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Abstract: The work is based on a collaboration between Hiroshima University and Kure KOSEN
College. This paper presents the design concept, hardware, and applications of a single-phase
synchronous inverter (SSI), a specially designed grid-forming inverter (GFM) for single-phase micro-
grid (SMGs). The SSI is designed for the conventional 100/200 V distribution network and is
based on the concept of “Non-Interference Core (NIC) dynamic model”. Novel contributions of
this paper are: (1) A root mean square (RMS) model of NIC-SSI was developed, combined with the
conventional power system model, and verified through the comparison with the hardware-in-the-
loop (HIL) simulation and SSI hardware experiments; (2) using the developed RMS simulation tool,
the stabilization effect of the SSIs was investigated in condition under which the SSIs are massively
installed in a distribution system; (3) off-grid SMG operations using SSIs under various ill-conditioned
loads were demonstrated. The results show that the SSI has the considerable ability of grid stability
enhancements for frequency, transient, and small-signal stabilities. The proposed SMG using SSIs
is promising.

Keywords: power systems; frequency stability; transient stability; single-phase synchronous inverter;
RMS simulation

1. Introduction

Recently, power system stability has faced many challenges with the large-scale in-
tegration of variable renewable energy (VRE) sources. The major challenge is replacing
conventional synchronous machines with inverter-based resources (IBRs) whose behavior
and interaction with the power system are not fully understood. As a result, frequency
stability [1–4] problems emerge, such as the degradation in the rate of change of fre-
quency (RoCoF) and frequency nadir due to the decreasing rotational inertia of power
systems. Thus, developing countermeasures against these problems has become an urgent
issue [5–7].

New operation standards are under examination in the United Kingdom, Ireland,
Australia, and the United States, where VRE installations have increased extremely [8–10].
For example, a new frequency service, such as fast frequency response (FFR), has been
designed. Grid operators around the world specify their individual operating rules for
frequency change in response to several disturbances in the power system.

Grid-forming inverters (GFMs) are expected to solve these problems. However, it
is difficult to verify the stabilization effect since no suitable inverter models fully satisfy
the requirements of power system stability analysis [11,12]. The inverters used in VRE
sources and storage batteries are required to contribute to power system stability, especially
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frequency stability. Thus, the GFM, which controls its frequency and voltage output,
plays a constructive role in improving the frequency dynamics and stability of the power
system. There are various types of controls for GFMs, such as virtual synchronous machine
(VSM) [13–15] synchronverters [16,17], the swing equation of the synchronous machine,
power synchronization [18,19], and droop control [20]. In addition, authors have developed
several methods and proposals for network stabilization using the synchronous inverter.
The works include a pseudo-synchronization power controller for single and three-phase
voltage source converters (VSCs) and other studies for assessing the effectiveness of pseudo-
synchronizing power, voltage control, frequency control, power system stabilization [21].
A single-phase synchronous inverter (SSI) was developed using a novel design method for
GFM, based on a non-interference core (NIC) concept in [22]. The NIC-SSI was constructed
to act dynamically the same as a conventional synchronous machine, to solve recent IBR
problems, and to stabilize the power system.

There exist various GFM approaches and projects for the enhancement of power sys-
tem stability such as [23–33], which are all effective methods applied to general three-phase
systems. In Europe, many demonstration tests have been conducted using wind power
with grid-forming functionality implemented, connecting to the power grid [23,26–29].
In the United States, verification and evaluation are being performed, focusing on the
interoperability of the grid and inverters [30,31]. In Australia, grid stabilization using
large-scale storage batteries with grid-forming functionality implemented is being demon-
strated [32,33]. Above all, these projects use large-scale three-phase GFM inverters.

On the other hand, no major realistic ideas are being discussed about the counter-
measures for low-voltage single-phase distribution systems for the enhancement of bulk
power system stability by introducing new GFM devices. This is also the case in Japan,
but various realistic approaches have been studied in the NEDO (New Energy and Indus-
trial Technology Development Organization, national research and development agency)
project, where we have confirmed the effectiveness of the proposed single-phase approach.

This paper presents our recent work on single-phase GFM applications. The novel
contributions of this paper are:

- An RMS model of NIC-SSI in [34] is combined with the conventional power system
model to develop an RMS simulation tool;

- The developed root mean square (RMS) simulation tool is verified through the com-
parison with hardware-in-the-loop (HIL) simulation, and SSI hardware experiments;

- Using the developed simulation and analysis tools, the stabilization effect of the SSIs is
investigated in a condition where SSIs are massively installed in a distribution system;

- The stability of off-grid SMG operation is confirmed under various conditions includ-
ing ill-conditioned loads.

The installation of GFM on the single-phase consumer side is assumed as a new con-
cept, and specially designed hardware is introduced for grid stabilization. The simulation
results in a three-machine nine-bus system show that the SSI has the considerable ability of
grid stabilization concerning frequency, transient, and small-signal stabilities. Thus, the
resilience of power systems in a normal state is improved.

The final part of the paper investigates SMG operations in emergencies stemming from
possible natural disasters. The conceptional planning and experimental performance of
the SMG are presented based on [34] together with recent additional experimental studies
on off-grid SMG operations. The results of hardware experiments show that the SSI can
realize robust off-grid operations even with ill-conditioned loads. All of the results in this
paper imply that the SMG using SSI is promising.

The remainder of the paper is divided into five sections, organized as follows. Section 2
summarizes our previous works explaining the NIC design method, which provides the
theoretical background for the stabilization of grids including SMGs by the proposed SSI.
The SSI model and its hardware are also introduced in this section. Section 3 proposes an
RMS simulation tool based on the NIC design method, in which the NIC design method
explained in Section 2 is directly applied to the SSI model and the conventional power
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system model to obtain the RMS simulation model. The developed RMS simulation
tool is verified through laboratory experiments using the developed hardware and HIL
simulations. In Section 4, the effect of SSI on power system stability is evaluated using the
developed RMS simulation tool, where a standard power system, the Anderson–Fouad
nine-bus three-generator system, is analyzed from the viewpoint of the most critical stability
issues, which are frequency stability, transient stability, and small-signal stability. Section 5
performs experimental studies on the stability and feasibility issues of the SMG, where the
grid is operated only by SSIs with no conventional generators. Conclusions and future
studies are explored in Section 6.

2. Design Concept of the SSI
2.1. Problem Description

This section describes problems associated with introducing IBRs into the power system:

1. Recent power systems, including MGs, are facing stability problems due to the in-
crease in IBRs [35]. Therefore, a new type of GFM inverter is being studied for power
system stabilization;

2. RMS analysis has been used widely in the assessment of power system stability,
which is becoming more difficult with increasing IBRs. Therefore, a reliable method is
required for stability evaluation as well as an effective control design method for IBRs.

