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Abstract: Camera failure or loss of storage components in imaging equipment may result in the loss
of important image information or random pulse noise interference. The low-rank prior is one of the
most important priors in image optimization processing. This paper reviews and compares some
low-rank constraint models for image matrices. Firstly, an overview of image-inpainting models
based on nuclear norm, truncated nuclear norm, weighted nuclear norm, and matrix-factorization-
based F norm is presented, and corresponding optimization iterative algorithms are provided. Then,
we use different image matrix low-order constraint models to recover satellite images from three
types of pulse interference and provide our experimental visual and numerical results. Finally, it
can be concluded that the method based on the weighted nuclear norm can achieve the best image
restoration effect. The F norm method based on matrix factorization has the shortest computational
time and can be used for large-scale low-rank matrix calculations. Compared with nuclear norm-
based methods, weighted nuclear norm-based methods and truncated nuclear norm-based methods
can significantly improve repair performance.

Keywords: low rank; optimization model; optimization algorithm; image inpainting

1. Introduction

In machine vision applications, images often suffer from impulse interference due
to various factors such as pulse noise caused by detector pixel failure in the camera or
loss of storage elements in the imaging equipment [1]. Satellite images, unmanned aerial
vehicle (UAV) images, etc. generally have local smoothness, so their two-dimensional
representation matrices usually have obvious low rankness. Low-rank prior information
has excellent performance in image denoising [1], inpainting [2,3], reconstruction [4],
deblurring [5], and other signal optimization processing fields. In existing low-matrix-rank-
based image-inpainting methods, low-rank prior information is mainly divided into the
low rank of the signal itself, such as the inherent low rank of the matrix, and the similarity
of local map block information [6], the similarity between frames of a video [7], etc. A
low-rank matrix with a Hankel-like structure can be constructed in the Fourier domain by
using the annihilating filter relationship [2,4]. A high-order tensor rank can be obtained
under various tensor decomposition frameworks, such as CANECOMP/PARAFAC (CP),
Tucker [8,9], tensor train (TT) [10], and tensor singular value decomposition (t-SVD) [11].

In addition to the low-rank prior, early image-denoising methods assumed that images
had sparse representations in their transformation domains, such as the difference domain,
wavelet domain, etc. [12,13]. Following this assumption, the sparse prior information
was then constrained to recover the image from the noise. Due to the effectiveness of
low rank and sparsity in constrained image optimization problems, image-processing
schemes that combine constrained sparsity with low-rank prior information have been
continuously proposed [14,15]. Some image-denoising methods use decomposition models
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of low rank and sparse components, such as the robust principal component analysis
(RPCA) method [16], aimed at separating low-rank images from sparse interference images.
With the progress in the research and development of tensor decomposition tools in the field
of mathematics, such as t-SVD, TT decomposition, etc. [10,11,17], related image or video
optimization applications based on a low-rank tensor are also being developed [18–22].

In addition to using low-rank prior information to construct the constraint model for
impulse interference image inpainting, many theories, methods, and technologies in the
field of signal processing can be combined to solve image-inpainting problems, such as
various matrix/tensor completion theories in mathematics [18,23,24], finite innovation rate
(FIR) theory [25], image and video enhancing (such as Hankel-like-matrix-based technol-
ogy [1,2,4]), denoising schemes (such as the famous BM3D image-denoising technology [26]
and nonlocal TV denoising technology [12]), etc. Various tensor-decomposition-based com-
pletion methods, convex optimization schemes, and fast optimization algorithm research
systems can also be used to optimize image-inpainting methods.

The above methods are inseparable from the most basic problems in modeling and
solving matrix low-rank constraints. The initial modeling method is to establish a constraint
minimizing the number of nonzero singular values in the matrix, i.e., minimizing the
l0 norm, but this is an NP-hard problem that cannot be solved. In order to approximate
the optimal solution, various matrix low-rank constraint modeling schemes have been
proposed to replace the l0 norm, such as the lp norm, weighted nuclear norm, truncated
nuclear norm, matrix factorization replacing nuclear norm, and so on. However, to our
knowledge, there has been no literature review or comparison of these methods in dealing
with the same optimization problem.

