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Abstract: Based on the original deep network architecture, this paper replaces the deep integrated
network by integrating shallow FastText, a bidirectional gated recurrent unit (GRU) network and
the convolutional neural networks (CNNs). In FastText, word embedding, 2-grams and 3-grams are
combined to extract text features. In recurrent neural networks (RNNs), a bidirectional GRU network
is used to lessen information loss during the process of transmission. In CNNs, text features are
extracted using various convolutional kernel sizes. Additionally, three optimization algorithms are
utilized to improve the classification capabilities of each network architecture. The experimental
findings using the social network news dataset demonstrate that the integrated model is effective in
improving the accuracy of text classification.

Keywords: deep network architecture; FastText; bidirectional gated recurrent unit; text classification

1. Introduction

As the volume of massive text data grows, it has become increasingly important to
mine and manage useful text information, and text classification, which is an important
branch in the domain of natural language processing (NLP), has made a significant con-
tribution to the assignment of text classification. As text classification techniques have
evolved, specialists have used expert systems, traditional machine learning and now deep
learning [1–3].

Text classification has seen great progress over the last few years. For example, refer-
ence [4] proposes two hybrid deep learning models focusing on the analytical localization of
the attention mechanism to obtain high classification accuracies for different datasets. The
efficient self-attention-driven text-matching network proposed in reference [5] outperforms
existing techniques on the Stanford natural language reasoning and WikiQA datasets with
many fewer parameters. Reference [6] proposed a transformer encoder–decoder-based
multilabel text categorization algorithm that is able to adaptively extract the dependencies
between different labels and texts. Reference [7] aimed to apply an automatic classification
model based on BERT to a new energy industry policy, and the model comparison results
showed that the BERT model had higher accuracy, recall and F1 scores and a better clas-
sification effect. Reference [8] proposed an XLNet–CNN–GRU dual-channel aspect-level
comment text sentiment classification method, which obtained higher accuracy and F1
values than the five compared neural network structures in the field of NLP.

At present, there are two problems to be solved in text classification: one is the
accuracy of multilabel category text data, and the other is the network structure of the
classifier models [9]. In general, the deeper the structure of the network is, the better the
classification effect is. However, the computational complexity and space complexity of the
model increase exponentially. In practical applications, such a deep network model will
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lead to a very slow classification speed. To balance the accuracy and depth of the model,
shallow network models are frequently employed to address the depth of the model, while
integrated models are applied to address the accuracy of text classification. For shallow
models, single-network structures based on deep neural networks (DNNs) [10], recurrent
neural networks (RNNs) [11] and convolutional neural networks (CNNs) [12] are often used.
For integrated models, Schapire R E [13] proposed the boosting classification algorithm,
which creates a single strong learner by combining several weak learners, improving
classification performance, followed by the bagging algorithm [14]. Combinations of
models have also emerged in deep learning, and Lai S [15] used a combination of the CNN
and RNN, also known as the recurrent convolutional neural network (RCNN) model, that
is capable of not only extracting important features in text but also obtaining contextual
information about the text, which leads to excellent categorization effectiveness in text
categorization assignments. Additionally, a random multimodel for text categorization
based on three deep learning network architectures was proposed by Kowsari [16,17]. It
utilizes DNN, RNN and CNN architectures to stochastically generate neurons and hidden
layers for each model and derives the prediction results with majority voting to enhance
the accuracy of text categorization. However, because the quantities of neurons and hidden
layers are generated at random, the structure of the generated network is variable with each
iteration, resulting in difficult training of the models and very complicated computation [18].
In addition to the combination of the three network architectures, hierarchical deep learning
for text classification was introduced by K. Kowsari [19]. It integrates all deep learning
techniques into one hierarchy for document classification with enhanced accuracy over
conventional approaches.

In this paper, the primary objective is to improve the classification accuracy for news
text by introducing a novel integrated model. The integrated model in this paper uses three
different network architectures. On the basis of each network architecture, an improved
shallow FastText network, a shallow bidirectional GRU network and a shallow CNN are
designed. Additionally, various optimization algorithms are used to handle feature issues
for long and sparse text. Furthermore, the learning rate is adjusted by the optimizer to
improve the flexibility of the model by adapting the trained model to handle datasets with
diverse text features. Ultimately, a robust text categorization model is yielded from the
improved network structure through an integrated strategy and parallel training method.
Therefore, the integrated model of this paper will provide a new method of text classification
for single classifiers and deep integrated models.

