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Abstract: This paper presents a machine learning-based approach to identify and separate partial dis-
charge (PD) and two typical pulse interference (PI) signals in the vehicle-mounted cable terminations
of high-speed electric multiple units (EMUs). First, a test platform was established to capture PD
and two typical PI signals in these terminations. The acquired signals were then processed using the
square envelope method to extract feature parameters, such as the rise time proportion, the left–right
symmetry, and the upper–lower symmetry. PD signal classification was carried out on these signals,
utilizing waveform parameters derived from a hierarchical clustering algorithm. The results validate
that the extracted feature components effectively classify and separate PD and two typical PI signals
in the vehicle-mounted cable terminations of high-speed EMUs.

Keywords: high-speed electric multiple units; vehicle-mounted cable termination; partial discharge;
machine learning

1. Introduction

With the rapid development of high-speed railroads, the number of electric multiple
units (EMUs) operating on high-speed railway lines, along with their operational density,
is increasing [1,2]. Ensuring the safe operation of EMUs, each of which utilizes a single-
phase AC power supply and the AC/DC/AC traction drive system, is crucial [3–10]. The
vehicle-mounted high-voltage cable, a key component for power transmission, directly
impacts the safe operation of EMUs [11,12]. The cable termination, being the core part of
the vehicle-mounted cable, is a weak link due to its installation position, complex insulation
structure, and harsh operating conditions, making it prone to partial discharge (PD) [13].
The extent and severity of PD tend to increase over time. Detecting the magnitude of cable
termination discharge allows for a preliminary assessment of the severity of PD at the
cable termination and the extent of insulation material damage [14,15]. The initial stage
of PD emits a weak electromagnetic signal, and the testing site often contains various
interference signals, including the periodic narrowband, the white noise, and the pulse
interference (PI) signal [16,17]. The PI signal, in particular, resembles the shape of signals
generated by the PD, making it challenging to distinguish in both time- and frequency-
domain features, thereby seriously affecting the detection and classification of discharge
signals. Consequently, effectively separating PD signals from mixed signals containing PI
signals remains a significant research challenge.

At present, classical algorithms employed against pulse noise include the deviation
compensation algorithm [18], the symbolic algorithm [19], the logarithmic cost function
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algorithm [20], a series of algorithms based on the generalized maximum correntropy
criterion [21], and the affine projection algorithm [22], among others. In [23], the affine
projection generalized maximum correntropy filtering algorithm was proposed. This
algorithm combines affine projection with generalized maximum correntropy ℓ2 for system
identification in impulsive noise environments, offering improved filtering accuracy and
faster convergence without computing the inverse of the input data matrix. A stochastic PI
suppression algorithm using particle swarm optimization was proposed in [24] to enhance
neural networks for PD detection, boosting training speed and network generalization
despite requiring substantial data. In [25], a combined step size method was developed
to address the poor tracking ability of traditional variable step size by optimizing the L1
paradigm of systematic error, thereby effectively identifying PI signals. Further, a method
utilizing a multi-sample maximum correlation wavelet high-energy scale was proposed
in [26] to suppress random PI signals and white noise. In [27], the PD signal detection and
denoising under random PI signals using maximum overlap discrete wavelet transform
was explored, demonstrating its superiority over empirical Bayesian wavelet transform.
In [28], a PD separation method based on density peak fast search discovery clustering for
inverter power supplies was proposed, allowing separation of PD signals and disturbances
under inverter test conditions. Despite these advancements, challenges persist in improving
convergence performance and managing computational increases.

Artificial intelligence-based approaches have been increasingly utilized in electric ap-
paratuses for control, diagnosis, prognosis, and signal classification and separation [29–35].
Among these, the machine learning-based approach has gained significant attention due
to its advantages in accuracy, adaptability, and efficiency [29–32]. In this paper, a machine
learning-based approach is proposed for classifying and separating PD and two typical PI
signals. This method is based on the waveform parameter analysis combined with hierar-
chical clustering, specifically addressing two typical PI signals in the PD signal detection
in the vehicle-mounted cable termination of high-speed EMUs. The PD and two typical
PI signals were obtained from a cable termination test platform built in the laboratory.
The waveform characteristics were analyzed, a single pulse envelope was processed, and
feature parameters such as the rise time ratio, the left–right symmetry, and the upper–lower
symmetry of the waveform were extracted. These parameters were then combined with
the hierarchical clustering algorithm for signal classification. The obtained results verified
the effectiveness of the extracted feature components, demonstrating good separability.
This approach successfully classifies and separates PD and two typical PI signals in the
vehicle-mounted cable termination of high-speed EMUs, with the advantages of requiring
a small data volume and providing fast operational speed.

