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Abstract: Scrap steel inspection is a critical entry point for connecting the smelting process to the
industrial internet, with its security and privacy being of vital importance. Current advancements
in scrap steel inspection involve collecting scattered data through the industrial internet, then
utilizing them to train machine learning models for distributed classification. However, this detection
method exposes original scrap steel data directly to the industrial internet, making it susceptible
to interception by attackers, who can potentially obtain sensitive information. This paper presents
a layer-wise personalized federated framework for scrap steel detection, termed FedScrap, which
leverages federated learning (FL) to coordinate decentralized and heterogeneous scrap steel data
while ensuring data privacy protection. The key challenge that FedScrap confronts is the heterogeneity
of scrap steel data distributed across the network, which complicates the task of effectively integrating
these data into a single detection model constructed via FL. To address this challenge, FedScrap
employs a self-attention mechanism to aggregate personalized models for each layer of every client,
focusing on the most relevant models to their specific data. By assigning higher attention scores to
more relevant models, it achieves more accurate aggregation weights during the model aggregation
process. To validate the efficacy of the proposed method, a dataset of scrap images was collected from
a steel mill, and the results demonstrate that FedScrap achieves accurate classification of distributed
scrap data with an impressive accuracy rate of 90%.

Keywords: scrap steel detection; federated learning; data heterogeneity; network security

1. Introduction

The classification of scrap steel signifies the preliminary phase of the steelmaking
process and serves as a crucial component in the integration of heterogeneous industrial
internets [1,2]. Currently, the development of scrap steel classification involves utilizing
the industrial internet to gather scattered data on scrap steel, subsequently inputting this
data into artificial neural networks for classification of the scrap. Although the centralized
training via the low-power network [3] facilitates collaboration among scrap data located
in various places, it may also give rise to network security and data privacy concerns [4].
The reason is that raw data transmitted directly through the industrial internet may be
intercepted by attackers, who could obtain sensitive information to launch network at-
tacks [5,6]. Therefore, a distributed scrap inspection method that can protect the original
data is essential.

The emergence of federated learning (FL) makes distributed steel scrap inspection
possible. FL trains a machine learning model locally among dispersed scrap data owners,
whose parameters are collected to aggregate a shared scrap detection model, which is
then fed back to the data owners [7]. Therefore, FL is extremely sensitive to perturbations
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of parameters, and a key factor causing perturbations is the distribution of data. The
industrial internet is emblematic of a multi-user multiple-input single-output (MU-MISO)
heterogeneous network [8]. Its scrap steel data are drawn from numerous recycling points,
each with its own distinctive data distribution patterns. For example, industrial scrap
recycling prefers a single scrap elimination, while social scrap recycling has a wide variety.
The difference of distribution is widely known as the non-independent and identically
distributed (Non-IID) problem in FL [9–11]. This kind of Non-IID data makes the model
trained by each client biased towards its own data distribution, and the single shared model
aggregated by the server cannot represent a unified global distribution, which cannot be
generalized to the clients.

In response to the above problems, Personalized Federated Learning (PFL) was pro-
posed to learn a personalized model for the client that has better performance on local
data while still benefiting from collaborative training. One way to implement PFL is to
cluster clients with similar data distributions, and the model parameters of similar clients
are aggregated as their personalized models [12–19]. For example, Yan et al. [12] proposed
ICFL, which can dynamically determine the cluster structure of clients during each training
round and aggregate a personalized model for each cluster. In [13], Wang et al. proposed
CPFL, which uses Earth mover’s distance to measure the distribution similarity between
client data, thereby clustering clients to combat the Non-IID problem. Long et al. [15]
proposed multicenter FL, which forms multiple personalized models through clustering
based on distributed similarity of data and optimizes them individually.

The above methods essentially make the client model differentiated and aggregated in
the direction of autocorrelation through clustering, and generates the personalized model
of client processing Non-IID. However, these cluster-based methods are lacking in the
following aspects: (i) The number of partitioned clusters needs to be manually determined,
which usually requires first determining the similarity between the data distributions
of the clients. (ii) The collaboration between clients of different clusters is interrupted,
resulting in a change in the base of model aggregation, but there are few ways to adjust the
aggregation weights to accommodate this change. (iii) The object of clustering is the entire
model, without considering the similarity relationship between clients at the level of the
fine-grained model.