This paper uses the low-rank property of the image matrix to optimize the image-
inpainting model and algorithm under three kinds of pulse interference. Image-inpainting-
modeling schemes based on the nuclear norm, truncated nuclear norm, weighted nuclear
norm, and matrix-factorization-based F norm are reviewed, and their corresponding opti-
mization iterative algorithms, such as the TSVT_ADMM algorithm, WSVT_ADMM algo-
rithm, and UV_ADMM algorithm, are given. The experimental results of various inpainting
methods are displayed visually and numerically, and a comparative analysis is given.

The structure and content of this paper are arranged as follows: Section 1 presents an
introduction; Section 2 establishes the basis of the matrix low-rank constraint inpainting
model and solution algorithm; Section 3 presents the experimental comparison; and the
last section presents the conclusions.

2. The Matrix Low-Rank Constrained Inpainting Model and Its Solution Algorithm

Image-inpainting models based on a low-rank matrix are generally expressed
as follows:

∧
X = arg min

X
rank(ΦX) s.t. Y − ΘΩX ≤ ε (1)

where X represents the image (X ∈ R2 grayscale value image, X ∈ R3 RGB image, grayscale
value video, etc.); ΘΩ represents the interference operator, in which the set of interference

pixel positions is Ω;
∧
X represents the optimal solution; Y represents the interfered image; ε

represents the error, generally set as a small constant value matrix, such as constant 10−14;
Φ represents the low-rank transformation operation; and ΦX is used to transform X into a
matrix or tensor with low ranks, such as a low-rank matrix transformed by similar blocks
of local images, a low-rank structure matrix [1,2,4] transformed by the relationship of the
annihilating filter, or a low-rank matrix [7] transformed by the similarity between frames. If
videos or RGB images are treated as third-order or higher-order tensors, the rank property
may come from the tensor Tucker rank [27], TT rank [19], etc. Under the interference of
impulse noise, the ΘΩ operator generally has three representations, as detailed below.
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The first representation is random-valued impulse noise (RVIN) [1]:

ΘΩX(i, j) =

{
V(i, j) , (i, j) ∈ Ω with random probabilityp
X(i, j) , (i, j) /∈ Ω with random probability 1 − p

The value of V is random, and its range is within the range of X’s pixel value, such as
the range of 0~255, or the range of normalized 0~1. p is the interference rate, that is, the
percentage of the number of interfering pixels in the total number of pixels in the image.

The second representation is salt and pepper noise, a special kind of RVIN [1]:

ΘΩX(i, j) =


Vmax , (i, j) ∈ Ω with random probability p

2

Vmin , (i, j) ∈ Ω with random probability p
2

X(i, j), (i, j) /∈ Ω with random probability 1 − p

where Vmax is the maximum value of salt and pepper noise and Vmin is the minimum value
of salt and pepper noise.

In addition, random pixel loss is also a typical problem in the research field of image
repair [2,6,8]:

ΘΩX(i, j) =
{

0 , (i, j) ∈ Ω Random probability p
X(i, j) , (i, j) /∈ Ω Random probability 1 − p

The low-rank property is another form of sparsity essentially. Sparse constraints
on matrices essentially minimize the zero norm of matrix elements, while low-rank con-
straints minimize the zero norm of singular values of the constraint matrix. The low-rank
constraint on a matrix is the l0 norm constraint on the singular values of the matrix,
i.e., min

X
rank(ΦX) ⇔ min

X
∥ΦX∥0 . Since min

X
∥ΦX∥0 is nonconvex, the lp norm taking

the form min
X

∥ΦX∥p is commonly used for convex substitution [28], where 0 ≤ p ≤ 1,

∥ΦX∥p =
n
∑

i=1
σ

p
i , and σi are singular values of matrix ΦX of size n1 × n2, n = min ( n1, n2 ).

The special case of the lp norm is the nuclear norm ∥ΦX∥∗ =
n
∑

i=1
σi, which means p = 1.

Whether the low rank constraint form used can accurately perform convex approxima-

tion has a significant impact on the repair effect. Let ∥ΦX∥p =
n
∑
i

gp(σi), where function

gp(σi) = σ
p
i , 0 ≤ p ≤ 1. For the l0 and lp norms, the function gp(σi) is

g0(σi) =

{
0 , σi = 0
1 , σi ̸= 0

, g1(σi) = σi.