The rest of this paper is organized as follows: Section 2 details the collection of
typical PD and PI signals from the vehicle-mounted cable terminations of high-speed
EMUs. Section 3 conducts feature analysis and introduces the methods used. Section 4
adopts a hierarchical clustering method to classify and separate the PD and PI signals, also
demonstrating the effective differentiation of the extracted features on the target signals.
Section 5 presents the conclusions.

2. Data Collection

The vehicle-mounted cable termination is structured with multiple layers, including
the external umbrella skirt, the heat-shrinkable tube, the insulation tube, the stress tube,
the main insulation, and the cable core. This complexity has led researchers conducting
field analysis to identify that PD is most likely to occur between the stress tube and the
main insulation [36]. To facilitate the collection of PD signals, manufacturers have inten-
tionally created air gap defects in this area. The structure of this artificially defective cable
termination is depicted in Figure 1. Additionally, high-speed EMU operations, involving
frequent starting and stopping of high-power electrical appliances and space limitations in
high-voltage systems, are prone to triggering the corona PI signal and the power supply PI
signal. These two PI signals, with high-frequency characteristics overlapping with those of
PD signals, are the focus of this study.
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Figure 1. Cable termination structure.

The high-frequency current transformer (HFCT) is a commonly used tool for on-
line detection of PD signals, known for its high sensitivity, easy installation, and strong
anti-interference capabilities. In this study, the HFCT test loop was utilized, and the
constant-voltage method was employed to capture both PD and two typical PI signals. The
experimental setup involved a voltage of 27.5 kV and a sampling frequency of 100 MHz
using a high-frequency oscilloscope. The collection methods for the PD and two types of PI
signals are detailed as follows:

1. A brand-new cable termination without prefabricated defects was used, and a pin was
inserted into the anti-corona ball to capture the single corona PI signal.

2. Anti-corona balls were installed on the new cable termination, and electric motors
co-grounded with the cable termination were repeatedly started and stopped while
boosting and adopting constant-voltage processes to obtain the single power supply
PI signal.

3. Anti-corona balls were installed at the end of the prefabricated defective cable termi-
nation to obtain the single PD signal from the cable termination.

4. Without corona-proofing, the electric motors grounded jointly with the defective cable
termination were repeatedly started and stopped during constant voltage application
to obtain mixed PD signals containing both corona and power supply PI signals.

The above-mentioned signals were recorded in their time-domain waveforms, with
each signal sample comprising no less than 50 groups, ensuring sufficient data for sub-
sequent PI characterization. The structural schematic of the test platform is illustrated in
Figure 2, while Figures 3–5 display the PD, the corona PI, and the power supply PI signals
obtained from these experiments. In Figures 3–5 the blue line represents the applied volt-
age level, and the red line represents the discharge signal collected by the high-frequency
oscilloscope.
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Figure 2. Test circuit wiring diagram.

Figure 3. PD signal.

Figure 4. Corona PI signal.

Figure 5. Power supply PI signal.
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3. Signal Feature Extraction
3.1. Signal Feature Analysis

In observing the characteristics of single frequency cycle signals, it is evident that the
PD signal at the cable termination occurs in both the positive and negative half-waves
of the power frequency test voltage, predominantly in the first and third quadrants, and
demonstrates a wide phase distribution. In contrast, the external corona PI signal mainly
occurs in a narrower phase range within the first quadrant. The external power supply PI
signal, triggered by switch actions, can appear in any half-wave and typically presents as
isolated events, unlike the groupings seen in the PD and the external corona PI signals. All
three pulse signals’ amplitudes vary with the externally applied voltage, making phase
and amplitude inadequate for separating PD signals from PI signals.

A further analysis of waveform parameters of individual time-domain pulse signals
revealed distinct characteristics. As shown in Figure 6, the PD signals typically have
a single-wave oscillation period of about 1500–3000 ns and a width of around 200 ns,
exhibiting good attenuation and upper–lower symmetry. The external corona PI signal
shows an oscillation period of approximately 600–1000 ns, a single oscillation width of
about 50 ns, and poorer waveform symmetry. The power supply PI signal displays an
oscillation period of about 300–600 ns, along with a single oscillation width of around 20 ns,
and is concentrated in the positive amplitude region.

Figure 6. Single-wave time-domain waveform plot: (a) PD signal. (b) Corona PI signal. (c) Power
supply PI signal.

In summary, there are clear differences in waveform characteristics between PD and
PI signals, suggesting that signal waveform parameters are viable for distinguishing PD
signals from PI signals.