2. Optimizer

In conventional integrated models, one of the limitations is the time complexity. The
loss and the gradient of the model have difficulty converging, which leads to a decrease
in accuracy in predicting text categories [20]. To reduce the problems of loss and gradi-
ent convergence during the training of the model, three optimizers are used to improve
the model.

2.1. Optimization Algorithm for Nesterov Momentum

For the classification task, the corresponding optimization algorithms are selectively
adapted for individual classification models. The principal purpose of these algorithms is
to improve the classification accuracy by optimizing the model parameters. A significant
indicator of the training model parameters lies in the decision on the learning rate; the
learning rate will considerably determine the convergence of the model toward the global
optimal solution [21]. In considering the learning rate to accommodate volatile data types,
the Nesterov-based root mean square propagation (RMSProp) [22] algorithm with dynamic
adjustment of the learning rate during the training iterations is incorporated to make the
model more flexible. The principal steps are as follows: initially, the samples for each
iteration are collected from the training subset, the gradients of the iterative samples
are calculated and averaged based on Formula (1) and an exponential decay parameter
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is employed to manipulate the historical information, also defined as the cumulative
gradient based on Formula (2). Thus, with parameters g and r, the learning rate based on
Formula (3) and model parameters based on Formula (4) are dynamically updated during
the iterative process.

g =
1
m
∇θ̃ ∑i ζ( f (x(i); θ̃), y(i)) (1)

r = ρr + (1− ρ) · g · g (2)

v = αv− ε√
r
· g (3)

θ = θ + v (4)

θ̃ = θ + αv (5)

where g and r denote the gradient and exponential attenuation coefficients, respectively,
v represents the learning rate, the update of the parameter is symbolized by θ, and the
momentum coefficient is indicated by α.

2.2. Optimization Algorithm of Deviation Correction Based on Adam

Adam [23] is extensively applicable to text classification models, which are ideally qual-
ified to handle text gradient sparsity as well as model parameter issues. When calculating
the gradient, Adam handles the sparsity and instability of gradients by incorporating the
estimation of first- and second-order moments based on Formulas (6) and (7), respectively,
and modifying the deviation based on Formulas (8) and (9), respectively.

In Formula (6), the gradient g and exponential attenuation rate are calculated to update
the first moment. In Formula (8), the deviation is corrected to accelerate the convergence of
the model. Formula (7) modifies the deviation by introducing the second moment sum (9)
to improve the capability of the model to handle nonstationary objectives. Formula (10)
updates the value of the parameter in Formula (11). In text classification, this algorithm
not only reduces the memory consumption when training the model parameters but also
solves the problem of the convex convergence of the model.

s = ρ1s + (1− ρ1)g (6)

r = ρ2r + (1− ρ2)g · g (7)

ŝ =
s

1− ρt
1

(8)

r̂ =
r

1− ρt
2

(9)

∆θ = −ε
ŝ

δ +
√

r̂
(10)

θ = θ + ∆θ (11)

where the sample gradient is represented by g, the estimated exponential decay rate is
denoted by ρ1 and ρ2, a small constant that maintains numerical stability is represented by
δ, the step size is represented by ∈, and ∆θ is used to update parameter θ.
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2.3. Improved Optimization Algorithm Based on SGD

The batch gradient descent (BGD) [24] algorithm was the most widely used gradient
algorithm before the invention of the stochastic gradient descent (SGD) algorithm. The
BGD algorithm is a batch gradient algorithm for the whole dataset. By calculating the
direction of the solution gradient for all samples, this approach can acquire the global
optimal solution. However, the computational effort is substantial, and the computational
speed is relatively slow when the data quantity is large. In this work, the SGD algorithm is
used to address the limitations of the BGD approach. SGD [25] is a popular optimization
approach that enhances the gradient descent algorithm. The essential idea of the algo-
rithm is that a random sample from all the training data can be taken at each iteration to
estimate the objective function’s gradient. Hence, it can significantly scale down the time
sophistication of the algorithm and be applicable to large-scale text datasets. A batch of text
training datasets is fed into the model when using the random gradient descent algorithm.
The objective of the algorithm focuses on optimizing the target function, as expressed in
Formula (12).