Normalize σi within the range of 0–1 and plot the curves of function gp(σi) at p = 0,
0.3, 0.5, 0.7, and 1. A visualization of the convex approximation is shown in Figure 1. It
can be seen that the smaller the value of p is, the closer the convex approximation function
gp(σi) curve is to the l0 norm curve.

As the simplest convex substitution of the l0 norm, the nuclear norm is the most
common in low-rank constraint modeling. To further improve the accuracy of low-rank
approximation, we can use the weighted l1 norm of the singular values of the matrix, that
is, the weighted nuclear norm [29–32], or use the truncated nuclear norm [33–36] to replace
the nuclear norm. Common regularization constraint schemes for low-rank matrices are
summarized as follows.
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2.1. Nuclear Norm ∥X∥∗
For example, we use the minimized nuclear norm as a low-rank constraint to establish

an image-inpainting model, as follows:

∧
X = arg min

X
∥ΦX∥∗

s.t. Y − ΘΩX ≤ ε
(2)

where Y is the impulse interference image of size n1 × n2. The regularization parameter λ
is introduced to convert model (2) into the following unconstrained form:

∧
X = arg min

X

1
2
∥Y − ΘΩX∥2

F + λ ∥ΦX∥∗ (3)

Three algorithms can be used to solve Equation (3). The most commonly used algo-
rithm is the singular value shrinkage/threshold (SVT) algorithm [37].

The SVT algorithm is shown below.
First, perform singular value decomposition for Y,UΣVH = SVD(Y), Σ = diag

(
{σi}1≤i≤n

)
,

where diag ( . ) is the diagonal matrix operation of the elements, n = min (n1, n2).
Then, soft threshold operation Dλ(σi) = max(0, σi − λ) is performed on the singular
values [38]. Then, set ΣSVT = diag

(
{Dλ(σi)}1≤i≤n

)
. Finally, obtain the solution results

∧
X = UΣSVTVH .

Jain P. proposed the singular value projection (SVP) algorithm in order to solve the
problem in model (2) [39]. With the development of large-scale data processing and
distributed computing, the alternating direction method of multipliers (ADMM) algorithm
has become the mainstream optimization algorithm [40]. When using the ADMM algorithm
to solve (3), auxiliary variables Z = ΦX and residuals L must first be introduced to
transform model (3) into multiple sub-problems for an iterative solution:

(
∧
X,

∧
Z,

∧
Θ)= argmin

x,z,Θ

1
2
∥Y − ΘΩX∥2

F +
λ

2
∥Z∥∗ +

λρ

2
∥ΦX − Z + Θ∥2

F

where ρ > 0 is the introduced penalty parameter, and the SVT method is used to solve

sub-problem
∧
Z.

In this paper, we use the SVT algorithm, SVP algorithm, and ADMM algorithm to solve
the nuclear-norm-based image-inpainting model, which correspond by name to the SVT
method, SVP method, and n_ADMM method, respectively. The details of the SVT algorithm,
SVP algorithm, and n_ADMM algorithm are shown in Algorithms 1–3, respectively.
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Algorithm 1. The SVT algorithm for solving model (3)

Input: Y, ΘΩ, ρ , λ, the maximum number of iterations tmax, convergence condition ηtol = e − 6.

Initialization: (m, n) = size(Y), X(0) = zeros(m, n), Y(0)
d = Y, t = 1.

While t < tmax and η(t) < ηtol do
[U, S, V] = SVD(Y(t−1)

d ).
δ0 = diag(S), τ = 1

ρ , δ = 1 − min( τ
δ0

, 1), δ0 = δ0 ∗ δ.
Update X(t) =

∣∣U ∗ diag(δ0) ∗ VH
∣∣.

Update Y(t)
d =

∣∣∣Y(t−1)
d + λ(Y − X(t))

∣∣∣.
Update η(t) =

∥|X(t)|−|X(t−1)|∥F

∥|X(t)|∥F

.

t = t + 1.
End while

X∗(i, j) =
{

X(t)(i, j), (i, j) ∈ Ω
Y(i, j), (i, j) /∈ Ω

.

Output: X∗.

Algorithm 2. The SVP algorithm for solving model (2)

Input: Y, ΘΩ, τ = 0.01, the rank r, the maximum number of iterations tmax, convergence condition
ηtol = e − 6.