In this paper, we propose a FL framework based on self-attention for scrap classifica-
tion, which aims to provide a privacy protection and model training platform for distributed
scrap recycling with heterogeneous data. The core of self-attention is the self-clustering
of clients at the level of granularity in the model, which aggregates a most relevant per-
sonalized model for each client, and the weight of the aggregation is adaptively adjusted
according to the similarity of the model between clients. In this way, the decentralized
scrap recycling sites can combine other inconsistently distributed data to collaboratively
train a scrap classification model to meet their personalized needs, without worrying about
data privacy leakage. Finally, we collected a scrap classification dataset from steel mills,
including 6 scrap varieties, for a total of 1000 samples. The dataset is divided into 10 client
datasets with Non-IID characteristics according to the Diliclet distribution. Specifically,
the main contributions of our approach are as follows:

• We have developed a federated steel scrap classification framework based on self-
clustering, which allows each client to autonomously aggregate a personalized scrap
steel classification model most relevant to them through the self-attention mechanism.

• We propose a model aggregation method based on the self-attention mechanism,
which calculates the attention weights between models after serializing the client
models, and aggregates personalized models according to the weights.

• We compare the proposed method with multiple personalized FL methods using
multiple deep learning models on the dataset collected by ourselves. The experimental
results show that the proposed method can effectively improve the classification
accuracy of scrap steel under Non-IID distribution.
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The structure of this article is as follows: Section 1 provides background and a descrip-
tion of the problem, Section 2 introduces existing methods, Section 3 models the federated
scrap steel detection problem, Section 4 presents our solution to the problem, Section 5
validates the effectiveness of the method through experiments, and Section 6 concludes
the paper.

2. Related Work
2.1. Scrap Steel Classification

At present, the mainstream classification of scrap steel is to establish a classification
model through Deep Learning (DL). In [20], Tu et al. proposed an automatic classification
and grading of scrap based on hierarchical learning, which firstly removes complex back-
ground information from scrap picture data through the attention mechanism, and then
uses a segmentation network to segment the scrap picture. Gao et al. [2] proposed a 3D
vision-based scrap steel grading approach, which can detect the edge of thickness features
in pictures through machine vision, and use the detected features to classify and grade
scrap. Smirnov et al. [21] compared the accuracy of various CNN models for the classifica-
tion of scrap in railway carriages. Xu et al. [1] used a high-resolution sensor-based image
acquisition of scrap steel and proposed a deep learning model based on attention mech-
anism CSBFNet to classify scrap steel. Williams et al. [22] combined magnetic induction
spectroscopy and machine learning technology to develop a scrap classification framework,
using magnetic induction spectroscopy to establish the physical characteristics of scrap
data as the input of the depth model to classify scrap. DazRomero et al. [23] used principal
component analysis to filter scrap out of the environment, and then used deep network
DenseNet to classify it.

The classification of non-ferrous metals is also on the agenda. Picn et al. [24] proposed
to combine hyperspectral and spatial characteristics of materials to form feature vectors
to identify non-ferrous metals. Chen et al. [25] used transfer learning to classify data of
small samples of non-ferrous metals on the basis of traditional image recognition tech-
niques. Han et al. [26] also proposed a scrap classification method based on computer
image recognition.

The above scrap classification methods use deep learning methods to classify scrap,
or based on machine vision on the physical and chemical properties of materials, it can be
predicted that deep learning has great prospects in the application of scrap classification.

2.2. Personalized Federated Learning

FL aims to use the local data distributed in each terminal device to jointly train a
unified model, and upload model parameters instead of uploading local data to protect
user data privacy [7,27,28]. However, in steel scrap classification scenarios, different envi-
ronments and different user characteristics need to be considered, resulting in data with
Non-IID characteristics in distribution, which seriously affects the accuracy of steel scrap
classification in FL.