3.2. Signal Envelope Processing

The extracted signal undergoes envelope processing to derive waveform parameter
features. This study employed the square envelope method based on extremum points,
which involves interpolating and fitting the signal envelope line using the pulse wave-
form’s maximum points. The process squares the signal voltage value to yield a unipolar
waveform, aiding in the asymmetry analysis of PD and PI signals. The methodology
comprises the following steps:

1. Waveform extraction. First, the voltage value of the sampling point of the pulse signal
is square and normalized to obtain the unipolar waveform with the following equation:

y(t) = x(t)2 (1)

where y(t) is the unipolar waveform and x(t) is the original HFCT signal.

y(t) =
y(t)

max(y(t))
(2)
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where y(t) denotes the normalized waveform, and max(y(t)) denotes y(t) in the
maximum value.

2. Determine the maximum value. Obtain the maximum value points in the waveform
to form a data sequence.

3. End extending. The endpoint mirroring method in the empirical modal decomposition
algorithm is borrowed to extend the endpoints of the maximal value sequence [37].

4. Interpolation fitting. The expanded sequence of maximum values is fitted using cubic
spline interpolation to obtain the square envelope signal.

The flow of the square envelope method based on the extreme points is shown in
Figure 7, and the square envelope signal obtained is shown in Figure 8.

Figure 7. Flowchart of square envelope method.

Figure 8. Signal square envelope.

3.3. Signal Feature Extraction

Although PD and PI signals are similar in the time–frequency domain, differences
are identified upon analyzing their pulse waveforms. It was found that the envelope char-
acteristics of these signals from different sources are distinct. Thus, waveform parameter
characteristics such as the rise time percentage, the left–right symmetry, and the upper–
lower symmetry were extracted for each signal type. The three characteristic parameters
are defined as:

1. Envelope signal rise time percentage:

α = trise/Ttotal (3)

where trise is the rise time of the envelope signal from 10% amplitude to peak value,
and Ttotal is the total duration of the envelope signal.
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2. The degree of symmetry between the left and right sides of the envelope signal:

β = Ap/At (4)

where Ap and At correspond to the area of the envelope from the beginning to the
peak and from the peak to the end, respectively.

3. The degree of symmetry between the top and bottom of the pulse waveform:

γ = E2/E3 (5)

where E2 and E3 are the second and third pole points of the unipolar waveform,
respectively.

The number of individual waveforms was extracted by 200 for the PD signal, the
corona PI signal, and the power supply PI signal, and the feature parameters were extracted
based on the waveform parameter analysis method, as shown in Figure 9.

Figure 9. Signal square envelope characteristics: (a) PD envelope characteristics. (b) Corona PI
envelope characteristics. (c) Power supply PI envelope characteristics.

Using these characteristic parameters, the distributions of α − γ, β − α, and β − γ
can be obtained, as shown in Figure 10. In these distribution plots, it becomes evident
that the two-dimensional distributions of the eigenvalues self-aggregate into three distinct
categories. This observation suggests that the extracted characteristic parameters effectively
classify the three pulse signals. Despite some overlap in the distributions of these pulses,
the differences between them are more pronounced. Consequently, the envelope signal rise
time percentage α, left–right symmetry β, and pulse waveform upper–lower symmetry γ
were identified as the feature parameters for fuzzy clustering. Selecting these parameters
aided in effectively separating the PD signal from the two PI signals.

Figure 10. Distribution plot of two-dimensional features: (a) α − γ. (b) β − α. (c) β − γ.
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3.4. Hierarchical Clustering

Hierarchical clustering is a method that employs a bottom-up approach, starting with
each sample point and gradually merging those with high similarity. This process creates
a hierarchical nested clustering tree by calculating the similarity between data points of
different categories. In such a tree, the original data points of various categories form
the lowest level, while the top level is the root node of a cluster. One key advantage of
hierarchical clustering is that it does not necessitate a predefined number of clusters; the
similarity of distances and rules is easily definable, and the hierarchical relationship of
classes can be discerned. The methods for calculating class-to-class distance in hierarchical
clustering include: the shortest-distance method (single linkage), the longest-distance
method (complete linkage), the intermediate-distance method (average linkage), and the
class-average method (ward linkage) [38].