Initialization: (m, n) = size(Y), X(0) = zeros(m, n), Y(0)
d = Y, t = 1.

While t < tmax and η(t) < ηtol do
Y(t)

d = X(t−1) − τ(X(t−1) − Y).
ΘΩY(t)

d = ΘΩY.

[U, S, V] = SVD(Y(t)
d )

δ0 = diag(S), δ0 = δ0(1 : r, 1).

Update X(t) =
∣∣∣U(:, 1 : r) ∗ diag(δ0) ∗ V(:, 1 : r)H

∣∣∣.
Update η(t) =

∥|X(t)|−|X(t−1)|∥F

∥|X(t)|∥F

.

X(t)(i, j) =
{

X(t)(i, j), (i, j) ∈ Ω
Y(i, j), (i, j) /∈ Ω

, t = t + 1.

End while
X∗ = X(t).

Output: X∗.

2.2. Weighted Nuclear Norm ∑
i

f un(σi)

The weighted nuclear norm ∑
i

f un(σi) is a scheme that uses weighted singular value

constraints to approximate l0 constrained singular values [29–32]. It is a balanced con-
straint scheme that makes large singular values smaller and small singular values larger.
It can be more accurate than the nuclear norm (i.e., l1 constraints on singular values),
where f un( . ) is the weighted function of each singular value σi of matrix ΦX, and
[ U, diag{σi}i=1:min(n1,n2)

, V ] = SVD(ΦX). We use the weighted nuclear norm as a
low-rank constraint to establish an image-inpainting model, as follows:

∧
X = arg min

X
∑
i

f un(σi)

s.t. Y − ΘΩX ≤ ε
(4)
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Then, we introduce the regularization parameter λ and convert model (4) into an
unconstrained form:

∧
X = arg min

X

1
2
∥Y − ΘΩX∥2

F + λ∑
i

f un(σi) (5)

There are many kinds of weighting functions f un( . ) , and the p-norm (0 < p < 1)
is the simplest weighting scheme, namely, gp(σi) = f un(σi). Reference [30] reviewed
various weighting functions that approximate the l0 norm of singular values, such as
SCAD [41], MCP [42], Logarithm [43], Geman [44], Laplace [45,46], etc., among which
the Logarithm scheme is the most classic. In the experimental section of this paper, we
choose the Logarithm scheme to perform our comparisons. The weighting function in the
Logarithm scheme is shown below:

f un(σi) =
λ

log(γ + 1)
log(γσi + 1) (6)

where γ > 0 is a parameter that is determined based on experience.

Algorithm 3. The n_ADMM algorithm for solving model (3)

Input: Y, ΘΩ, ρ , λ, the maximum number of iterations tmax, and convergence condition
ηtol = e − 6.

Initialization: (m, n) = size(Y), X(0) = zeros(m, n), Y(0)
d = Y, Z(0) = zeros(m, n),

L(0) = zeros(m, n), t = 1.

While t < tmax and η(t) < ηtol do
Update X(t) = (Y(t−1)

d + λρ(Z(t−1) − L(t−1)))./(ΘΩ + λρ).
[U, S, V] = SVD(X(t) + L(t−1)).
δ0 = diag(S)− 1

ρ , δ0( f ind(δ0) < 0) = 0.
Update Z(t) = U ∗ diag(δ0) ∗ VH .
Update L(t) = L(t−1) + X(t) − Z(t).

Update η(t) =
∥|X(t)|−|X(t−1)|∥F

∥|X(t)|∥F

.

t = t + 1.
End while

X∗(i, j) =

{∣∣∣X(t)(i, j)
∣∣∣, (i, j) ∈ Ω

Y(i, j), (i, j) /∈ Ω
.

Output: X∗.

The simplest and most direct solution to model (4) is the weighted SVT (WSVT)

algorithm. Set the weight wi = f un(σi), i = 1, 2, . . . , n, and then
∧
X = UΣWSVTVH , where

ΣWSVT = diag
(
{Dλ(wiσi)}1≤i≤n

)
.