For Non-IID problems, FL has already developed a personalized method to solve
them. Existing solutions are extensively discussed in [29] by Tan et al. Li et al. [30] proposed
FedProx. On the basis of minimizing the global experience loss, the ℓ2-norm constraint is
introduced to the loss function of the local training, so that the local update should not
be too far away from the initial global model. Sai et al. [31] proposed a new algorithm
(SCAFFOLD), which uses control variates (variance reduction) to correct for the “client-
drift” in its local updates, and could taken advantage of similarity in the client’s data
yielding even faster convergence. In [13], Wang et al. use the parameters in the local
training process as the cognitive basis and calculate Earth mover’s distance to quantify the
differences between different models. Presotto et al. [32] proposed a federated clustering
algorithm FedCLAR, which grouped clients based on the similarity of client models, so
as to better identify and distinguish client data with different distributions. Yan et al. [12]
proposed ICFL, which can dynamically determine the cluster structure of clients during
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each training round and aggregate a personalized model for each cluster. Long et al. [15]
proposed multicenter FL, which forms multiple personalized models through clustering
based on distributed similarity of data and optimizes them individually.

We focused on the clustering-based personalized FL, and found that the existing
clustering methods rely on artificial preset cluster number, there is a lack of cooperation
between clients of different clusters, and the model aggregation of clients within clusters
does not consider the correlation between data distributions in a fine-grained manner. This
inspired us to develop an end-to-end self-clustering approach to cluster a personalized
model for each client that is most relevant to them.

3. Problem Statement
3.1. Federated Learning

There are N clients, and each client has its own local scrap steel data Di(i ∈ [1, N]) and
the loss on jth sample (xi,j, yi,j) is l(xi,j). Moreover, the total loss of the client on its local

data is Fi(w) = 1
|Di | ∑

|Di |
j=1 l(xi,j), where w is the model parameter, and |Di| is the length of

the dataset. The overall loss after aggregation by the FL server is:

F(w) =
∑N

i=1 |Di|Fi(w)

|D| , (1)

where |D| = ∑N
i=1 |Di| is the total size of all client datasets.

Suppose F∗ = ∑N
i=1 αiFi(w∗) is the smallest overall loss, where w∗ is the optimal

parameter that causes the model to converge and αi is the learning rate of gradient descent
algorithm. Let ∆ = |F∗ − ∑N

i=1 αiF∗
i |, F∗

i be the optimal loss, then:

∆ = |
N

∑
i=1

αiFi(w∗)−
N

∑
i=1

αiF∗
i |, (2)

where ∆ is the difference between the optimal model of the client and the optimal model
aggregated by the server, and its value can reflect the deviation of the aggregate model in
the global data distribution.

Generally, the value of αi is the proportion of each client to the total data. In this case,
if the distribution of the clients’ data is Non-IID, then Fi(w∗) ̸≃ F∗

i and ∆ ̸≃ 0, resulting in
the global model of server aggregation deviating from the global distribution.

In summary, the optimization objective of scrap steel classification based on FL can be
summarized as follows:

w∗ = arg min
w

F(w) (3)

s.t. Di ∼ X(i), X(i) ̸= X(j),

i ̸= j, (4)

∆ < δ,

where X(·) represents the distribution of the data and δ represents an upper bound on the
difference between the loss at the convergence point and the optimal loss.

3.2. Personalized FL-Based Scrap Steel Classification

In the Non-IID scenario, the global model w∗ obtained by the federated average
algorithm may be a local optimal minimum point for the client, which cannot meet the
optimization requirements of each client [10,33]. Existing work proposes personalized
FL, where customers optimize their local goals while participating in server collabora-
tive training:

w∗
1 , ..., w∗

N = arg min Φ(F(w1), ..., F(wN)), (5)

where Φ(·) is set to ∑N
i=1 ai · F(wi) and ai is the aggregation weights for wi.
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On the basis of PFL, this paper proposes federated steel scrap classification based
on self-attention hierarchical aggregation. The optimization goal can be summarized
as follows:

w∗
1 , ..., w∗

N = arg min Φ(w1, ..., wN)

s.t. Di ∼ X(i), X(i) ̸= X(j), i ̸= j. (6)

where Di is the local dataset of client i, with different distributions (X(i) ̸= X(j)), and Φ(·)
is a different aggregation function for different clients’ models, as calculated by:

Φ(wi) =
N

∑
j=1

αi,j · wj (7)

=
N

∑
j=1

∥wi − wj∥2

∑N
j=1 ∥wi − wj∥2

· wj,

where αi,j is the aggregation weight between wi and wj and ∥wi − wj∥2 is the L2-norm
between wi and wj, which signifies their correlation. Through this method of aggrega-
tion, similar clients are allocated greater aggregate weights, enabling the personalized
model aggregated for the clients to benefit more from those that are more closely related
to themselves.