2.2. NIC Control Design for the SSI

The NIC design concept for he GFM inverter was proposed in [21,22,34,36], has been
upgraded to date to solve the problems stated in the previous subsection. The proposed
method can be described as below:

The time-scale separation method, shown in Figure 1, is used to develop the NIC
design based on the singular perturbation theory. The method has been widely used, such
as in voltage stability analysis [37]. Based on the time-scale separation, when the original
power system, including IBRs, is divided into slow and fast dynamics as shown in Figure 1,
it can be approximated by the slow and fast subsystems, (f2) and (f3). The slow variables, xs,
are governed by the dynamic equation of the slow subsystem (f2), while the fast dynamics,
xF, are determined by the fast subsystem (f3). Therefore, the original system is stable when
both subsystems are stable. Based on this theory, the complex phenomenon of the power
system with IBRs can be analyzed theoretically in the following proposed approach.

1. The slow dynamic of the inverter that corresponds to the slow subsystem is called
the core. The controller for stabilizing the power system is modeled here. The other
inverter dynamic, the overall fast dynamic is called the shell, which belongs the
fast subsystem. This treatment makes the independent design of the slow and fast
dynamics possible. The original power system is stable if, and only if, both the
subsystems are stable.

2. The fast subsystem must be stable for power system operation. For this purpose,
the shell must be stable under any operating conditions. Therefore, in this paper,
destabilizing factors, including all inner loops and those with high-frequency char-
acteristics, are eliminated as much as possible. (Instead of the inner loop of current
control, effective overcurrent suppression is proposed in [38].)

3. The slow subsystem can approximate the original system with high accuracy when
the fast subsystem is stable. In this case, the slow subsystem consisting of shells with
the conventional RMS model of a power system can be used as an RMS simulation
model, as given in Figure 1, which will be proposed in Section 3.1. This also implies
that power system stabilization can be achieved by proper design of the inverter shell.

4. Although all the NIC design functions have not been reached up to now, this paper
presents the effectiveness of the abovementioned NIC-based design of inverters.
Actual experiments were conducted with this design to show that the inverter can be
operated in a practical manner, stabilizing the power system.



Electronics 2024, 13, 478 4 of 37Electronics 2024, 13, x FOR PEER REVIEW 4 of 37 
 

 

 
Figure 1. NIC design based on the time-scale separation. The dotted line part represents i-th in-
verter dynamics. 

1. The slow dynamic of the inverter that corresponds to the slow subsystem is called 
the core. The controller for stabilizing the power system is modeled here. The other 
inverter dynamic, the overall fast dynamic is called the shell, which belongs the fast 
subsystem. This treatment makes the independent design of the slow and fast dy-
namics possible. The original power system is stable if, and only if, both the subsys-
tems are stable. 

2. The fast subsystem must be stable for power system operation. For this purpose, the 
shell must be stable under any operating conditions. Therefore, in this paper, desta-
bilizing factors, including all inner loops and those with high-frequency characteris-
tics, are eliminated as much as possible. (Instead of the inner loop of current control, 
effective overcurrent suppression is proposed in [38].) 

3. The slow subsystem can approximate the original system with high accuracy when 
the fast subsystem is stable. In this case, the slow subsystem consisting of shells with 
the conventional RMS model of a power system can be used as an RMS simulation 
model, as given in Figure 1, which will be proposed in Section 3.1. This also implies 
that power system stabilization can be achieved by proper design of the inverter shell. 

4. Although all the NIC design functions have not been reached up to now, this paper 
presents the effectiveness of the abovementioned NIC-based design of inverters. Ac-
tual experiments were conducted with this design to show that the inverter can be 
operated in a practical manner, stabilizing the power system. 
The developed SSI is a GFM-type inverter with a highly stabilizing effect that con-

nects to the main grid in normal operation, and it can form an MG even in emergencies. 
Moreover, the authors proposed the NIC design method, implying that the SSI works ide-
ally like an analog computer, governed strictly by the implemented core dynamics. 

Figure 1. NIC design based on the time-scale separation. The dotted line part represents i-th
inverter dynamics.

The developed SSI is a GFM-type inverter with a highly stabilizing effect that connects
to the main grid in normal operation, and it can form an MG even in emergencies. Moreover,
the authors proposed the NIC design method, implying that the SSI works ideally like an
analog computer, governed strictly by the implemented core dynamics.

2.3. SSI Model Configuration

The proposed SSI is based on a full-bridge inverter circuit to convert the DC link
voltage VDC to AC voltage vinv, as shown in Figure 2. A storage battery is connected to
the DC side to transfer the active power. On the AC side, an inductance L is connected for
output smoothing (X in Figure 2), and the SSI is connected to the external grid through the
inductance L. The active power output Pe to the grid is exchanged based on the mutual
relationship between the SSI terminals and the internal electromotive force (EMF).

Figure 3 shows the block diagram of the developed SSI controller. Where vinv is the
SSI output voltage (RMS: Vinv), vgrid is the grid voltage (RMS: Vgrid), ωinv is the internal
frequency of the SSI, θinv is the pseudo-rotor angle of the SSI, iinv is the SSI output current
(RMS: Iinv), Vref is the reference voltage, Qref is the reactive power reference, α is the α-axis
components, β is the β-axis components, Pm is the virtual mechanical input of the SSI, Pe is
the active power output, and Qe is the reactive power output.
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In the proposed model, θinv, which is equivalent to the dynamic characteristics caused
by the rotating magnetic field, is calculated based on the swing equation, and the inverter
output voltage is controlled based on θinv to ensure stable synchronization with the single-
phase system. In a single-phase circuit with a supply frequency ω, the instantaneous
power oscillates at 2 ω. From the viewpoint of the NIC design, the improved second-order–
second-order generalized integrator based on quadrature signal generation (SO-SOGI-
QSG) [39], which has excellent performance in eliminating the oscillation component and
implementing the designed characteristics of the SSI, is adopted here. Pe is calculated from
the instantaneous measured values of voltage and current using (1) and is used as the input
in Figure 3. Also, the reactive power required for voltage control is computed by (2).

Pe =
vgrid

α iinv
α + vgrid

β iinv
β

2
(1)

Qe =
vgrid

β iinv
α + vgrid

α iinv
β

2
(2)

The SSI has an LVRT operation function for grid-side failures [20], but this is not
modeled in this paper.
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2.4. Design of the SSI Core Model

The core model, consisting of a synchronous generator Xd’ model, a governor, and an
AVR/AQR, is shown in Figure 4. The output voltage of the SSI is controlled by the core
dynamics, which simulate the behavior of an actual synchronous machine and generate a
synchronizing force. Based on this, the proposed model can improve grid damping and
enable the system’s stable operation with multiple SSIs.
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The conventional Xd’ model, which governs the SSI EMF, is represented by the swing
equation model of the synchronous machine (Figure 4a) as below.