min
w∈Rn

F(w) =
1
m ∑i ζ( f (x(i); w), y(i)) (12)

where ζ is the model’s experience loss for the training data, a sample is selected at random
to calculate the gradient in each iteration, and the parameter value of w is adjusted in
reverse. Then, the average of all cumulative parameter values is calculated. The final
parameter value of the model is obtained based on Formula (13).

w =
1
m ∑m

i wi − ηi∇ζ( f (x(i); wi), y(i)) (13)

where wi is the set of parameters of sample i and η represents the learning rate.
The combination of Nesterov momentum and RMSProp enhances the model con-

vergence speed and adaptability to diverse data types by introducing momentum and
dynamically adjusting the learning rate. The Adam algorithm excels in addressing sparse
gradients and parameter instability in text classification. It achieves this through first- and
second-order moment estimates and deviation correction, reducing memory consumption
and accelerating model convergence. The improved SGD, incorporating random gradient
estimation, is suitable for large-scale text datasets, significantly reducing the computation
time and enhancing the speed of the algorithm. In summary, the Nesterov momentum
combined with RMSProp improves convergence speed and adaptability. Adam excels
in handling sparse gradients, while the enhanced SGD is well suited for large-scale text
datasets, reducing the computation time.

3. Model Design and Integration
3.1. FastText Model Design

The FastText [26] model has the function of word vector computation and classification.
To enhance the classification capabilities, the objective model is trained by expanding the
layers of the network model, while FastText utilizes a shallow network composed of the
input, hidden and output layers. Figure 1 shows its basic structure.

Where the input layer is the feature vector after word embedding, the feature vector
is composed of words and phrases in the text or sentence, and the model’s output is the
probability value of the sentence or text belonging to different prediction categories. The
hidden layer calculates the mean value of the input vector, calculated based on Formula (14).

hidden =
1
N ∑N

i=1 xi (14)

where the mean value of the word vector in the input layer represents the sentence in-
formation, and the values calculated in the hidden layer are then fed into the softmax
multiclassifier to output the predicted class information.
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Figure 1. Basic structure of the FastText network.

Additionally, the FastText model boosts the categorization capability of the model
by training tricks. There are two main ways: the first is to improve operational efficiency
by using the hierarchical softmax layer. The hierarchical softmax uses the Huffman tree
structure instead of the flat softmax. It mainly uses the Huffman coding method to encode
multiple tags, and the values of all leaf nodes are calculated by the original calculation. It
needs to calculate only the value from the root node to one of the leaf nodes, which greatly
reduces the complexity of model training and the test time on the test set. The second is to
apply N-grams to extract features and use the hashing algorithm to map the 2-gram and
3-gram vocabulary information into two tables. Because the vocabulary of 2-grams and
3-grams is much larger than that of word embedding, the hash bucket method is used to
map 2-grams and 3-grams to buckets, and the 2-grams and 3-grams in the same bucket
share the same word vector. The matrix composed of word embedding and N-grams is
depicted in Figure 2.

Figure 2. Word embedding and N-gram mapping table.

In the hidden layer, the word embedding, 2-grams and 3-grams of the input sentences
are concatenated, and the mean value of each sequence word is obtained. Then, the
calculated mean value is sent to the softmax layer through a nonlinear activation function
of the full connection layer for normalization processing and finally outputs the probability
values of the predicted values of each category. The architecture of FastText is depicted in
Figure 3.
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Figure 3. FastText network design structure.