4. Overview and Implementation
4.1. Overview

The overall process of FedScrap is illustrated in Figure 1, which consists of two main
parts: the model training on the client side and the model aggregation on the server side,
as detailed below.

𝑘1𝑞1 𝑣1 𝑘2 𝑣2 𝑘3 𝑣3 𝑘𝑁 𝑣𝑁

𝑤1
𝑙

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,𝑁

ഥ𝑤1
𝑙

𝑤2
𝑙 𝑤3

𝑙 𝑤𝑁
𝑙

𝑐1 𝑐𝑁𝑐2 𝑐3

𝑆𝑒𝑟𝑣𝑒𝑟

…

…

𝑤1

𝑤𝑁

Figure 1. Overview of FedScrap. The dots in different colors represent different client’s Scrap steel
classification models, which are trained locally using pre-processed waste steel data. The server
model aggregation is achieved by layer-by-layer aggregating a personalized model relevant to each
client through the self-attention mechanism.

1. Preprocessing of scrap data and local training of classification models. Due to the
complex scrap detection environment, which contains a large number of stacked
scrap and background information, clients need to preprocess its scrap data and
extract scrap features conducive to classification. Then, clients build their own neural
network models with the same structure (such as resnet18, etc.) for training on the
processed data.
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2. Personalized aggregation of parameters based on self-attention. The server receives
the model parameters trained by the clients and aggregates the personalized model
for each client using self-attention. The core of self-attention is to measure the model
similarity between clients, which can represent the distributed similarity between
clients’ data, and then assign greater aggregate weight to those clients’ models that
are more relevant to them when aggreging models for clients.

4.2. Implementation and Algorithm Description
4.2.1. Preprocessing of Scrap Data and Local Training of Classification Models

The scrap recycling sites collects the image data of scrap steel, and decomposes the
scrap steel data in JPG format into RGB three primary color pixels through the image data
processing function in python. The converted scrap data are unified into input data in the
same format by pre-processing operations, such as cutting, de-noising, and normalization.
The processed data are called the client’s local data Di, where D is the abbreviation for the
dataset and client i is the i-th scrap recycling sites.

After processing the data, the clients locally build a deep learning model with the same
structure to learn the features of the data. Different types of models have different feature
extraction capabilities, but generally have input layers that are in contact with the data,
fully connected layers for decision making, and a backbone network to extract features.
The backbone network adopted in this paper is the residual network ResNet structure,
which has the advantage of extracting the original features of the data and preventing the
gradient disappearance caused by data heterogeneity. For ease of description, the overall
model of the i-th client is denoted as wi.

In order to speed up the training of the model, the scrap data are divided into small
batch data and then iteratively fed into the network model for training. The training method
adopts stochastic gradient descent (SGD) algorithm, which is a fast iterative training
algorithm for small batch data. SGD calculates the error loss F(wi) between the sample
label estimated by the network model and the real label through forward propagation,
and inversely solves the gradient of the model parameters, i.e., ∇F(wi), to update the
parameters so as to reduce the loss. In general, the client’s scrap classification model
parameter wi was updated in round t as follows:

wt
i = wt−1

i + ηi∇F(wt
i ), (8)

where ∇F(wt
i ) and ηi represent the model gradient and the step size of gradient descent,

respectively. After local training, we upload the parameters or gradient values of the steel
scrap classification model to the server for model aggregation.

4.2.2. Personalized Model Aggregation Based on Self-Attention

The server receives the model parameters uploaded by the clients and aggregates
them into a global shared unified model according to the aggregation strategy, as follows:

w =
N

∑
i=1

αiwi, (9)

where αi is the aggregation weight. The traditional aggregation strategy is to weight
the model according to the data volume of the clients, i.e., αi = |Di|/∑N

i=1 |Di|, but this
approach involves the sensitive information of the data volume |Di|, and does not take into
account the model bias caused by the data distribution.