We use ADMM to solve the weighted nuclear norm image-inpainting problem (5). We
introduce auxiliary variables Z = ΦX and residuals L to transform model (5) into multiple
sub-problems for iterative solution:

(
∧
X,

∧
Z,

∧
L)= argmin

x,z,L

1
2
∥Y − ΘΩX∥2

F +
λ

2 ∑
i

f un(σi) +
λρ

2
∥ΦX − Z + L∥2

F (7)

where ρ > 0 is the introduced penalty parameter, and the WSVT algorithm is used to solve

the sub-problem
∧
Z. The combination of the weighted SVT algorithm and ADMM algorithm

can obtain more accurate iterative estimations. We use the ADMM algorithm to solve the
weighted-nuclear-norm-based image-inpainting model (7), and name it the WSVT_ADMM
method. The details of the WSVT_ADMM algorithm used to solve model (7) are shown in
Algorithm 4.
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Algorithm 4. The WSVT_ADMM algorithm for solving model (7)

Input: Y, ΘΩ, ρ , θ, λ, γ, the maximum number of iterations tmax, decay factor ς = 0.9 convergence
condition ηtol = e − 6.

Initialization: (m, n) = size(Y), X(0) = zeros(m, n), L(0) = zeros(m, n), Y(0)
d = Y,

λ = ς ∗ max(|Y(:)|), t = 1.

While t < tmax and η(t) < ηtol do
[U, S, V] = SVD(Y(t−1)

d ).
δ0 = diag(S), w = f un(δ0, γ, λ), δ0 = δ0 − w ∗ 1

ρ , δ0( f ind(δ0 < 0)) = 0.
Update X(t) = U ∗ diag(δ0) ∗ VH .

Update Y(t)
d =

∣∣∣Y(t−1)
d + θ(Y − X(t))

∣∣∣.
Update η(t) =

∥|X(t)|−|X(t−1)|∥F

∥|X(t)|∥F

.

λ = ς ∗ λ, X(t)(i, j) =
{

X(t)(i, j), (i, j) ∈ Ω
Y(i, j), (i, j) /∈ Ω

, t = t + 1.

End while
X∗ = X(t).

Output: X∗.

2.3. Truncated Nuclear Norm

In general, the singular value curve of a low-rank matrix exhibits an exponential
extreme decay trend from large to small, and the singular values sorted backward will
approach 0. Therefore, the minimization of the nuclear norm is mainly to constrain the
minimization of large singular values. To fully utilize the small singular values, a truncated
nuclear norm minimization scheme can be used. The purpose of truncated nuclear norm
minimization is to constrain the minimization of small singular values [33–36]. We use the
truncated nuclear norm as a low-rank constraint to establish an image-inpainting model,
as follows:

∧
X = arg min

X
∥ΦX∥∗ − Tr ( UHΦXV )

s.t. Y − ΘΩX ≤ ε
(8)

where Tr is a truncation operation that extracts the first r larger diagonal elements in
the diagonal matrix UHΦXV, and

∣∣∣∣ΦX
∣∣∣∣∗ − Tr ( UHΦXV ) means that the first r larger

diagonal elements in diagonal matrix UHΦXV are zeroed and the last r smaller diagonal
elements are retained. We introduce a regularization parameter λ and convert (8) into an
unconstrained form:

∧
X = arg min

X

1
2
∥Y − ΘΩX∥2

F + λ
( ∣∣∣∣∣∣ΦX

∣∣∣∣∣∣∗ − Tr ( UHΦXV )
)

(9)

where U, V are the truncated left and right singular value vector group matrices of ΦX.
The essence of truncated nuclear norm minimization is to minimize the sum of smaller
singular value elements of the constrained low-rank matrices.

The truncated-nuclear-norm-based model can be solved by the APGL or ADMM
algorithms. This paper combines the ADMM algorithm with the SVT algorithm to solve
the truncated-nuclear-norm-based image-inpainting model (9), and abbreviates it as the
TSVT (truncated SVT) algorithm. The details of the TSVT algorithm used to solve model (9)
are shown in Algorithm 5.
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Algorithm 5. The TSVT algorithm for solving the model (9)

Input: Y, ΘΩ, ρ , λ, the maximum number of iterations tmax, the truncated rank r,
convergence condition ηtol = e − 6.

Initialization: (m, n) = size(Y), X(0) = zeros(m, n), Y(0)
d = Y, Z(0) = zeros(m, n),

L(0) = zeros(m, n), t = 1.