M
dω

dt
+ D

(
ω − ωre f

)
= Pm − Pe, Pm = PGOV (3)

dθ

dt
= ω (4)

where M is the inertia coefficient, D is the damping coefficient, Pm is the generator’s
mechanical input [W], Pe is the electrical output power of the generator [W], ω is the
internal angular frequency [rad/s], ωref is the angular frequency reference [rad/s], θ is the
internal phase angle [rad], and PGOV is the governor output (where Pm = PGOV).

A first-order delay governor is implemented, as shown in Figure 4a, in the core part.
The internal frequency ωinv and the pseudo-rotor angle θinv of the inverter can be obtained
from this model.
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The AVR, which controls the terminal voltage, and the governor, which controls the
generator output, are represented by the first-order delay model in (5) and (6), respectively.

TAVR
dVAVR

dt
= −VAVR − KAVR

(
V − Vre f

)
, E = E0 + VAVR (5)

TGOV
dPGOV

dt
= −PGOV − KGOV

(
ω − ωre f

)
+ Ps (6)

where TGOV is the governor time constant [s], KGOV is the governor gain, Ps is the command
value of generator operation [W], TAVR is the AVR time constant [s], KAVR is the AVR gain,
Vref is the reference voltage [V], E is the effective value of voltage [V], and E0 is the internal
voltage reference of the generator [V].

2.5. Voltage and Reactive Power Control of the SSI (AVR/AQR)

Conventional small-capacity generators follow the grid and maintain stability by
controlling the reactive power by AQR. Also, large-capacity generators use AVR to control
the grid voltage within the desired limits. The proposed control system for an SSI designed
for MG operation is shown in Figure 4b. The SSI is designed as a GFM inverter and is
operated in AQR mode during grid interconnection, which provides synchronization and
inertia forces to the grid during disturbances. In this case, the reactive power reference value
Qref in Figure 4b is set to 0 var, and proportional-integral (PI) control with an integrator is
used to prevent reactive power output.

On the other hand, the SSI control system also needs to maintain grid voltage through
AVR operation. Therefore, Qsig in Figure 4b is set to 0 or 1 so that the SSI control system
can be switched between the voltage control (AVR control) and reactive power control
(AQR control) modes. In addition, the first-order delay system is used because the droop
characteristic is necessary for the coordinated operation of multiple units. When PI is
used for the parallel operation of multiple SSIs, especially in AVR operation, the SSIs will
interfere and become unstable.

2.6. Inverter Model with Pseudo-Inertia

The validity of the inverter model with pseudo-inertia is verified through experiments
on an actual SSI system. The model is generally equivalent to the model in (3)–(6) but
differs in the following points:

• The inverter’s feedback structure is slightly changed from the actual generator model
for both noise reduction and performance improvement;

• The SSI utilizes an effective overcurrent suppression method without inner loops [38],
where the current control is activated when the critical condition is detected. In this
paper, a current limiter is used to approximate this function; however, the upper limit
of the current limiter is not set in this examination.

2.7. Hardware of the SSI

Figures 5 and 6 illustrate the hardware configuration of the SSI developed in the
Electric Power and Energy System Lab, Hiroshima University, Japan. The following
components are used in the experimental test system:

• DC voltage source: 16 lead-acid batteries (12 V) connected in series;
• Inductor: 10 mH/3.5 Apeak, Pony Electric, Gunma, Japan;
• Nosie Filter: NAH-20-472-B, COSEL, Toyama, Japan, is inserted at the output end to

prevent noise on the power supply line;
• Current sensor: MWPE-IS-03, Myway Plus Corp, Yokohama, Japan;
• Voltage sensor: a self-made sensor circuit.
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Figure 5. Experimental Setup.

The proposed control system is coded in C language and carried out on a digital signal
processor (DSP) board (PE-Expert4: Myway Plus Corp).

The CPU frequency of the PE-Expert4 is 1.25 GHz, and the carrier frequency of the
PWM is 20 kHz. The experimental data were measured using a Myway Plus PE-View
X with a sampling frequency of 20 kHz. A grid-simulated power supply (PCR1000LE,
Kikusui Electronics, Yokohama, Japan) is connected to the AC power supply side.



Electronics 2024, 13, 478 9 of 37Electronics 2024, 13, x FOR PEER REVIEW 9 of 37 
 

 

 
Figure 6. Experimental equipment. 

3. Development and Validation of the RMS Simulation Tool 
3.1. Development of the RMS Simulation Tool Based on the NIC Design 

A simulation tool based on the RMS model was developed, consisting of the SSI core 
model, the conventional generator model, and the network model, as shown in Figure 7, 
using MATLAB/Simulink version 2022b. The SSI core model consists of the swing equa-
tion, AVR/AQR, and governor given in Section 2.3, which are combined with the power 
system network model to constitute the RMS simulation tool. The derivation of the RMS 
tool is based on the NIC design method in Figure 1, which is consistent with the inverter 
design. The RMS simulation tool can be used for conventional transient stability analysis 
with/without SSIs in multi-machine power systems. A large number of SSIs are modelled 
using the conventional theory of dynamic equivalents for parallel generators [34]. 

The SSI is assumed to be installed to a low-voltage single-phase distribution line on 
the customer side, but it is also possible to configure it as a three-phase configuration and 
connect it to a high-voltage distribution line. This paper assumes that the SSIs are uni-
formly distributed across the low-voltage distribution line without three-phase imbal-
ance. 

The analysis tool is described as follows: First, the input data are the parameters for 
SSIs, generators, loads, and network. Then, power flow calculations are performed, and 
the initial state is calculated. Based on this, the RMS simulation can be performed under 
various conditions. The RMS model in Figure 7 was designed as a common model so that 
conventional generator analysis can also be performed. 

The developed method is compared with the Y method, the standard tool by CRIEPI 
(Central Research Institute of Electric Power Industry) for transient stability analysis. It 
was confirmed, in a case where no SSI inverters are installed, that the computed responses 
of generators are almost equivalent to each other, as shown in Figure 8. 

COSEL
NAP-10-472

Pony Electric Co.
PO17-336

Panasonic
N-40B19R/SB
(12V×16) 

Myway Plus Co.
MWINV-1R022

Line 
Filter

����

������

SW#L

SW#GC���� ��� ���

���

���

���

���

���

Power System

AC 
Reactor

SSI with Battery
Transformer

Fault Circuit

idc

vdc

iinv

vinv

ifault

igrid

vgrid

Self-build Fault Circuit
using Solid State Relay

Swallow Electric Co.
SB11-1000E

KIKUSUI Electronics Co.
PCR1000WEMyway Plus Co.

PE-Expert 4
(Typhoon HIL402)

iinv

vinv

Gate 
Signal

Sensor

Figure 6. Experimental equipment.