3.2. Shallow Bidirectional GRU Network Design

In the traditional RNN network structure, the RNN can retain only short memory
information. If the sequence of text data is very long, the earlier time series information
cannot be transmitted to the following time series information, resulting in inaccurate text
classification results. In addition, there is a problem of gradient disappearance during
backpropagation, mainly because the value of the gradient update neural network weight
changes little, resulting in an inability to learn more text series information. To eliminate this
issue, the long short-term memory (LSTM) [27] and GRU [28] text classification methods are
used. The LSTM approach has a significant quantity of parameters and is computationally
sophisticated. The GRU is used instead of LSTM. As shown in Figure 4, this method can
achieve the classification effect of LSTM. The gating mechanism is used to update the
door and reset the door using Formulas (15) and (16), respectively. Formula (16) dictates
whether to reset the current input and the previous ht−1 information, and the amount of
prior information saved to current moment is determined by the update door. Finally, the
output vectors are calculated based on Formulas (17) and (18).

zt = σ(Wz · [ht−1, xt]) (15)

rt = σ(Wr · [ht−1, xt]) (16)

h̃t = tanh(W · [ht−1 · rt, xt]) (17)

ht = (1− zt) · ht−1 + zt · h̃t (18)

where zt is the update gate vector, σ is the rectified linear unit (ReLU) activation function,
xt is the input text feature vector, W is the parameter matrix, rt is the reset gate vector, and
ht is the output vector.
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Figure 4. GRU network structure.

In addition, a bidirectional GRU network is designed to address the issue of infor-
mation loss during the propagation of a single GRU network. In the bidirectional GRU
network, there are two main hidden states: the forward-learning GRU network unit and the
reverse-learning GRU network unit [29]. Suppose that the hidden state at moment t needs
to be calculated. The input of forward learning consists of ht−1 and xt. Reverse learning is
composed of ht+1 and xt. Then, the hidden states of forward learning and reverse learning
are calculated based on Formulas (19) and (20), respectively.

ht→ = f (W→ · ht−1 + U→ · xt + b→) (19)

ht← = f (W← · ht+1 + U← · xt + b←) (20)

where W→ and W← represent the hidden layer weight matrix in forward learning and the
hidden layer weight matrix in reverse learning, respectively, ht−1 and ht−+1 represent the
hidden state at times t-1 and t+1, respectively, U→ and U← represent the weight matrix of
forward input and reverse input in the input layer, respectively, xt represents the input
at time t, b→ and b← represent the forward and reverse offset values, respectively, and f
represents the activation function.

In the bidirectional GRU network, the forward- and backward-learning GRU do not
interfere with each other before the model output, and the weight matrix of the input,
hidden layers and bias term are also not shared [30]. At the output, the forward-learning
text information and the backward-learning text information are spliced, and the feature
vector yt is output at time t, which is finally normalized using the softmax function and
calculated based on Formula (21).

yt = so f t max( f (V · [ht→, ht←] + by)) (21)

where f is the sigmoid activation function, V is the weight matrix, and is the offset term of
the output layer.

Finally, the maximum value of the probability in the number of categories is taken as
the final prediction result. The whole GRU is depicted in Figure 5.
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Figure 5. Bidirectional GRU network design structure.

3.3. Shallow TextCNN Model Design

The shallow TextCNN model incorporates multiple layers, and the particular proce-
dure of each layer is as follows:

3.3.1. Input Layer

Before inputting the text data in the input layer, the text data need to be tokenized.
Then, the tokenization sentences are mapped into word vectors by embedding, and finally,
all the word vectors are spliced together to form a vector matrix.

3.3.2. Convolutional Layer

The principal objective of the convolutional layer is to extract the input features
represented by the sentence word vectors. The convolutional kernel mainly extracts the
features through the dot product operation of the matrix. In addition, the parameter matrix
of the convolutional operation is weight sharing, which can greatly improve the efficiency
of sentence features. In this experiment, a total of three sizes of convolutional kernels (2,3,4)
are used to extract text features to solve the problem of feature loss.

3.3.3. Pooling Layer

The pooling layer needs to further deal with the results of the convolutional operation,
and the pooling layer mainly compresses and reduces the dimensionality of the feature
mapping results to reduce the parameters of the model. At present, there are two primary
pooling layers: the maximum layer and the average layer. The average pooling and
maximum pooling are calculated based on Formulas (22) and (23), respectively.

AvgPool =
x1 + x2 + ... + xN

N
(22)

MaxPool = max(x1, x2, ..., xN) (23)

where xi represents the first feature after the convolutional operation and N represents the
total features after the convolution operation.
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3.3.4. Fully Connected and Softmax Layers

The fully connected layer and softmax layer are the last layers. After convolution
and pooling of the feature matrix after the input layer, all the feature results are connected.
Then, through a probability distribution function of an N-dimensional vector, where N
indicates the number of categories, the category with the highest probability is exported
by the softmax layer. The final CNN architecture designed in this experiment is shown in
Figure 6.