In this paper, we proposes a personalized model aggregation strategy based on layer-
wise self-clustering, which aims to customize a most relevant model for each client to adapt
to its data distribution. According to representation learning, the features presented by two
models with the same structure after training with different data show decreasing similarity
at each layer of the model. In order to examine the fine-grained features between clients,
we quantified the layer-wised correlation of model parameters between clients, which
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is calculated by dl
i,j = ∥wl

i − wl
j∥2. That is, dl

i,j reflects the degree of similarity between
the layers of the model between the two clients, which is determined by the internal
relationship of the data distribution between the clients.

On this basis, we aggregate a personalized model for each client individually. Specifi-
cally, the server takes each client as a cluster center to aggregate the models of other clients,
and the weights of the aggregation are dynamically assigned according to the similarity of
the parameters between them, that is:

αl
i,j =

dl
i,j

∑jϵN dl
i,j

, (10)

N

∑
j=1

αl
i,j = 1. (11)

In order to improve the ability of the aggregation model to process heterogeneous
data, a larger aggregation weight αl

i,j is assigned between clients with similar data, which
makes the i-th client more “concerned” about the model parameters of the j-th client at
layer j. In other words, there is more cooperation between similar clients, which is mutually
desirable and satisfies each other’s needs.

Then, the server repeats the aggregate weight αl
i,j between the two clients and cus-

tomizes the aggregate model for each client based on the weight, that is:

wl
i = ∑jϵN αl

i,jw
l
j, (12)

where wl
i is the model parameter of layer l aggregated by the server for client i. In a

Non-IID environment, calculating the model similarity between clients layer by layer can
facilitate effective cooperation among multiple parties, but a significant problem with this
is the complexity of the calculations, which require frequent and repeated access to each
client’s parameters at each layer of the model. Therefore, it is necessary to develop a model
aggregation method capable of parallel computation.

In this paper, the idea of self-attention is adopted, which can calculate the attention
weight of serialized data in parallel, so as to extract the correlation within the sequence
data. In this way, the more relevant content of each client is deeply extracted into the server
model, reducing the aggregation of personalized features while preserving shared features.
Specifically, the personalized federated scrap detection process based on self-attention is
as follows:

1. Serialize the model parameters for each client of the same layer into an input vector,
denoted as wl = [wl

1, wl
2, ..wl

N ] for any l ∈ L.
2. Multiply each vector w by three coefficients aq, ak, and av to get three vectors: query,

key, and value, that is, Q = Aq · wl , K = Ak · wl and V = Av · wl , where A =
[a1, a2, ..., aN ].

3. The attention score (similarity score) is calculated for the clients by matrix multiplica-
tion, i.e., αl = Q · K, where αl

i,j = aq · wl
i · ak · wl

i , which reflects the degree of similarity
between the parameters.

4. The attention scores were normalized using softmax and other methods, i.e., α̂l =

so f tmax(αl).
5. Finally, the aggregated parameters are obtained by multiplying the normalized atten-

tion score by the parameter vector, i.e., ŵl = α̂l · wl , where ŵl
i = ∑N

j=1 α̂l
i,j · wl

i .

The aggregation algorithm of federated scrap detection is shown in Algorithm 1.
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Algorithm 1 Personalized model aggregation based on self-attention

1: for i ∈ N do
2: The client local model training: wt

i = wt−1
i + ηi∇F(wt

i ).
3: The client uploads its local model parameter wt

i .
4: end for
5: for l ∈ L do
6: The server serializes the model parameters of the clients: wl = [wl

1, wl
2, ..wl

N ].
7: Parameter vector coefficients: Q = Aq · wl , K = Ak · wl and V = Av · wl .
8: The server calculates the attention score for the clients: αl = Q · K.
9: Attention score normalization: α̂l = so f tmax(αl).

10: Aggregate model parameters according to attention scores: ŵl
i = ∑N

j=1 α̂l
i,j · wl

i .
11: end for
12: The server sends the aggregated model parameters ŵi to all clients.