While t < tmax and η(t) < ηtol do
τ = 1

ρ , T = Z(t−1) − τ ∗ L(t−1), [U, S, V] = SVD(T).
δ0 = diag(S), δ = 1 − min( τ

|δ0| , 1), δ0 = δ0 ∗ δ.

Update X(t) = U ∗ diag(δ0) ∗ VH .
[UZ, SZ, VZ] = SVD(Z(t−1)), B = UZ(:, 1 : r).H ∗ VZ(:, 1 : r).
Update Z(t) = X(t) + τ ∗ (L(t−1) + B), ΘΩZ(t) = ΘΩY.
Update L(t) = L(t−1) + ρ(X(t) − Z(t)).

Update η(t) =
∥|X(t)|−|X(t−1)|∥F

∥|X(t)|∥F

.

t = t + 1.
End while

X∗(i, j) =

{ ∣∣∣X(t)(i, j)
∣∣∣, (i, j) ∈ Ω

Y(i, j), (i, j) /∈ Ω
.

Output: X∗.

2.4. The F Norm of UV Matrix Factorization

The process of solving the nuclear norm minimization problem involves time-
consuming matrix singular value decomposition. Earlier, Srebro N. [47] proposed the
property ∥X∥∗ = min

UVH=X

1
2

(
∥U∥2

F + ∥V∥2
F

)
and then proved it. Later, the F norm of

UV matrix factorization was used instead of the nuclear norm in many applications
to simplify the calculation time [1,48]. We use the minimized F norm of UV matrix
factorization as a low-rank constraint to establish an image-inpainting model, as follows.

∧
X= argmin

X
1
2

(
∥U∥2

F + ∥V∥2
F

)
s.t. Y − ΘΩX ≤ ε, UVH = ΦX

(10)

Then, we introduce the regularization parameter λ and penalty parameter ρ > 0 to
convert model (10) into an unconstrained form:

∧
X = arg min

UVT=ΦX

1
2
∥ΘΩX − Y∥2

F +
λ

2

(
∥U∥2

F + ∥V∥2
F

)
+

λρ

2

∥∥∥ΦX − UVT + L
∥∥∥2

F
(11)

where L is the residual variable. The initial values of U and V can be initialized using the
LMaFit method [2,49]. Model (11) is commonly solved using the ADMM algorithm, and
we name it the UV_ADMM method. The details of the UV_ADMM algorithm are shown in
Algorithm 6.

Compared with the n_ADMM method, the F norm of the UV-matrix-based UV_
ADMM method avoids the time-consuming SVD in each iteration, making it more suitable
for large matrix modeling with low-rank constraints. This method and the weighted
nuclear norm method are commonly used in low-rank matrix constrained models. The
above model and its solving algorithm are summarized in Table 1.
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Algorithm 6. The UV_ ADMM algorithm for solving model (11)

Input: Y, ΘΩ, ρ , λ, the maximum number of iterations tmax, convergence condition ηtol .

Initialization: U(0)
n and V(0)

n by the LMaFit

method [49], (m, n) = size(Y), X(0) = zeros(m, n), Y(0)
d = Y, L(0) = zeros(m, n), t = 1.

While t < tmax and η < ηtol do
Update X(t) = [Y(t) + λρ ∗ (U(t−1)V(t−1)H − L(t−1))]./(ΘΩ + λρ).
Update U(t) = ρ ∗ (X(t) + L(t−1)) ∗ V(t−1) ∗ inv(eye(r) + ρV(t−1)V(t−1)H).
Update V(t) = ρ ∗ (X(t) + L(t−1)) ∗ U(t) ∗ inv(eye(r) + ρU(t)HU(t)).
Update L(t) = L(t−1) + X(t) − U(t)V(t)H .

Update ηt+1 =
∥Xt+1

n (:)−Xt
n(:)∥F

∥Xt
n(:)∥F

.

t = t + 1.
End while

X∗(i, j) =

{ ∣∣∣X(t)(i, j)
∣∣∣, (i, j) ∈ Ω

Y(i, j), (i, j) /∈ Ω
.

Output: X∗

Table 1. Modeling and solving algorithms based on the low-rank constraint in this paper.

