of pollution boundary layer structure is paramount to refining
and optimizing algorithmic performance.

In the long term, by incorporating an in-depth analysis of pollution boundary layer
characteristics into algorithms, we can enhance the adaptability of these models to diverse
environmental conditions. Variations in boundary layer structure under different persistent
pollution weather types in the Beijing area can offer valuable insights into how algorithms
respond to specific atmospheric contexts. Understanding the influence of pollution bound-
ary layer structure on algorithm performance is not merely an academic exercise; it holds
practical implications for refining predictions and mitigating the impact of air pollution. As
we dissect the intricacies of boundary layer dynamics, we pave the way for algorithms that
are robust and responsive to the ever-changing atmospheric conditions they aim to model.

In conclusion, acknowledging and addressing the impact of pollution boundary layer
structure in future work could play a pivotal role in advancing the capabilities of air
pollution algorithms. By incorporating insights from studies on persistent pollution weather
types, we aim to refine our understanding of how algorithms navigate the complexities
of the boundary layer. This, in turn, will contribute to the development of more accurate
and adaptable models for predicting and managing air pollution in urban landscapes, with
implications extending beyond the Beijing area to global contexts.

Although this research’s primary emphasis has been monitoring air pollution, the
methods proposed in this study could be applied to tackle more extensive environmental
issues. Potential future research could investigate using swarm algorithms and drone
technology to monitor additional pollutants, evaluate ecological well-being [24], or assist
in catastrophe response endeavors [25].

4.1. Limitations

Despite the many advantages of swarm intelligence, such as robustness, adaptability,
and scalability, it also has limitations in its application to air pollution monitoring, as listed
in Table 1. Overcoming or bypassing these will be a challenge for researchers in the years
to come.

Table 1. Limitations and challenges (own analysis) [26,27].

Limitation Scope of Limitation

Low data quality and quantity

Sensors may have limitations in terms of the types of contaminants they can detect and their
sensitivity, plus some contaminants may require specialized and expensive sensors that may
not be easily integrated into a swarm system.

Sensor calibration is essential to ensure reliable and accurate measurements, which, with a
large number of sensors, can lead to challenges in maintaining consistent calibration of a
large number of sensors and inaccuracies in the data collected.

The effectiveness of swarm intelligence depends on the spatial distribution and density of
sensors, while in some areas, it can be difficult to achieve adequate coverage, especially in
remote or inaccessible locations. The resulting gaps in spatial coverage can lead to
incomplete and biased data, affecting the overall accuracy of pollution monitoring.

In real-world environments with obstacles (e.g., terrain), signal interference or limited
communication range, maintaining reliable communication links between swarm members
can be challenging—this can result in delayed responses to changes in contamination levels
and even data loss.



Electronics 2024, 13, 577 15 of 17

Table 1. Cont.

Limitation Scope of Limitation

Vulnerability
Swarm systems can be susceptible to external factors (e.g., weather conditions), which can
adversely affect sensor performance and reduce the reliability of data collected by
the swarm.

Integration Integrating data from multiple sensors can be challenging when handling different data
sources and accurately representing overall air quality.

Energy and cost constraints

Energy limitations may restrict the duration of monitoring or the frequency of data
transmission, impacting the ability to provide continuous and real-time monitoring.

The initial investment in setting up a large-scale swarm intelligence system can still be
significant (cost of sensors, communication infrastructure and maintenance); hence, budget
constraints may limit the deployment of swarm systems in some areas.

Addressing the above constraints requires a coherent strategy and an interdisciplinary
approach.

4.2. Future Research Directions

By exploring the directions listed in Table 2, scientists and engineers can contribute
to the development of more robust, efficient and practical swarm intelligence solutions
for monitoring air pollution, improving our understanding of air quality and supporting
efforts to mitigate environmental impacts and improve air quality, particularly during the
winter months.

Table 2. Directions for further research (own concept) [28–31].

Direction Detailed Subsequent Tasks

Community awareness

• Stimulate the involvement of local communities in
the implementation of swarm systems as part of
promoting community participation in monitoring
and tackling air pollution.

Development of technical solutions

• More advanced sensor technologies
• Efficient communication protocols
• Calibration issues
• Energy-efficient solutions
• Spatial optimization
• Multi-modal data integration

Integration and interoperability

• Develop a framework for interoperability and
cooperation between traditional monitoring
methods and swarm systems to create a more
comprehensive and reliable monitoring network.

Better decision-making processes

• Novel methods to enhance real-time
decision-making in swarm systems.

• Rapid response to changes in pollution levels,
timely alerts or interventions.

Standardization and legal issues

• Explore the regulatory and policy implications of
integrating swarm intelligence into air pollution
monitoring.

• Evaluate how swarm systems can contribute to
evidence-based decision-making.

• Identify desirable, from a strategic point of view,
research directions.
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Air quality monitoring will remain key to improving air quality for many years to
come, especially in areas that require a calculated assessment of change and consistency to
stimulate even small but continuous changes for the better [32–34].

5. Conclusions

This research serves as a scientific investigation and demonstrates a dedication to
continuously seeking sustainable and effective resolutions for environmental obstacles.
Through the integration of state-of-the-art technology and inventive algorithms, our objec-
tive is to tackle the current issues surrounding air pollution and provide the groundwork
for a future in which technology plays a crucial part in fostering a more pristine and health-
ier environment. As we begin our efforts to create a more environmentally friendly globe,
working together and consistently coming up with new ideas will be crucial in defining a
future where we actively prevent environmental problems and make the dream of clean
skies a reality.