The specific steps of the hierarchical clustering algorithm are as follows, with the
flowchart depicted in Figure 11:

1. Calculating the distance or similarity between data points.
2. Initializing each data point as an individual cluster, and forming nc small clusters

denoted as C = {C1, C2, · · · , Cnc}.
3. Based on the chosen distance calculation method, selecting the cluster pairs for merg-

ing, typically choosing the two clusters with the closest or most similar distances Ca
and Cb:

{Ca, Cb} = argmin
Ci ,Cj∈C,i ̸=j

D
(
Ci, Cj

)
(6)

where D( , ) is a function that measures the distance between two clusters.
4. Merging selected cluster pairs and updating the cluster structure.
5. Repeating the merging process until either a preset number of clusters is reached or

all data points are consolidated into one cluster.
6. The final cluster center might be a mean vector, median vector, or other form of

representative vector for all data points in each cluster.

Figure 11. Hierarchical clustering flowchart.

4. Results and Discussion

Five accomplished tasks will be shown in this section. First, setting the clustering
parameters and establishing performance evaluation criteria for the clustering methods.
Next, investigating the impact of different methods for calculating category distance on the
quality of the resulting clusters. This is followed by a comparison of the clustering methods
used in this study with other clustering approaches, particularly focusing on mixed signal
separation. Finally, the section concludes by discussing potential directions for future
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research. Based on the waveform parameter analysis method, 200 feature parameters were
extracted from the PD signal, the corona PI signal, and the power supply PI signal for the
clustering algorithm classification.

4.1. Parameter Setting and Clustering Quality Evaluation Indexes

Three waveform parameters were identified as feature quantities for hierarchical
clustering: the rise time share of the PD and PI envelope signals, left–right symmetry, and
upper–lower symmetry. The number of clusters was set to C = 3, and Euclidean distance
was used as the measure between samples. For the evaluation of clustering quality, the
adjusted mutual information (AMI), Fowlkes–Mallows score (FMI), and Davies–Bouldin
Index (DBI) were utilized.

The AMI is expressed in Equation (7). It is adjusted for the probability of clustering
groups to match the real scenario, with a value range of [−1, 1]. A larger AMI value
indicates that the clustering results are more consistent with the actual situation.

AMI =
MI − E[MI]

mean(H(U), H(V))− E[MI]
(7)

where U and V are the assignments to the N sample labels, the H(U) and H(V) are their
entropies, MI is the maximum variance, and E[MI] is the expected value of the maximum
variance.

The FMI, representing the geometric mean of Precision and Recall, has a value range
of [0, 1]; the closer to 1, the better the performance. The FMI is calculated as follows:

FMI =
TP√

(TP + FP)(TP + FN)
(8)

where TP denotes that the sample pair is a nest in the true value and also a nest in the
predicted value, FP denotes that the sample pair is a nest in the predicted value but not a
nest in the true value, and FN denotes that the sample pair is a nest in the true value but
not a nest in the predicted value.

DBI is calculated by dividing the sum of average intraclass distances of any two classes
by the distance between their cluster centers, aiming to find the minimum value. A smaller
DBI value indicates smaller intraclass distances and larger interclass distances. The DBI is
expressed as

DBI =
1
k ∑k

i=1 max
i ̸=j

si + sj

dij
(9)

where si denotes the average distance between each point of a cluster and the center of
mass of that cluster, also known as the cluster diameter; dij denotes the distance between
the centers of mass of clusters i and j; and k is the current class.

4.2. Effect of Different Methods of Calculating Category Distances on the Quality of the Clusters
Clustered

Different methods of calculating distances, also known as linkage methods, are suitable
for various types of data and clustering structures. The choice of an appropriate linkage
method significantly impacts the quality and interpretability of the clustering results. In this
study, the effectiveness of four hierarchical clustering linkage methods was investigated.
The clustering effect diagrams for these methods are illustrated in Figure 12, while Table 1
presents a clustering quality analysis for different distance calculation methods.
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Figure 12. Clustering results of different linking methods.

Table 1. Clustering evaluation of different linking methods.

Single Linkage Complete Linkage Average Linkage Ward Linkage

AMI −0.729 0.813 −0.729 0.897
FMI 0.773 0.868 0.773 0.940
DBI 0.702 0.461 0.702 0.286
Time 2.432 s 4.536 s 3.432 s 2.034 s

From Figure 12, it is observed that both single and average linkages tend to categorize
the power supply PI signal almost entirely as the corona PI signal. A similar trend is noted
with complete linkage, whereas ward linkage accurately identifies the three pulse signals.
Table 1 further reveals that the AMI and FMI for the ward linkage are approximately 0.9,
significantly higher than the other three methods. Additionally, the DBI is minimized,
and the computation time is relatively short. Consequently, ward linkage was selected for
constructing the hierarchical clustering. The results, depicted in Figure 13, demonstrate
that various types of pulse signals cluster closely around their respective centers, with
clear distinctions between different categories. This outcome suggests that the hierarchical
clustering algorithm effectively identifies and separates PD and PI signals based on the
extracted feature parameters (Figure 14). The clustering centers for the calculated PD and
PI signals are detailed in Table 2.