3. Development and Validation of the RMS Simulation Tool
3.1. Development of the RMS Simulation Tool Based on the NIC Design

A simulation tool based on the RMS model was developed, consisting of the SSI core
model, the conventional generator model, and the network model, as shown in Figure 7,
using MATLAB/Simulink version 2022b. The SSI core model consists of the swing equation,
AVR/AQR, and governor given in Section 2.3, which are combined with the power system
network model to constitute the RMS simulation tool. The derivation of the RMS tool
is based on the NIC design method in Figure 1, which is consistent with the inverter
design. The RMS simulation tool can be used for conventional transient stability analysis
with/without SSIs in multi-machine power systems. A large number of SSIs are modelled
using the conventional theory of dynamic equivalents for parallel generators [34].
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The SSI is assumed to be installed to a low-voltage single-phase distribution line on
the customer side, but it is also possible to configure it as a three-phase configuration and
connect it to a high-voltage distribution line. This paper assumes that the SSIs are uniformly
distributed across the low-voltage distribution line without three-phase imbalance.

The analysis tool is described as follows: First, the input data are the parameters for
SSIs, generators, loads, and network. Then, power flow calculations are performed, and
the initial state is calculated. Based on this, the RMS simulation can be performed under
various conditions. The RMS model in Figure 7 was designed as a common model so that
conventional generator analysis can also be performed.

The developed method is compared with the Y method, the standard tool by CRIEPI
(Central Research Institute of Electric Power Industry) for transient stability analysis. It
was confirmed, in a case where no SSI inverters are installed, that the computed responses
of generators are almost equivalent to each other, as shown in Figure 8.
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3.2. Experimental System of the Grid-Connected SSI for Validation

This section describes an experimental system for investigating the validity of the
developed simulation tool given in the previous section. Figure 9 shows the experimental
system where the SSI is connected to the infinite bus. The system and SSI control parameters
are listed in Tables 1 and 2, respectively. Note that the parameter M̃ is set to a small value to
realize strong damping condition for a single SSI but the optimal value is still under study.
If M̃ is set to a larger value, we can observe a typical transient behavior of conventional
generators (see Appendix A).
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Figure 9. Experimental circuit of a single SSI connected to the infinite bus.
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Table 1. Parameters in the experimental circuit in Figure 9 (Reference [34]).

Parameters Values

Rfil 0.48 Ω

Lfil 10 mH

Lnf 1.4 mH

Rnf 470 kΩ

Cnf 0.95 µF

Rfault 100/3 Ω

Rt1 1.00 Ω

Lt1 1.48 mH

Rt2 43.4 Ω

Lt2 516.1 mH

Table 2. SSI control parameters in Figure 4 (Reference [34]).

Parameters Values

M̃ [W·s2/rad] 1 *

Pm [W] 0

ωref [rad/s] 120π

D̃ (Simulink, HIL) [W·s/rad] 100

D̃ (Experimental) [W·s/rad] 50 *

Vref [V] 100

Qref [var] 0

Qsig (“0”: AVR, “1”: AQR) 1

SW condition (“0” = 1 L, “1” = PI) 1

Ka 1

Kp 0

Ki 5

KQ 0.05

* H = 60πM̃/1 kW = 0.188 [s], D = (ω0/1 kW)× D̃ = 18.85 [pu].

A short-circuit fault was applied to a grid connection line through a fault resistance,
started at 0.4 s until 0.5 s, when the fault is cleared. This was carried out by the fault
circuit in Figure 9 in which variable fault timing can be set. Two cases of fault timings were
adopted, these being 0◦ and 90◦ from the zero-cross detection of the terminal voltage, which,
respectively, correspond to the minimum and maximum timing of voltage disturbances. In
this situation, actual hardware experiments were carried out.

Then, the HIL simulations and RMS simulations were conducted. In the HIL simu-
lations, the changes in the phase conditions for fault occurrence and clearance were not
considered. Instead, the pre-set phase condition approximately 9◦ from the zero-cross
detection was used for the convenience of the simulation.

3.3. Comparison between Experiments, HIL, and RMS Simulations

In order to investigate the effect of fault timing (phase condition) on SSI behavior, the
transient waveforms were observed by changing the fault timing every 10◦. As expected,
the transient waveform of Pe after the fault was almost the same. Table 3 shows the
quantitative evaluation of the transient waveform in terms of the fault timing and the
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maximum power value. It was noticed that the fault timing (phase condition) has almost
no effect on the RMS value.

Table 3. Response of Pe [W] (RMS value).

Fault Timing
Fault Duration Time Pe [W] (Maximum RMS)

[◦] [s]

0 0.4160 0.0160 50.51

10 0.4158 0.0158 52.73

20 0.4153 0.0153 52.61

30 0.4147 0.0147 50.40

40 0.4142 0.0142 49.65

50 0.4136 0.0136 48.08

60 0.4133 0.0133 50.79

70 0.4123 0.0123 45.30

80 0.4205 0.0205 45.97

90 0.4201 0.0201 47.06

100 0.4197 0.0197 48.74

110 0.4194 0.0194 50.24

120 0.4189 0.0189 50.08

130 0.4186 0.0186 51.69

140 0.4179 0.0179 52.02

150 0.4177 0.0177 52.68

160 0.4173 0.0173 53.06

170 0.4167 0.0167 53.70

180 0.4161 0.0161 51.93

Figures 10 and 11 show the results of the experiments, HIL (9◦ of fault timing),
and RMS simulations for the extreme cases corresponding to 0◦ and 90◦ fault timings,
respectively. The comparison of the instantaneous waveform Pe (Figure 10c) for the HIL
simulation and the experimental results shows that they are almost equivalent to each other.
The difference comes from the preset switching timing of fault occurrence and clearance in
the HIL device. The comparison shows that although the shock immediately after the fault
differs depending on the fault timing, the values are close to each other regardless of the
different fault timings.

Figures 10e and 11e show the mean values of the Pe output of the SSI, which are
obtained by the SSI hardware, compared with those obtained by the HIL simulation (9◦)
and the developed RMS simulation model. It was observed that they agree with each other,
implying that all of those simulations are successfully approximate the experimental wave-
forms. The HIL simulation result is not shown in Figure 11e since there is no corresponding
case, as mentioned before.