Author Contributions: Conceptualization, J.B. and J.M.C.; methodology, J.B., J.M.C. and D.M.;
software, J.B. and J.M.C.; validation, J.B., J.M.C. and D.M.; formal analysis, J.B., J.M.C. and D.M.;
investigation, J.B. and J.M.C.; resources, J.B. and J.M.C.; data curation, J.B. and J.M.C.; writing—
original draft preparation, J.B., J.M.C. and D.M.; writing—review and editing, J.B., J.M.C. and D.M.;
visualization, J.B. and J.M.C.; supervision, J.B., J.M.C. and D.M.; project administration, J.B., J.M.C.
and D.M.; funding acquisition, J.B., J.M.C. and D.M. All authors have read and agreed to the published
version of the manuscript.

Funding: The work presented in the paper was financed under a grant from Kazimierz Wielki
University to maintain its research potential.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Aguilar-Gomez, S.; Dwyer, H.; Graff Zivin, J.; Neidell, M. This is air: The “nonhealth” effects of air pollution. Annu. Rev. Resour.

Econ. 2022, 14, 403–425. [CrossRef]
2. Sun, Z.; Han, L.; Ding, A.; Liu, H.; Zhan, X. The health impacts of aerosol-planetary boundary layer interactions on respiratory

and circulatory mortality. Atmos. Environ. 2022, 276, 119050. [CrossRef]
3. Cuevas, E.; Fausto, F.; González, A. New Advancements in Swarm Algorithms: Operators and Applications; Springer International

Publishing: Berlin/Heidelberg, Germany, 2020.
4. Ewald, D. Influence of Different Fuzzifiers on The Effect of The OFNbee. International Business Information Management

Association (IBIMA). 2021. Available online: https://ibima.org/accepted-paper/influence-of-different-fuzzifiers-on-the-effect-
of-the-ofnbee-algorithm/ (accessed on 1 January 2024).

5. De Fazio, R.; Dinoi, L.M.; De Vittorio, M.; Visconti, P. A Sensor-Based Drone for Pollutants Detection in Eco-Friendly Cities:
Hardware Design and Data Analysis Application. Electronics 2022, 11, 52. [CrossRef]

6. Chaiwino, W.; Manorot, P.; Poochinapan, K.; Mouktonglang, T. Identifying the Locations of Atmospheric Pollution Point Source
by Using a Hybrid Particle Swarm Optimization. Symmetry 2021, 13, 985. [CrossRef]

7. Toro, F.G.; Tsourdos, A. UAV Sensors for Environmental Monitoring; MDPI AG: Basel, Switzerland, 2018. [CrossRef]
8. Hemamalini, R.R.; Vinodhini, R.; Shanthini, B.; Partheeban, P.; Charumathy, M.; Cornelius, K. Air quality monitoring and

forecasting using smart drones and recurrent neural network for sustainable development in Chennai city. Sustain. Cities Soc.
2022, 85, 104077. [CrossRef]

9. Baumgart, J.; Rusanov, L. The Elephant in the Room: Swarm Algorithms Inspired by Warfare. International Business Information
Management Association (IBIMA). 2023. Available online: https://ibima.org/accepted-paper/the-elephant-in-the-room-swarm-
algorithms-inspired-by-warfare/ (accessed on 1 January 2024).

10. Sekuła, P.; Bokwa, A.; Bartyzel, J.; Bochenek, B.; Chmura, U.; Gałkowski, M.; Zimnoch, M. Measurement report: Effect of wind
shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain. Atmos. Chem. Phys. 2021, 21,
12113–12139. [CrossRef]

11. Li, W.; Zhang, C.; Cui, Y.; Shi, J. A Collaborative Multi-Granularity Architecture for Multi-Source IoT Sensor Data in Air Quality
Evaluations. Electronics 2023, 12, 2380. [CrossRef]

12. Prokopowicz, P.; Czerniak, J.; Mikołajewski, D.; Apiecionek, U.; Ślȩzak, D. (Eds.) Theory and Applications of Ordered Fuzzy Numbers;
Springer: Berlin/Heidelberg, Germany, 2017.

https://doi.org/10.1146/annurev-resource-111820-021816
https://doi.org/10.1016/j.atmosenv.2022.119050
https://ibima.org/accepted-paper/influence-of-different-fuzzifiers-on-the-effect-of-the-ofnbee-algorithm/
https://ibima.org/accepted-paper/influence-of-different-fuzzifiers-on-the-effect-of-the-ofnbee-algorithm/
https://doi.org/10.3390/electronics11010052
https://doi.org/10.3390/sym13060985
https://doi.org/10.3390/books978-3-03842-754-4
https://doi.org/10.1016/j.scs.2022.104077
https://ibima.org/accepted-paper/the-elephant-in-the-room-swarm-algorithms-inspired-by-warfare/
https://ibima.org/accepted-paper/the-elephant-in-the-room-swarm-algorithms-inspired-by-warfare/
https://doi.org/10.5194/acp-21-12113-2021
https://doi.org/10.3390/electronics12112380


Electronics 2024, 13, 577 17 of 17

13. Skubisz, Z.; Kupczyk, D.; Goch, A.; Siedlaczek, M.; Sielski, Ł.; Niespodziński, B.; Mikołajewska, E.; Zasada, M.; Augustyńska, B.
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31. Kawala-Janik, A.; Bauer, W.; Żołubak, M.; Baranowski, J. Early-stage pilot study on using fractional-order calculus-based filtering
for the purpose of analysis of electroencephalography signals. Stud. Log. Gramm. Rhetor. 2016, 47, 103–111. [CrossRef]

32. Dostatni, E.; Rojek, I.; Hamrol, A. The Use of Machine Learning Method in Concurrent Ecodesign of Products and Technological
Processes. In Advances in Manufacturing. Lecture Notes in Mechanical Engineering; Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M.,
Eds.; Springer: Cham, Switzerland, 2018; pp. 321–330.
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