Constrained
Modeling

Nuclear
Norm Truncated Nuclear Norm Weighted

Nuclear Norm

Matrix
Decomposition

F Norm

Solution
algorithm SVT SVP ADMM ADMM ADMM ADMM

Method ab-
breviation SVT SVP n_ADMM TSVT_ADMM WSVT_ADMM UV_ADMM

In addition, other algorithms can solve the above model, for example, commonly
used algorithms in sparsity-solving models. A sparse constraint on a signal refers to mini-
mization of the l0 norm of signal elements, while a low-rank constraint on a signal refers
to minimization of zero norms of the singular value of the signal matrix. Therefore, the
optimization solution based on a low-rank constraint model has a lot in common with
the optimization solution based on the sparse constraint model in solving the algorithm.
Iterative optimization algorithms based on sparse constraint models can be applied to opti-
mization solutions based on matrix low-rank constraint models, such as convex relaxation
algorithms, which find a sparse or low-rank approximation of signals by transforming
nonconvex problems into convex problems through iterative solutions. Among them, the
conjugate gradient (CG) algorithm, iterative soft thresholding (IST) algorithm [50], Split
Bregman algorithm [51], and major minimize (MM) algorithm [52] can be flexibly changed
according to different optimization models.

3. Comparative Experiments

In this section, we conduct a comparison of the above methods for solving satellite-
image-inpainting problems. We simulated the impulse interference on satellite images
with an interference rate of 30% (the interference rate is the percentage of interference
pixels among the total number of image pixels). The three kinds of impulse interference
were as follows: A. random impulse interference; B. salt and pepper impulse interference;
C. and random missing pixels. The satellite images in this paper are sourced from the
public dataset DOTA v.2.0 (https://captain-whu.github.io/DOTA/dataset.html, accessed
on 12 December 2020), with images provided by the China Resources Satellite Data and
Application Center, satellite GF-1, satellite GF-2, etc. The methods employed in the com-
parison are SVT, SVP, n_ADMM, TSVT_ADMM, WSVT_ADMM, and UV_ADMM. For a
fair comparison, each method is carried out using its optimal parameters to ensure every
method shows its most representative performance.

https://captain-whu.github.io/DOTA/dataset.html
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The relative least normalized error (RLNE) and the structural similarity (SSIM) [53]
are used as image-inpainting quality indicators. The RLNE is an index based on the
error between pixels, and the SSIM index is more consistent with human visual percep-
tion in image visual evaluation. Generally, the larger the SSIM value is, the better the
image-inpainting quality is. All simulations were carried out on a Windows 10 operating
system and MATLAB R2019a running on a PC with an Intel Core i7 CPU 2.8 GHz and
16 GB of memory.

A gray satellite image and its singular values curve are shown in Figure 2a and Figure 2b,
respectively. The singular values of the image descend rapidly from large to small, and most
of them tend to be zero. This indicates that the image has the characteristic of being low rank.
The three examples of impulse interference satellite images are shown in Figure 3, where the
original image is the image in Figure 2a. It can be seen that the 30% interference rate has
caused obvious information loss on the building shape, layout, gray value shading, and other
features in the original image.
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Figure 3. The interference satellite image (interference rate 30%): (a) random impulse interference
pattern; (b) salt and pepper impulse interference pattern; (c) random missing pixel pattern.

The comparison of the average values (RLNE, SSIM, and running time) of six image-
inpainting methods under the interference of random impulse, salt and pepper noise, and
missing pixels is shown in Table 2. The visual comparison of the six image-inpainting
methods under the interference of salt and pepper noise is shown in Figure 4.
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Table 2. Numerical comparison of six image-inpainting methods under three types of interference.
(The bold indicators are the best indicators among various methods).