Figure 6. Shallow CNN network architecture.

3.4. Model Integration

In the integrated model, this paper integrates three network architectures: the FastText
network, shallow bidirectional GRU network and shallow TextCNN network designed in
the first three sections. Figure 7 shows the overall structure of the integrated model. The
model is mainly composed of three layers: the input layer, hidden layer and output layer.
The input layer represents the input text feature vector, and the output layer represents
the classification result statistics of each classifier after applying the softmax function. In
the hidden layer, from left to right, FastText, Bidirectional GRU and TextCNN network
structures are shown. These network architectures are integrated to classify the input text
information at the same time; finally, the classification results of the three network structures
are determined, and the maximum value is selected as the final classification result.

By using the integrated strategy of voting, the integrated model has the following
characteristics:

(1) Different from the traditional single classifier, the designed network architecture
model can effectively extract text features; for example, word embedding, 2-gram and
3-gram feature vectors are used to stitch together in FastText, and convolutional kernels
(2, 3, 4) and pooling layers are utilized to extract features in CNNs. For the purpose of
minimizing the model’s information loss during training, a bidirectional GRU is used for
forward and backward learning.
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(2) To further boost the training efficiency and accuracy of the model, each network
architecture uses the SGD, RMSProp and Adam optimization algorithms at the same
time because these three algorithms can solve the problems of large sample data, sparse
sample data and the model learning rate. Therefore, for each network architecture, three
optimization algorithms are used to train nine network models, which can solve most of
the problems in the training process.

(3) General integrated models have the risk of overfitting. Each network model trained
in this work uses the dropout method to reduce the overfitting problem in the training
process so that each model has a strong learning ability. This paper also uses the ReLU
activation function to reduce problems such as training stops and gradient disappearance
in the training process.

(4) Traditional integrated learning uses serial training, and the integrated model in
this paper uses parallel training to train nine kinds of network models at the same time,
which significantly shortened the training time of the model. In addition, another function
of parallel training is that when each model makes a prediction, the prediction results of all
prediction models are recorded, the final voting is conducted, and the largest number of
votes is compared with the actual categories. The model evaluation indicators, such as the
accuracy, are calculated.

Figure 7. Integrated network architecture.

In summary, the integrated model is designed as illustrated in Figure 8.
The main idea of the integrated model is as follows: the total number of models trained

in parallel is k, the number of categories of documents is m, and the classification results of
text datum i of each model are counted, in which the datum i with the largest number of
votes is considered to belong to the cij category. Finally, the accuracy of the cij category is
summed to average. The final prediction result is calculated based on Formulas (24)–(26).

yi,j = [yi1, yi2, ..., yik] (24)

ci,j = max[ci1, ci2, ..., cim] (25)

p̂i,j =
∑N

n=1 so f t max(yin)

N
(26)

where yi,j represents the result of model j classifying text i, ci,m represents the number of
votes that text datum i belongs to category m, p̂i,j represents the accuracy of text datum i
belonging to category j, and N represents the number of votes.
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Figure 8. Integrated network voting structure.

4. Experiment
4.1. Dataset

The THUCNews dataset supplied by the NLP group of Tsinghua University is applied
in this experiment, and the news headlines in each text datum are extracted as the basis
for classification. The length of the text is between 20 and 30, with a total of 10 categories.
Each category has 20,000 pieces of text data. For 200,000 pieces of news text data in total,
the division of samples in each category is shown in Figure 9. In this experiment, the
THUCNews news data are completely separated into three parts, with 90% for model
training and 5% each for testing and validation, as shown in Figure 10.

Figure 9. Sample division of THUCNews categories.
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Figure 10. Sample partition of the dataset.