Figure 13. Hierarchical clustering results.
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Figure 14. Clustering tree.

Table 2. Clustering centers.

Type α β γ

PD signal 0.06313 4.361 × 10−4 1.9451 × 10−3

Corona PI signal 0.02102 1.320 × 10−4 2.4743 × 10−3

Power supply PI signal 0.01483 3.1828 × 10−4 1.2312 × 10−3

4.3. Comparison of Different Clustering Algorithms

In order to select the most suitable clustering algorithm and compare the effectiveness
of different clustering algorithms in studying pulse disturbances in partial discharges, this
study included classical clustering algorithms from traditional approaches. These were
K-means clustering, fuzzy c-means clustering (FCM), and density-based spatial clustering
of applications with noise (DBSCAN). The confusion matrices of four methods, including
hierarchical clustering, are illustrated in Figure 15, with the clustering quality analysis
presented in Table 3.

Figure 15. Confusion matrix for different clustering methods.

Table 3. Quality analysis of different clustering methods.

Hierarchical Clustering K-Means FCM DBSCAN

AMI 0.907 0.829 0.813 0.229
FMI 0.940 0.868 0.773 0.373
DBI 0.226 0.368 0.461 0.802
Time 2.432 s 5.036 s 5.032 s 8.034 s

From an examination of Figure 15 and Table 3, the overall performance ranking is
observed as hierarchical clustering > K-means clustering > FCM > DBSCAN. Hierarchical
clustering demonstrates an almost complete and correct identification of PD and power
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supply PI signals, although it occasionally misclassifies the corona PI signal as the power
supply PI signal. Its AMI and FMI are both greater than 0.9, and it has the smallest DBI,
indicating its accuracy in recognizing the three types of signals. Among the four methods,
DBSCAN shows the least favorable performance, proving unsuitable for PI recognition.
Considering the running times of these methods, hierarchical clustering emerges as the
most effective.

4.4. Mixed Signal Separation

On the PD testing platform established in the laboratory, a mixed signal comprising
PD, external corona, and power supply PI generated by multiple vehicle-mounted cable
terminations within one power frequency cycle was captured, as shown in Figure 16. We
extracted multiple α, β, and γ parameters from mixed pulse signals. We calculated the
Euclidean distance between the pulse feature vector to be recognized and the standard
cluster center, in order to effectively distinguish different types of pulse signals. This
method uses standard clustering centers to cluster and separate mixed signals. For instance,
selecting a mixed signal example as shown in Figure 16, the classification results include
10 corona PI signals and 5 power supply PI signals, while the remaining are PD signals.
The clustering results are shown in Figure 17. Figure 18 shows the PD signal after PI signal
separation. The separation process reduces the total amplitude and discharge phase of the
PD signal in the first and third quadrants. This reduction effectively reduces the impact of
PI signals on PD detection accuracy, thereby improving the reliability of PD methods in
evaluating the insulation status of vehicle-mounted cable terminations.

Figure 16. Mixed Signals.

Figure 17. Mixed signal separation results.
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Figure 18. Partial discharge signal after separation of PI signals.

4.5. Discussion

This study focused on the high-frequency PD and PI signals at vehicle-mounted cable
terminations of high-speed EMUs, yielding significant results that aid in separating PD
signals from common PI signals. However, due to time constraints, this study faced certain
limitations that warrant further investigation:

1. While this study simulated the generation of two common PI signals during the
operation of high-speed EMUs and separated them from PD signals, the actual PI
experienced in high-speed EMUs is more diverse than the two types discussed. Thus,
additional research is needed to address the separation of these more varied signals.

2. The methodology employed here is effective for recognition and separation in sce-
narios with small sample sizes, such as samples ranging from tens to hundreds of
data. Moreover, for larger sample conditions, such as when the data volume reaches
thousands, integrating traditional methods with artificial intelligence approaches
could offer more comprehensive and efficient solutions.

5. Conclusions

This paper presents a machine learning-based approach for identifying and separating
PD and two typical PI signals from vehicle-mounted cable terminations of high-speed
EMUs using waveform parameter analysis and a hierarchical clustering algorithm. The
conclusions are as follows:

1. Envelope processing of the extracted PD and two typical PI signals yields characteristic
parameters like the rise time percentage, the left–right symmetry, and the upper–lower
symmetry of the enveloped signal waveforms. These feature parameters have proven
effective in distinguishing the target signal.