5. Evaluation
5.1. Set Up

In order to effectively evaluate the performance of the method proposed in this
paper, we conduct experimental verification on a self-built FL framework with ten clients.
The framework is deployed on a server with 56 NVIDIA GeForce RTX 3090 Ti graphic cards.

Since there is no open source scrap detection dataset at present, we collected a batch of
scrap image data from a steel mill in China, which has six common types of scrap, including
silicon steel sheet, rebar, steel slag hot pressed block, heavy scrap, square pressed block,
and messy scrap, as shown in the Figure 2, and the total sample size was about 1000 images.

(a) silicon steel sheet (b) rebar (c) steel slag hot pressing block

(d) heavy scrap (e) square pressing block (f) messy scrap

Figure 2. Examples of different scrap types in self-built datasets.

In terms of the depth algorithm for extracting data features, we use three common
models for verification, and the three model pairs are shown in Table 1.

Table 1. Models used to extract data features.

Models Mechanism Parameters Layers Activation Function

LeNet-5 Convolutional Layers 60 k 7 ReLU
ResNet-18 Convolutional Layers 11.7 M 18 ReLU
ViT-12 Self-Attention 86.57 M 12 ReLU/Layer Normalization
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In order to compare the performance of the proposed layer-based method in terms of
model prediction accuracy, client’s local model accuracy, etc., the comparison method in
this paper is as follows:

1. FedAvg [7], an FL classic algorithm that collects and averages model parameters
across clients.

2. FedProx [30], an FL method that restricts the client’s update direction to enhance the
performance of the global model, has a hyperparameter µ for the constraint we set
to 0.01.

3. ICFL [12], a clustering FL algorithm that automatically clusters clients and aggregates
clustering models according to the correlation between clients without setting the
number of clusters.

4. CPFL [13], a clustering FL algorithm that individually aggregates the personalized
models associated with them for each client.

The comparison methods use the same dataset, network model, and hyperparame-
ter settings.

5.2. Overall Accuracy Comparison

We divide the self-built dataset into ten clients using the Dilliclet distribution, with a
Dilliclet coefficient α of 0.01, and each client has a different number or category of scrap data.
Then, resnet and Vit models are used to train and test the accuracy of several comparison
methods on each client. First, we averaged the accuracy of the client to observe the global
average accuracy of the whole and evaluate the performance of each method. The result
records are shown in Table 2, where ± represents the standard deviation between the
accuracy of the clients.

Table 2. Overall accuracy comparison of methods on different models (the unit of accuracy is %).

Models
Methods Local FedAvg FedProx CPFL ICFL FedScrap

ResNet-18 77.868 ± 14.88 97.655 ± 6.3 98.834 ± 2.06 99.583 ± 1.32 99.322 ± 1.43 99.655 ± 1.09

VIT 89.857 ± 15.7 98.199 ± 3.57 94.735 ± 10.38 97.776 ± 3.82 97.164 ± 3.35 98.985 ± 1.74

LeNet 80.593 ± 18.89 98.797 ± 10.99 95.5 ± 9.78 89.819 ± 15.6 94.468 ± 7.24 97.899 ± 2.4

The results indicate that under the Non-IID data distribution, the unprocessed local
scrap steel classification model exhibits extremely low accuracy performance, and there
is a substantial variance in accuracy across clients. This suggests that while some clients
achieve high accuracy, others remain at very low levels, which is clearly unsatisfactory.
Traditional FL methods such as FedAvg and FedProx can enhance classification accuracy;
however, their performance is highly unstable across different models, exhibiting consider-
able variance. This is primarily due to their reliance on a single shared model maintained
on the server to address the data from all clients. Cluster-based PFL methods significantly
mitigate this issue, achieving a high average accuracy with reduced variance. Our pro-
posed FedScrap outperforms these methods, demonstrating high robustness across various
models. Both our accuracy and variance are superior to those of the comparative methods,
which is attributed to the personalized models tailored for each client, absorbing the most
relevant knowledge for their respective contexts.

For a more intuitive comparison, we plotted the test results of different models,
as shown in Figure 3.