Figures 10f and 11f present the same as Figures 10e and 11e with different time scales,
where the instantaneous values of Pe, and their mean values given by different filters are
added. It is noted that the filter outputs show delays in the Pe response since the mean
value of Pe is defined by the following equation, which must include the delays of the
half-cycle of Pe oscillations: 0.01 s.
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Figure 10. Comparison between the experimental study and simulation for a 0◦ fault timing:
(a) output current [A] and voltage [V] of the SSI; (b) output current of the SSI [A] (instantaneous
value); (c) active power Pe of the SSI [W] (instantaneous value); (d) output voltage of the SSI [V]
(instantaneous value); (e) active power Pe of the SSI [W] (mean values); (f) active power Pe of the SSI
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On the other hand, the instantaneous waveforms of Pe outputs exhibit almost no
delays since the internal voltage of the GFM, as a constant voltage source, instantly supplies
current and power based on Kirchhoff’s law, depending on the grid-side conditions. The
quick responses of the SSI hardware are successfully approximated by the RMS simulation
model (MATLAB/Simulink). It was observed that the mean value of Pe was identical for
the different fault timings, while the transient waveform of Pe after the fault was also not
much affected by the fault timings, as expected. It was noted that the experimental results
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were affected by the noise suppression elements used, while the RMS simulation does not
consider these elements.
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(a) output current [A] and voltage [V] of the SSI; (b) output current of the SSI [A] (instantaneous
value); (c) active power Pe of the SSI [W] (instantaneous value); (d) output voltage of the SSI [V]
(instantaneous value); (e) active power Pe of the SSI [W] (mean values); (f) active power Pe of the SSI
[W] (instantaneous and mean values).

Figure 12 shows the results of the MATLAB/Simulink RMS simulation models with
and without the effect of the measurement devices, including noise filters. It can be
confirmed that the results are almost the same.

From the investigations in this section, we can confirm the validity of the developed
RMS simulation tool, which provides enough accuracy to analyze power system transient
behavior. The error in the active power waveform is about 10% when observing Figure 10e.
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4. Power System Stability Evaluation
4.1. Case Setting for Stability Assessment

The RMS simulation model is used to analyze a power system in which multiple
conventional generators and SSIs are operated. The stability analysis of the power system
with IBRs and conventional generators was performed using the Anderson–Fouad nine-bus
system shown in Figure 13, where photovoltaic power generators (PVs) and an SSI are
installed at bus 5. The SSIs are connected to the low-voltage distribution system through the
impedance of the distribution lines and distribution transformers, as shown in Figure 14. A
large number of SSIs connected to bus 5 are represented as an equivalent single SSI model
as mentioned before. The stability evaluation methods are summarized in Table 4. Study
cases are given in Table 5, where the 60% of the original conventional generation in Case 1
is replaced by PV generation in Cases 2–4. The output power reduction in the conventional
generators in these cases is given in Figure 15b, in which three of the five units are out of
service. The conditions in Figure 15a is not used in this paper. Thus, the system inertia was
also reduced by 60% in Cases 2–4. The operating conditions of the SSI (VRE) installation
cases are also given in Table 5, and are described below.
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Figure 13. Anderson–Fouad nine-bus three-generator system. G1 to G3 represent conventional
generators. Numbers 1 to 9 stand for nodes (buses). A to I are fault locations. Arrows represent loads
where PVs and SSIs are installed.
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Table 4. Stability evaluation method.

Disturbance Stability Evaluation Indices

Generator Outage Frequency Stability
Small-Signal Stability

RoCoF, Frequency Nadir
Eigenvalues

Three-Phase Ground Fault Transient Stability
Small-Signal Stability

Generator Swings
Eigenvalues

Table 5. Study cases for operating condition.

Case
Total Generator’ Output [%] Total PV Output [%]

(G1 + G2 + G3) Conventional Inverters Proposed SSIs

Case 1 100 0 0

Case 2

40

60 0

Case 3 30 30

Case 4 0 60
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Case 1: Represents the base condition of the test system in [40] where the total power is
generated from the three conventional generators without any PV installations.
Case 2: The PV penetration is 60% of the total power generation using conventional
grid-following (GFL) inverters.
Case 3: Half of the conventional GFL inverters of Case 2 are replaced by SSIs, which
corresponds to about 80,000 SSIs of 1 kW.
Case 4: All PV inverters are SSIs, about 160,000 SSIs.

It is assumed that the maximum output of SSIs is greater than 1 kW to stabilize the
system in a transient state.

In the latter sections, the effect of the SSIs is investigated for the following events using
the developed RMS simulation tool.

[Generator Outage]

It is assumed that Generator 1 consists of two units and an outage of one unit occurs
at time 0 s. In order to investigate the frequency stability after the outage, the inertia center
frequency of the three generators is evaluated by the rate of change of frequency, RoCoF,
and the frequency nadir. The RoCoF is defined as the maximum value of frequency change
up to 1 [s] after the disturbance. The frequency nadir is the maximum deviation from
60 [Hz] after the disturbance.

[Three-Phase Ground Fault]

A three-phase ground fault is assumed in one of the two transmission lines at point F.
The fault is cleared after 0.01 s, and the transient stability of the generator is examined. The
parameter settings of the generators and SSIs are shown in Table 6.

Table 6. Simulation parameters.

Parameters
Generators and SSI

G1 G2 G3 SSI(/Machine)

Rated Capacity 247.5
[MVA]

192.0
[MVA]

128.0
[MVA]

1
[kVA]

H [s] 23.64 6.4 3.01 9.42

D [p.u.] 2.0 2.0 2.0 37.7

xd
′ [p.u.] 0.0608 0.1198 0.1813 0.4298

KGOV 0.0663 0.0663 0.0663 0.1

TGOV [s] 1.0 0.5 0.5 0.02

KAVR [s] 0.1 0.1 0.1 0.1

TAVR [s] 0.5 0.5 0.5 0.5

4.2. Frequency Stability Evaluation against Generator Trip

The simulation results for the generator outage are shown in Figure 16. From this
figure, it can be observed that the grid frequency response improves as the number of SSIs
installed increases. The inertia center frequency is shown in Figure 17, and the characteristic
index values obtained from it are shown in Table 7 and Figure 18. In Case 1, before the
introduction of PVs, the frequency change was small. However, in Case 2, the frequency
change was very large after PV installation. In Case 3, where the SSI was used, a significant
improvement was observed. In Case 4, where all inverters are replaced by SSIs, the
frequency characteristic was improved furthermore to an original level without PVs. The
same effect can be demonstrated by the active power output shown in Figure 19.
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(b) PV = 60 [%], SSI = 0 [%] (case2); (c) PV = 60 [%], SSI = 30 [%] (case3); (d) PV = 60 [%], SSI = 60 [%]
(case4).
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Figure 19. Power outputs after generator outage (100 MVA base): (a) PV = 0 [%], SSI = 0 [%] (case1);
(b) PV = 60 [%], SSI = 0 [%] (case2); (c) PV = 60 [%], SSI = 30 [%] (case3); (d) PV = 60 [%], SSI = 60 [%]
(case4).