2. The study proposes an innovative method, amalgamating waveform parameter analy-
sis with a hierarchical clustering algorithm. Impressively, with AMI and FMI metrics
surpassing 0.9, and the smallest DBI at 0.226 achieved in just 2.423 s, the approach
demonstrates exceptional performance. These findings affirm the approach’s suc-
cess in effectively distinguishing and isolating PD and two typical PI signals from
vehicle-mounted cable terminations in high-speed EMUs.

3. The proposed method successfully isolates PD signals under mixed PI conditions,
demonstrating the effectiveness and accuracy of the scheme. This advancement not
only mitigates the impact of PI signals on PD detection but also achieves almost one
hundred percent accuracy in identifying PD signals from mixed signals. Consequently,
it enhances the accuracy of using PD measures to assess the insulation status of
vehicle-mounted cable terminations in high-speed EMUs.

Author Contributions: Conceptualization, K.C.; methodology, J.L.; software, Z.C.; validation, Y.Y.,
G.G. and G.W.; formal analysis, Y.-C.L.; investigation, Y.Y.; resources, K.L.; data curation, Z.C. and
D.-L.X.; writing—original draft preparation, J.L.; writing—review and editing, Y.-C.L. and K.L.;
visualization, G.G.; supervision, G.W.; project administration, Z.C. All authors have read and agreed
to the published version of the manuscript.



Electronics 2024, 13, 495 14 of 15

Funding: This research was funded by National Natural Science Foundation of China (NSFC,
U1966602, 52377161, 52007158), Excellent Young Scientists Fund of China (51922090), Southwest
Jiaotong University new interdisciplinary cultivation project (YH1500112432273, YH15001124322105),
and Fundamental Research Funds for the Central Universities (A0920502052301-170).

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors. The data are not publicly available due to ongoing further analysis and the
anticipation of data sharing upon completion.

Conflicts of Interest: Authors Zhenbao Chen and Yanhua Yang are employed by CRRC Zhuzhou
Electric Locomotive Co., Ltd. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

References
1. Cheng, Z.-P.; Kong, H.-W.; Ma, J.; Jia, L.-M. Overview of resilient traction power supply systems in railways with interconnected

microgrid. CSEE J. Power Energy Syst. 2020, 7, 1122–1132.
2. Guo, L.; Cao, W.; Bai, L.; Zhang, J.; Xing, L.; Xiang, E.; Zhou, L. Fault diagnosis based on multiscale texture features of cable

terminal on EMU of high-speed railway. IEEE Trans. Instrum. Meas. 2020, 70, 3502612. [CrossRef]
3. Ge, X.-L.; Pu, J.-K.; Liu, Y.-C. Online open-switch fault diagnosis method in single-phase PWM rectifier. Electron. Lett. 2015, 51,

1920–1922. [CrossRef]
4. Chen, H.; Jiang, B. A review of fault detection and diagnosis for the traction system in high-speed trains. IEEE Trans. Intell. Transp.

Syst. 2019, 21, 450–465. [CrossRef]
5. Zuo, J.; Ding, J.; Feng, F. Latent leakage fault identification and diagnosis based on multi-source information fusion method for

key pneumatic units in Chinese standard electric multiple units (EMU) braking system. Appl. Sci. 2019, 9, 300. [CrossRef]
6. Cheng, C.; Wang, J.; Chen, H.; Chen, Z.; Luo, H.; Xie, P. A review of intelligent fault diagnosis for high-speed trains: Qualitative

approaches. Entropy 2021, 23, 1. [CrossRef]
7. Huang, W.; Kou, X.; Zhang, Y.; Mi, R.; Yin, D.; Xiao, W.; Liu, Z. Operational failure analysis of high-speed electric multiple units:

A Bayesian network-K2 algorithm-expectation maximization approach. Reliab. Eng. Syst. Saf. 2021, 205, 107250. [CrossRef]
8. Chen, H.; Jiang, B.; Ding, S.X.; Huang, B. Data-driven fault diagnosis for traction systems in high-speed trains: A survey,

challenges, and perspectives. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1700–1716. [CrossRef]
9. Tang, Z.; Chen, Z.; Sun, J.; Lu, M.; Liu, H. Noise prediction study of traction arc tooth cylindrical gears for new generation

high-speed electric multiple units. Lubricants 2023, 11, 357. [CrossRef]
10. Wu, Y.; Liu, X.; Zhou, Y. Deep PCA-based incipient fault diagnosis and diagnosability analysis of high-speed railway traction

system via FNR enhancement. Machines 2023, 11, 475. [CrossRef]
11. Bai, L.; Fan, D.; Li, T.; Li, B.; Su, M.; Fan, S.; Zhang, L. Influence of surface discharge on the deterioration characteristics of

ethylene-propylene rubber cable insulation under alternating current high voltage. IET Sci. Meas. Technol. 2022, 16, 293–304.
[CrossRef]