Noise Forms
Indices

Methods
Untreated SVT SVP n_ADMM TSVT_

ADMM
WSVT_
ADMM

UV_
ADMM

Random impulse

RLNE (%) 45.88 18.36 9.83 19.70 8.43 8.19 20.01

SSIM (%) 34.77 77.50 92.19 74.96 94.25 94.49 74.30

Running time (s) / 11.7357 0.5484 1.3883 1.0401 2.0523 0.3375

Salt and pepper
noise

RLNE (%) 69.72 19.96 9.76 19.73 8.41 8.22 20.29

SSIM (%) 18.63 74.18 92.25 74.79 94.21 94.39 73.80

Running time(s) / 5.34 0.4793 1.1451 1.2996 2.216 0.1993

Missing pixels

RLNE (%) 54.77 12.96 9.84 8.73 8.43 8.19 8.9

SSIM (%) 32.46 87.91 92.25 94.02 94.25 94.49 93.69

Running time (s) / 9.9569 0.5418 0.5194 0.9842 2.3475 0.2543
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(g) WSVT_ADMM; (h) UV_ADMM.

Based on the above visual and numerical comparison, we analyze the experimental
methods below.

The matrix rank constraint method based on the F norm of UV matrix factorization
(i.e., the UV_ADMM method) is equivalent to the method based on the nuclear norm
constraint (i.e., the n_ADMM method) in terms of effectiveness. Overall, the n_ADMM
method is slightly better, increasing the RLNE index by about 0.3% and the SSIM index by
0.3~1.

Since the nuclear-norm-based SVT, SVP, and n_ADMM methods, the weighted-nuclear-
norm-based WSVT_ADMM method, and the truncated-nuclear-norm-based TSVT method
all involve time-consuming SVD calculations in each iteration, the UV_ADMM method
based on the UV matrix factorization F norm has significant advantages in terms of runtime.
However, the UV_ADMM method did not achieve more accurate results compared to other
methods, because the UV_ADMM method needs to initially set the estimated rank, for
example, by using the LMaFit method to initialize the rank. However, the rank initialization
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is estimated and the accuracy of the rank is therefore not high, which leads to inaccurate
low-rank constraints. Thus, this UV-matrix-factorization-based method is more commonly
used for large-scale low-rank matrix calculations, and it can greatly reduce the inpainting
time of large-scale matrix optimization as a result of avoiding the SVD of each iteration.

Since the weighted and truncated nuclear norm can better approach the singular
value l0 norm, the WSVT_ADMM and TSVT methods are significantly better than the
nuclear-norm-based methods (SVT, SVP, n_ADMM) in terms of the accuracy of inpainting.

In summary, we have obtained a preliminary understanding that, in solving the same
image restoration optimization problem using different algorithms, the various constraint
schemes based on matrix low rank mentioned above can effectively solve the image op-
timization problem, but the solution accuracy and computation time vary. Compared to
other schemes, weighted schemes can obtain more accurate repair results. In terms of
computation time, because the time-consuming SVD decomposition is avoided, the matrix-
factorization-based scheme saves more time compared to other schemes, but its repair
accuracy is slightly lower than the weighted scheme, the truncated nuclear norm scheme,
and the nuclear norm scheme. In addition, under the same low-rank constraint scheme
of the matrix, using different algorithms to solve the problem also affects the accuracy of
image restoration. For example, the nuclear norm scheme based on the SVP algorithm has
a significantly better restoration accuracy than the nuclear norm scheme based on SVT,
while the nuclear norm scheme based on the ADMM algorithm takes second place. It is
obvious that the repair effects of the weighted nuclear norm scheme and truncated nuclear
norm scheme are significantly better than that of the nuclear norm scheme.

4. Conclusions

In the application of machine vision, satellite images may suffer from three forms of
impulse noise interference. In this paper, we use the low-rank characteristics of the image
matrix to optimize and repair the images under three kinds of impulse interference and
provide the optimization algorithm. Firstly, image-inpainting-modeling schemes based on
nuclear norm, truncated nuclear norm, weighted nuclear norm, and matrix factorization F
norm are reviewed. Then, the corresponding optimization iterative algorithms are provided,
such as the TSVT_ ADMM algorithm, WSVT_ ADMM algorithm, UV_ ADMM algorithm,
etc. Finally, the experimental results of various matrix-rank-constraint-based methods
are presented visually and numerically, and a comparative analysis is provided. The
experimental results show that all the mentioned matrix-rank-constraint-based methods
can repair images to a certain extent and suppress certain forms of interference noise.
Among the methods studied, those based on the weighted nuclear norm and the truncated
nuclear norm achieved better repair effects, while methods based on the matrix factorization
F norm take the shortest time and can be used for large-scale matrix low-rank calculation.
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