Electronics 2024, 13, 527 10 of 13

0 10 20 30 40 50 60 70 80 90 100
Epochs

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Local
FedAvg
FedProx
CPFL
ICFL
FedScrap

70 75 80
90

92

94

96

98

100

(a) Resnet-18

0 10 20 30 40 50 60 70 80 90 100
Epochs

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Local
FedAvg
FedProx
ICFL
CPFL
FedScrap

(b) VIT

0 10 20 30 40 50 60 70 80 90 100
Epochs

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Local
FedAvg
FedProx
ICFL
CPFL
FedScrap

(c) LeNet

Figure 3. Accuracy comparison of methods on different models.

The analysis reveals that in scenarios characterized by an imbalance in scrap types,
the classification model trained exclusively on local data exhibits low overall accuracy.
This shortcoming arises because certain client-specific samples are too limited to yield
effective training outcomes. Consequently, there is a pressing need for FL to collaborate
with these dispersed clients and enhance the model’s performance. The yellow curve, de-
picting conventional FL, demonstrates a notable enhancement in model accuracy. However,
the accuracy fluctuates markedly and convergence is achieved gradually. This volatility is
attributed to the data heterogeneity resulting from the unbalanced distribution of scrap
types, which challenges a single global model’s capacity to cater to the diverse needs of
all clients.

Although existing cluster-based personalized methods can marginally elevate model
accuracy, they are accompanied by significant fluctuations in the early stages, suggesting a
slow convergence rate. This delay is rooted in the initial step of identifying cluster centers,
followed by the aggregation of personalized models around these centers. The choice of
cluster centers is critical and can significantly impact the model’s convergence. In contrast
to these approaches, our proposed FedScrap method treats each client as a clustering
center, effectively positioning them as individual servers. This strategy facilitates the ag-
gregation of highly relevant personalized models that have absorbed sufficient bespoke
knowledge from similar clients, thereby aligning closely with their respective data distribu-
tions. As a result, FedScrap not only enhances model precision, but also ensures a smooth
convergence process.

5.3. Comparison of Accuracy Differences between Methods among Clients

To more finely compare the individual variations of each method at the client level
and to identify the reasons why the accuracy variances of other methods are not sufficiently
impressive, we have recorded and plotted the accuracy box plots for each client. The results
are shown in Figure 4, where the three box plots represent the three backbone network
models used.
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Figure 4. Accuracy comparison of different methods on boxplots.

It can be observed that the three graphs depict a similar pattern of performance: local
performs the worst, with an accuracy of merely 50%, while FedScrap exhibits the best
performance, consistently maintaining accuracy above 90%, and the other methods each
have their strengths but also suffer from notable drawbacks.

Due to the impact of data Non-IID, there are certain differences in the types of scrap
metal among clients. Some clients have extremely limited samples for certain types of
scrap metal, resulting in poor accuracy, while those with better data resources perform well.
Although FedAvg and FedProx, as representatives of a single global model, have combined
client training, the differentiated data lead to poor performance on some clients. The
cluster-based methods CPFL and ICFL group clients based on their similarity, maintaining
a shared model within each group. However, this breaks the close connection between
clients, leading to a decline in average accuracy.

Unlike these methods, FedScrap not only fully considers the relevance of data between
clients but also uses this relevance to strengthen the connection between clients. As a result,
the personalized models tailored for each client can absorb useful information from other
clients based on their own data distribution. These aspects contribute to FedScrap’s average
accuracy among clients reaching up to 97%, with a standard deviation of only about 2%.

6. Conclusions

This paper introduced FedScrap, a layer-wised personalized FL framework for scrap
detection. Utilizing the self-attention mechanism, FedScrap coordinates distributed scrap
data to train a robust scrap classification model. The framework addressed the challenge of
non-independent co-distribution in distributed scrap data by employing the self-attention
concept to aggregate a personalized model for each client that is most relevant to its specific
data. We also collected scrap pictures from a steel mill and labeled them to make scrap
classification dataset, and carried out verification experiment on this dataset. Experimental
results show that FedScrap accurately classifies distributed scrap data with an impressive
accuracy rate of 90%.
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