12. Gao, G.; Zhou, S.; Yang, S.; Chen, K.; Xin, D.; Tang, Y.; Liu, K.; Wu, G. Accurate Identification Partial Discharge of Cable
Termination for High-speed Trains Based on Wavelet Transform and Convolutional Neural Network. Electric Power Syst. Res.
2023, 225, 109838. [CrossRef]

13. Eigner, A.; Rethmeier, K. An overview on the current status of partial discharge measurements on AC high voltage cable
accessories. IEEE Electr. Insul. Mag. 2016, 32, 48–55. [CrossRef]

14. Alvarez, F.; Ortego, J.; Garnacho, F.; Sanchez-Uran, M.A. A clustering technique for partial discharge and noise sources
identification in power cables by means of waveform parameters. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 469–481. [CrossRef]

15. Pan, J.; Wang, M.; Hu, Q.; Li, C. A detection method of partial discharge signal based on wavelet. In Proceedings of the 7th
International Conference on Integrated Circuits and Microsystems, Xi’an, China, 28–31 October 2022.

16. Zhong, J.; Bi, X.; Shu, Q.; Chen, M.; Zhou, D.; Zhang, D. Partial discharge signal denoising based on singular value decomposition
and empirical wavelet transform. IEEE Trans. Instrum. Meas. 2020, 69, 8866–8873. [CrossRef]

17. Hussein, R.; Shaban, K.-B.; El-Hag, A.-H. Denoising different types of acoustic partial discharge signals using power spectral
subtraction. High Voltage 2018, 3, 44–50. [CrossRef]

18. Wang, W.Y.; Zhao, H.Q.; Lu, L. Bias-compensated constrained least mean square adaptive filter algorithm for noisy input and its
performance analysis. Digital Signal Process. 2019, 84, 26–37. [CrossRef]

19. Sheng, Z.; Zhang, J.-S.; Han, H.-Y. Robust shrinkage normalized sign algorithm in an impulsive noise environment. IEEE Trans.
Circuits Syst. II Express Briefs 2017, 64, 91–95.

20. Sayin, M.-O.; Vanli, N.-D.; Kozat, S.-S. A novel family of adaptive filtering algorithms based on the logarithmic cost. IEEE Trans.
Signal Process. 2014, 62, 4411–4424. [CrossRef]

21. Chen, B.D.; Xing, L.; Zhao, H.-Q. Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 2016, 64,
3376–3387. [CrossRef]

https://doi.org/10.1109/TIM.2020.3025375
https://doi.org/10.1049/el.2015.1194
https://doi.org/10.1109/TITS.2019.2897583
https://doi.org/10.3390/app9020300
https://doi.org/10.3390/e23010001
https://doi.org/10.1016/j.ress.2020.107250
https://doi.org/10.1109/TITS.2020.3029946
https://doi.org/10.3390/lubricants11090357
https://doi.org/10.3390/machines11040475
https://doi.org/10.1049/smt2.12104
https://doi.org/10.1016/j.epsr.2023.109838
https://doi.org/10.1109/MEI.2016.7414231
https://doi.org/10.1109/TDEI.2015.005037
https://doi.org/10.1109/TIM.2020.2996717
https://doi.org/10.1049/hve.2017.0119
https://doi.org/10.1016/j.dsp.2018.07.021
https://doi.org/10.1109/TSP.2014.2333559
https://doi.org/10.1109/TSP.2016.2539127


Electronics 2024, 13, 495 15 of 15

22. Ozeki, K.; Umeda, T. An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties.
Electron. Commun. Jpn. Part 1 Commun. 1984, 67, 19–27. [CrossRef]

23. Zhan, J.; Guo, L.-X.; Li, Y.-S. The bias-compensated proportionate nlms algorithm with sparse penalty constraint. IEEE Access
2020, 8, 4954–4962.

24. Shao, Z.; Huang, C.; Xiao, Y.; Zhao, Y.; Jiang, X. Application of PSO based neural network in suppression of stochastic pulse
interference for partial discharge monitoring in large generators. Autom. Electr. Power Syst. 2005, 29, 49–52.