4.3. Transient Stability Evaluation for a Three-Phase Ground Fault

Figure 20 shows the generators’ frequencies at the time of a three-phase ground fault.
From the figure, it can be observed that the transient stability of the system is improved
in Figure 20b due to the light load condition even for the conventional inverters. Further
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stabilization is observed in Figure 20c,d as the number of SSIs increases, which demonstrates
the stabilizing effect of the SSIs.

Electronics 2024, 13, x FOR PEER REVIEW 21 of 37 
 

 

4.3. Transient Stability Evaluation for a Three-Phase Ground Fault 
Figure 20 shows the generators� frequencies at the time of a three-phase ground fault. 

From the figure, it can be observed that the transient stability of the system is improved 
in Figure 20b due to the light load condition even for the conventional inverters. Further 
stabilization is observed in Figure 20c,d as the number of SSIs increases, which demon-
strates the stabilizing effect of the SSIs. 

 
(a) 

 
(b)  

 
(c) 

  
(d) 

Figure 20. Generator swings (3 LG at F, CT = 0.01 [s]): (a) PV = 0 [%], SSI = 0 [%] (case1); (b) PV = 60 
[%], SSI = 0 [%] (case2); (c) PV = 60 [%], SSI = 30 [%] (case3); (d) PV = 60 [%], SSI = 60 [%] (case4). 

Figure 20. Generator swings (3 LG at F, CT = 0.01 [s]): (a) PV = 0 [%], SSI = 0 [%] (case1);
(b) PV = 60 [%], SSI = 0 [%] (case2); (c) PV = 60 [%], SSI = 30 [%] (case3); (d) PV = 60 [%], SSI = 60 [%]
(case4).

4.4. Small-Signal Stability Evaluation

Figure 21 shows the eigenvalues of the conventional generators with controllers for
the simulated cases for the operating conditions before disturbance, after the generator
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trip, and after the three-phase ground fault clearance. These results show that the SSI has
greatly improved the small-signal stability of the power system for all those cases.

Electronics 2024, 13, x FOR PEER REVIEW 22 of 37 
 

 

4.4. Small-Signal Stability Evaluation 
Figure 21 shows the eigenvalues of the conventional generators with controllers for 

the simulated cases for the operating conditions before disturbance, after the generator 
trip, and after the three-phase ground fault clearance. These results show that the SSI has 
greatly improved the small-signal stability of the power system for all those cases. 

In summary, it is confirmed that the introduction of SSIs is very effective in terms of 
frequency stability, transient stability, and small-signal stability. Also, introducing a large 
number of SSIs improves stability to a similar or even higher level than the state before 
the installation of PVs. 

(a) Normal operating condition 

 
(b) After generator trip 

 
(c) After 3 LG fault clearing 

Figure 21. Generator swings (3 LG at F, CT = 0.01 [s]).  Figure 21. Generator swings (3 LG at F, CT = 0.01 [s]).

In summary, it is confirmed that the introduction of SSIs is very effective in terms of
frequency stability, transient stability, and small-signal stability. Also, introducing a large
number of SSIs improves stability to a similar or even higher level than the state before the
installation of PVs.
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5. Effective Design of the SMG Using the SSI
5.1. Design Concept of the SMG Using the NIC-SSI

This section describes the summary of our previous works on SMGs, which includes
the conceptual planning of an SMG in our project based on the proposed NIC-SSI design.
In general, since the three-phase synchronous generators cannot be connected to the single-
phase distribution system, it was difficult to construct a stable and reliable SMG. In this
situation, the developed SSI created the possibility of constructing an SMG reliably in a
low-voltage distribution system. By combining the characteristics of the proposed SSI
and the storage devices of the households, various benefits can be expected, as shown in
Figure 22. The proposed SMG was designed to work flexibly in normal and emergency
states as follows.
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[Normal State]

Currently, the number of IBRs has grown significantly, and the mechanical inertia is
reduced, which leads to instability problems in the bulk power system. As was shown in
the previous section, frequency stability is the main issue caused by the low system inertia,
which can be considerably improved by the proposed SSI, as can the transient stability and
small-signal stability. This implies that, in the normal state, the SMG with the proposed
SSIs connected to the main grid provides grid stabilization effectively.

[Emergency State]

Recently, the number of power outages caused by natural disasters worldwide has
increased, and MGs are considered an effective solution for recovery in various places. In
such emergency cases, the construction of small-scale MGs in low-voltage distribution sys-
tems is considered effective in terms of cost and performance. Therefore, large investments
and infrastructure restructuring can be avoided, which can be a truly effective solution.
The basic dynamic characteristics are briefly described below.

An important point in the construction of the SMG in Figure 22 is that no major
elements other than SSIs are necessary, SSIs are installed on demand side by replacing
the conventional inverters for PVs, batteries, etc. Furthermore, no special operation costs
are necessary in terms of grid operation since SSIs work as demand side devices, where
no controls are required from the network operator. This implies that no major costs are
required either in the normal state, nor in the emergency state. This is a big difference
compared with usual MG schemes which require a large amount of cost expenditure for
the system control devices such as large controllable generators and energy management
systems (EMSs), etc., which are similar to the case of a conventional power system.
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5.2. Experimental Examinations of SMG Operations

A brief explanation for the control scheme of SSIs is given using an example SMG
system in Figure 23, whose experimental system is shown in Figure 24. Table 8 shows the
basic control modes for SSI operations. Cases C and O correspond to close and open for the
grid connection switch, SW#GC in the MG circuit diagram, Figure 23. The case number
indicates the number of interconnected SSI units. For example, C1 implies that SW#GC
is closed and that one SSI is connected to the grid. The control mode indicated as V-1L is
for voltage control with a first-order delay and Q-PI control represents the case of reactive
power control with PI control; in Case C1 (grid-connected operation), the Q-PI control is
used where no reactive power is injected; in Case O1 (stand-alone operation), V-1L control
is used to control the voltage; and in Case O2 (MG operation), SSI#1 operates with Q-PI
control and SSI#2 with V-1L control.
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Figure 23. Circuit configuration of the SMG.
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Table 8. Operation mode.

Operation
Mode

SW
#11

SW
#21

SW
#12

SW
#22

SW
#GC

Control
Mode

Case C0 In a normal state × × # # #

Case O0 In a power outage × × # # ×

Case C1 SSI#1
grid-connected operation # × # # # SSI#1: Q-PI

Case O1 SSI#1
stand-alone operation # × # # × SSI#1: V-1L

Case O2 SSI#1&#2
off-grid operation # # # # × SSI#1: V-1L

SSI#2: Q-PI

#: closed, ×: open.

5.2.1. Dynamic Performance of the SMG in Grid Connected (C0) and Stand-Alone (C1)
Operations

This case simulates the switching process from grid-connected mode to stand-alone
operation in case of a disaster:

t = 0 [s]:
- Close all switches except SW#21
- Start SSI#1 under Q-PI control to synchronize with AC system.

t = 15 [s]: - Change SSI#1 to V-1L control mode.

t = 25 [s]: - Open SW#GC and allow SSI#1 to operate independently.

t = 40 [s]: - Apply 40 [W] to Load.