25. Huang, F.-Y.; Zhang, J.-S.; Zhang, S. Combined-step-size affine projection sign algorithm for robust adaptive filtering in impulsive
interference environments. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 493–497. [CrossRef]

26. Zhang, P.; Zhou, X.; Tian, T.; Wang, Y.; Li, X.; He, N.; Zhang, G.; Zhang, X.; Sun, J. Method of multi-sample maximum correlation
wavelet high energy scale on location time difference calculation of partial discharge source. In Proceedings of the IEEE 4th
Conference on Energy Internet and Energy System Integration, Wuhan, China, 30 October–1 November 2020.

27. Shams, M.-A.; El-Shahat, M.; Anis, H.-I. Detection and de-noising of pd signal contaminated with stochastic pulse interference
using maximal overlap discrete wavelet transform. In Proceedings of the IEEE 3rd International Conference on Dielectrics,
Valencia, Spain, 5–31 July 2020.

28. Li, Z.; Zhou, K.; Huanng, Y.; Zhou, G.; Ye, B. A novel partial discharge pulse separation method for variable frequency resonant
test. In Proceedings of the IEEE International Conference on High Voltage Engineering and Application, Beijing, China, 6–10
September 2020.

29. Kotsiantis, S.B.; Zaharakis, I.D.; Pintelas, P.E. Machine learning: A review of classification and combining techniques. Artif. Intell.
Rev. 2006, 26, 159–190. [CrossRef]

30. Zhao, S.; Blaabjerg, F.; Wang, H. An overview of artificial intelligence applications for power electronics. IEEE Trans. Power
Electron. 2021, 36, 4633–4658. [CrossRef]

31. Zhao, Z.; Wu, J.; Li, T.; Sun, C.; Yan, R.; Chen, X. Challenges and opportunities of AI-enabled monitoring, diagnosis & prognosis:
A review. Chin. J. Mech. Eng. 2021, 34, 56.

32. Samanta, A.; Chowdhuri, S.; Williamson, S.S. Machine learning-based data-driven fault detection/diagnosis of lithium-ion
battery: A critical review. Electronics 2021, 10, 1309. [CrossRef]

33. Hakim, M.; Omran, A.A.B.; Ahmed, A.N.; Al-Waily, M.; Abdellatif, A. A systematic review of rolling bearing fault diagnosis based
on deep learning and transfer learning: Taxonomy, overview, application, open challenges, weaknesses and recommendations.
Ain Shams Eng. J. 2023, 14, 101945. [CrossRef]

34. Liu, Y.-C.; Laghrouche, S.; N’Diaye, A.; Cirrincione, M. Hermite neural network-based second-order sliding-mode control of
synchronous reluctance motor drive systems. J. Frankl. Inst. 2021, 385, 400–427. [CrossRef]

35. Chen, K.; Liao, Q.; Liu, K.; Yang, Y.; Gao, G.; Wu, G. Capacity degradation prediction of lithium-ion battery based on artificial bee
colony and multi-kernel support vector regression. J. Energy Storage 2023, 72, 108160. [CrossRef]

36. Xin, D.; Wu, G.; Chen, K.; Liu, K.; Xie, Y.; Gao, G.; Xiao, S.; Tang, Y.; Sun, C.; Lin, M. Research on the evolution characteristics of
interfacial defect inside the vehicle-mounted high-voltage cable termination for high-speed trains. CSEE J. Power Energy Syst.
2023. [CrossRef]

37. Wu, Y.; Xin, H.; Wang, J.; Wang, X. Rolling bearing fault diagnosis based on the variational mode decomposition filtering and
extreme point envelope order. J. Vib. Shock 2018, 37, 102–107.

38. Yang, J.; Parikh, D.; Batra, D. Joint unsupervised learning of deep representations and image clusters. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/ecja.4400670503
https://doi.org/10.1109/TCSII.2015.2505067
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1109/TPEL.2020.3024914
https://doi.org/10.3390/electronics10111309
https://doi.org/10.1016/j.asej.2022.101945
https://doi.org/10.1016/j.jfranklin.2020.10.029
https://doi.org/10.1016/j.est.2023.108160
https://doi.org/10.17775/CSEEJPES.2022.07910

	Introduction 
	Data Collection 
	Signal Feature Extraction 
	Signal Feature Analysis 
	Signal Envelope Processing 
	Signal Feature Extraction 
	Hierarchical Clustering 

	Results and Discussion 
	Parameter Setting and Clustering Quality Evaluation Indexes 
	Effect of Different Methods of Calculating Category Distances on the Quality of the Clusters Clustered 
	Comparison of Different Clustering Algorithms 
	Mixed Signal Separation 
	Discussion 

	Conclusions 
	References