In Figure 25, SSI#1 is connected to the grid at time t = 0.0 s. The SSI#1 is synchronized
with the AC system, and the output voltage is adjusted where there is no reactive power
output by Q-PI control. At t = 25 s, the SSI operates independently providing active power
to the local load, keeping zero reactive power output.

Electronics 2024, 13, x FOR PEER REVIEW 26 of 37 
 

 

 
(a) 

(b) 

Figure 25. Results of experiment 1: (a) active power and (b) reactive power. 

5.2.2. Dynamic Performance of the SMG in Stand-Alone (C1) to SMG (O2) Operations 
with Power Exchange between the SSIs 

This case represents energy transfer between end-users in SMG operations during a 
disaster. 

t = 0 [s]: 
- Close SW#21. 
- Start SSI#2 under Q-PI control mode. 
- Perform MG operation using two SSIs. 

t = 25 [s]: 
- Set Pm1 of SSI#1 to 100 [W]. 
- Set Pm2 of SSI#2 to −100 [W]. 
- Transfer power between SSI#1 and SSI#2. 

t =35 [s]: - Apply 40 [W] to Load. 

Figure 26a shows that the active power is exchanged from SSI#1 to SSI#2, which im-
plies that the SSIs can cooperate to achieve the stable operation of the SMG. Since it was 
confirmed that the basic characteristics of the MG frequency are equivalent to the 

Figure 25. Cont.



Electronics 2024, 13, 478 26 of 37

Electronics 2024, 13, x FOR PEER REVIEW 26 of 37 
 

 

 
(a) 

(b) 

Figure 25. Results of experiment 1: (a) active power and (b) reactive power. 

5.2.2. Dynamic Performance of the SMG in Stand-Alone (C1) to SMG (O2) Operations 
with Power Exchange between the SSIs 

This case represents energy transfer between end-users in SMG operations during a 
disaster. 

t = 0 [s]: 
- Close SW#21. 
- Start SSI#2 under Q-PI control mode. 
- Perform MG operation using two SSIs. 

t = 25 [s]: 
- Set Pm1 of SSI#1 to 100 [W]. 
- Set Pm2 of SSI#2 to −100 [W]. 
- Transfer power between SSI#1 and SSI#2. 

t =35 [s]: - Apply 40 [W] to Load. 

Figure 26a shows that the active power is exchanged from SSI#1 to SSI#2, which im-
plies that the SSIs can cooperate to achieve the stable operation of the SMG. Since it was 
confirmed that the basic characteristics of the MG frequency are equivalent to the 

Figure 25. Results of experiment 1: (a) active power and (b) reactive power.

5.2.2. Dynamic Performance of the SMG in Stand-Alone (C1) to SMG (O2) Operations with
Power Exchange between the SSIs

This case represents energy transfer between end-users in SMG operations during
a disaster.

t = 0 [s]:
- Close SW#21.
- Start SSI#2 under Q-PI control mode.
- Perform MG operation using two SSIs.

t = 25 [s]:
- Set Pm1 of SSI#1 to 100 [W].
- Set Pm2 of SSI#2 to −100 [W].
- Transfer power between SSI#1 and SSI#2.

t = 35 [s]: - Apply 40 [W] to Load.

Figure 26a shows that the active power is exchanged from SSI#1 to SSI#2, which
implies that the SSIs can cooperate to achieve the stable operation of the SMG. Since it was
confirmed that the basic characteristics of the MG frequency are equivalent to the simulated
performance of the core dynamics, improved frequency control is being implemented to
the SSI at present.

Although not shown, it has been also confirmed that the voltage and the current are
stable, and the frequency is maintained during the operation. The response of the SSI is
almost equivalent to the synchronous generator. Thus, the SSIs successfully constitute a
stable SMG with good performance.

5.3. Experimental Examinations of SMG Operations with Ill-Conditioned Loads

This section examines the feasibility of SMG operations under extreme load conditions,
performed in Kure KOSEN College. The following two experiments were conducted to
study the performance of the SMG. One is a grid-connected SMG operation where we
checked the basic performance of the SMG. The other is off-grid SMG operation which
tends to be less stable compared with grid-connected operation. Therefore, its stability is an
important issue in the case with poor-quality loads. Then, the stability and the performance
of SMG were studied for various kinds of loads.
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Figure 27 shows the experimental environment. The circuit used in the experiment
consists of two SSI units, a grid-simulated power supply and a load, as shown in Figure 28
and Table 9. In this experiment, 16 lead-acid batteries (12 [V]) were connected in series
so that the DC voltage source amounted to 192 [V]. The inductors (10 mH/3.5 Apeak,
Pony Electric Co., Gunma, Japan) were used as series reactors (L1, L2). The AC line filters
(NAH-20-472-B, COSEL) were inserted at the output end of the reactors for noise reduction
on the outputs. MWPE-IS-03 (Myway Plus Corp.) was used as the current sensor. A
self-made sensor circuit was used for the voltage sensor considering the influence of noise.
The developed control system was coded in C language, which was implemented on a
DSP board (PE-Expert4, Myway Plus Corp.). The measurements through the current and
voltage sensors were sent to PE-Expert4 as analog signals. Based on the measurements, the
proposed control system generates gate signals using PWM to control the outputs of the
inverter (MWINV-1R022, Myway Plus Corp.). The operating frequency of the PE-Expert4
is 1.25 GHz, and the carrier frequency of the PWM is 20 kHz. The experimental data were
measured at a sampling frequency of 20 kHz using PE-View X. The voltage and current
waveforms were observed through an oscilloscope. In this experiment, an AC power
supply (EC1000SA, NF Corp.) was used as the grid-simulated power source. A lamp load
(variable capacity up to 240 W) was connected in parallel to the inverters.
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Table 9. Parameters in the experimental circuit in Figure 28 (Reference [41]).

Parameters Values

AC filter L 10 mH

Load 1
Light (AC100 V, 100 W) for the resistive load connection test

Light (AC100 V, 20 W) for the lag load connection test
and distortion load connection test

Load 2

Transformer (T-200, 2.1 kVA, Yamabishi, Tokyo, Japan)
for the lag load connection test

Switching regulator (PR18-3A, KENWOOD, Tokyo, Japan)
for the lag load connection test

Variable resistance (D-8, Yamabishi)
for the lag load connection test

5.3.1. SMG Operation Test Connected to a Grid-Simulated Power Supply

An SMG operation test was performed in which two SSI units were operated syn-
chronously, connected to the grid-simulated power supply. In this operation, two SSI units
were supplied power from the power supply. Measurements in this operation obtained
from PE-View X are shown in Figure 29. The yellow, red, and blue lines represent the
voltage, current, and active power, respectively. We can observe stable SMG operation with
two SSI units and the power source, where stable power charging from the grid-simulated
power source to the individual batteries (DC voltage sources) through the SSI units.
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5.3.2. Off-Grid SMG Operation Test under Various Load Conditions

We performed a series of off-grid SMG operation tests, disconnecting the grid-simulated
power supply in Figure 28. The stability of the off-grid SMG operation with two SSI units
is examined using three kinds of loads, which are a 100 W lamp load, inductive load, and a
full-wave rectifier load including a ripple filter.

In the first experiment, a 100 W lamp load (LOAD1) was connected near SW#11.
Figure 30 shows the waveforms of voltage and current in this operation. We see that SSI#1
and SSI#2 successfully provide power to the load with low distortion in terms of current
waveforms. The current and voltage waveforms are in phase, implying that no reactive
power was supplied. Total harmonic distortion (THD) was measured with a power quality
analyzer, the results of which are shown in Figure 30. The results show that stable operation
was performed without waveform distortions and voltage fluctuations.

Next, the connection was changed from the purely lamp load to the lagging load
while maintaining off-grid operation. The load consisted of two 20 W lamp loads and four
unloaded transformers of 1 kVA in parallel, representing an induction motor load with a
power factor of approximately 0.8 lagging.

Figure 31 shows the results. There were almost no distortions in the voltage waveforms
(THD = 1.44%). In the current waveforms, distortions were observed (THD = 16%). The
current distortion is thought to be caused by iron core hysteresis in the transformer. This is
a quite severe situation where the excitation current of the unloaded transformer is directly
supplied as the lagging component. Nevertheless, both units successfully kept the stability
of the off-grid SMG operation under such a severe lagging load.
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Finally, a 100 W lamp and a DC-power-supply were connected in parallel as AC loads
in off-grid SMG operation. The latter load can generate a typical distortion current in
a household appliance since it is equivalent to a full-wave rectifier circuit with a ripple
filter. Thus, this case represents an extreme condition in possible operations with rectifier-
based devices.
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The results of the experiment are shown in Figure 32, where stable operation is
confirmed. A typical distortion of the full-wave rectifier circuit is observed in the current
waveform. Even with a large current distortion with a THD of 28% or more, it is confirmed
that stable and reliable SMG operation was performed with slight distortion of the voltage
waveform (THD = 3.42%).
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The results of various loading tests show that the distortion factor of THD decreases
under conditions of poor loading characteristics, as shown in Table 10. However, stable
operation of the SSIs can be maintained, confirming that the performance is sufficient for
the construction of an SMG.

Table 10. Results of the load connection tests.

(1) Grid-connection Test No-load, depending on system voltage

(2) Resistive Load Connection Test
System Voltage: V = 98.2 V, THD = 0.35%
SSI#1: I1 = 0.49A, THD1 = 1.53%
SSI#2: I2 = 0.49A, THD2 = 0.00%

(3) Lag Load Connection Test
System Voltage: V = 97.2 V, THD = 1.44%
SSI#1: I1 = 0.59A, THD1 = 16.66%, P.F. = 0.796
SSI#2: I2 = 0.59A, THD2 = 16.45%

(4) Distortion LoadConnection Test
System Voltage: V = 97.7 V, THD = 3.42%
SSI#1: I1 = 0.88A, THD1 = 29.82%
SSI#2: I2 = 0.88A, THD2 = 27.43%

The series of experimental studies in this section show that the proposed SMG provides
reliable performance in both grid-connected and off-grid operations in cases with poor
quality loads. The robust stability of the SMG consisting of two SSIs is confirmed as a basic
characteristic even in conditions in which considerable current distortions are in existence
under various load conditions.

6. Conclusions

This paper presents our recent progress on the SSI concerned with power system
stabilization and SMG operations. Newly obtained contributions are as follows:

• An RMS simulation model was developed based on the NIC design method for
stability analysis of a power system with SSIs as well as an SMG. The developed RMS
model was accurate enough when compared with the experimental results. The error
rate was about 10% for the maximum power swing (See Figure 10e, for example).

• Using the developed RMS analysis tool, the stabilization effects of the SSIs were
investigated in the standard three-machine system. In the case where all PV inverters
were replaced by SSIs on the demand side, considerable improvements were observed
in terms of transient stability, small-signal stability, and frequency stability, where the
frequency nadir was improved from −0.258 to −0.160, for example. (See Cases 2 and
4 in Table 7.)

• The performance of the SMG was demonstrated through experiments which show the
feasibility and robust stability in terms of off-grid operations under various situations
including ill-conditioned loads. (See the stable operation in Figure 32 for full-wave
rectifier load.)

The above results imply that the proposed strategy of SMG is promising from the
point of view of grid stability in a normal state as well as in off-grid operation of the SMG
in an emergency state.

Future works are assumed as follows. Since the SMG allows flexible configurations
(see Figure 22 for the power outage), further investigations are required for the stabilities
of various patterns of the off-grid operations of individual SMGs. The construction of a
three-phase MG using SMGs will also be part of a future study.

An important point in the construction of SMGs is that no major elements other than
SSIs are necessary. SSIs are installed on the demand side by replacing conventional inverters
for PVs, batteries, etc. Furthermore, no special operation costs are necessary in terms of
grid operation since the SSIs work as demand-side devices, where basically no controls are
required from the network operator. This implies that no major costs are necessary in a
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normal state of operation. This is a big difference compared with usual MG schemes which
require a large cost expenditures for system controls.
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DC Direct Current
DSP Digital Signal Processor
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EMS Energy Management System
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GFL Grid-Following
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HIL Hardware-In-the-Loop
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IBR Inverter-Based Resource
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New Energy and Industrial Technology Development Organization, National
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NIC Non-Interference Core
PI Proportional Integration
PV Photovoltaic Power Generation
Q-PI Reactive Power Control with PI
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SMG Single-Phase Microgrid
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Improved Second-Order–Second-Order Generalized Integrator based on
Quadrature Signal Generation

SSI Single-Phase Synchronous Inverter
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V-1L Voltage Control with First-Order Delay
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Appendix A

Using the same test circuit as in Figure 6, additional experiments were conducted,
where the same fault without fault clearance was applied. That is, the transient waveforms
after a short-circuit fault at 0.4 s for 0◦ of fault timing with the different parameters are
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shown in Figure A1 with the same setting of (M̃ and D̃) and Figure A2 with these parameters
increased. The other parameters were not changed. In both figures, (a) is the active power
Pe [W] from the SSI and (b) is the system frequency f [Hz]. We can observe the typical
transient behavior of the proposed SSI, similar to the conventional synchronous generators.
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