4.2. Text Preprocessing

First, 10 categories of text data are extracted from the downloaded news dataset.
Because each text data point is composed of news headlines and body content, the first
line of each document is read and written into a new .txt document. At the same time, the
format is “the first line of the text title + Tab spacer + category mapping into corresponding
numbers”. Then, 5% of the data from the 10 categories is selected as the test set and the
verification set. The remaining 90% serve as the training set. After extraction, all the
training sets, test sets and verification sets are written into train.txt, test.txt and dev.txt
text, respectively. Finally, the useless data, such as spaces, need to be removed from the
text. Then, each word is divided into segments, and a word list related to it is established.
Each word in the word list has an index value corresponding to the mapping relationship
between the word lists.

4.3. Parameter Setting

The parameters of FastText, the shallow bidirectional GRU network and the shallow
TextCNN are set as shown in Table 1, Table 2 and Table 3, respectively.

Table 1. FastText model parameters.

Parameter Value

word vector dimension 300
hidden layers 1

activation function ReLU
hidden layers 1

batch size 128
learning rate 0.001

dropout 0.5
hidden layer size 256

pad size 32
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Table 2. Bidirectional GRU model parameters.

Parameter Value

word vector dimension 300
hidden layers 2

activation function ReLU
hidden layers 1

batch size 128
learning rate 0.001

dropout 0.5
hidden layer size 128

pad size 32

Table 3. Shallow CNN model parameters.

Parameter Value

word vector dimension 300
fully connected layers 1
convolutional layers 1

pooling layers 1
number of convolutional kernels 256

batch size 128
learning rate 0.001

dropout 0.5
convolutional kernels size (2,3,4)

pad size 32

4.4. Evaluation and Experimental Analysis

To describe the performance of the integrated model, the evaluation indicators are
calculated based on Formulas (27)–(30).

Accuracy =
TP + TN

TP + FP + TN + FN
(27)

Precision =
TP

TP + FP
(28)

Recall =
TP

TP + FN
(29)

F1−score =
2 · Precision · Recall
Precision + Recall

(30)

To prove the superiority of this experimental model, the RCNN model, pre-trained
transformer model, deep pyramid convolutional neural network (DPCNN) model and
integrated model are used for comparative experiments. The transformer model, through
the use of residual connections, a self-attention mechanism and positional encoding, can
effectively address issues related to temporal and textual sequence positions. Given the
superiority of the transformer architecture model in text classification, we compare the trans-
former model in this paper with our model, observing their performance on a news dataset.
Each group of comparative experiments uses the same dataset and corpus. Figure 11 dis-
plays the classification results of all comparison models under the verification set. The
classification result of the integrated model under ten categories is better than that of any
group of comparative experiments.
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Figure 11. Precision comparison bar chart.

Table 4 displays the classification precision of each model in each category. It can
be calculated that the precision of the integrated model exceeds that of all comparative
models. The model in this paper is 4.03%, 0.68%, 5.29%, 1.41%, 6.78%, 0.22%, 0.12%, 0.39%,
1.35% and 0.23% higher than the highest comparative model. The integrated model has
a good classification effect. Similarly, the table quantifies the accuracy of the three base
classification models.

Table 4. Statistical table of model precision (unit %).

This Paper DPCNN Transformer RCNN TextCNN Bidirectional GRU FastText

finance 94.18 89.68 90.15 90.15 92.65 91.52 93.65
realty 94.36 93.49 89.33 93.68 91.84 93.33 94.63
stocks 89.74 82.56 84.14 84.45 85.40 84.84 86.23

education 96.85 95.44 94.39 95.06 94.76 95.65 95.60
science 89.05 82.27 81.95 80.20 87.58 84.37 87.86
society 91.19 90.97 89.86 89.78 89.40 89.99 91.19
politics 90.64 90.52 89.53 87.64 89.87 87.05 90.64
sports 98.57 98.18 97.21 96.83 93.96 97.28 98.38
games 94.83 91.21 92.36 93.48 94.77 94.21 94.38

entertainment 93.41 92.94 92.71 93.18 92.65 91.09 93.41

Figure 12 displays the accuracy of the integrated and comparative models. As shown
in the graph, the performance of the integrated model is superior to that of the comparative
models. The final quantitative relationship among accuracy, recall and F1−score is shown in
Table 5.

Table 5. Comparison of the experimental results (unit %).

Model Accuracy Recall F1

RCNN 90.93 90.73 90.83
Transformer 90.14 90.14 90.15

DPCNN 90.90 90.90 90.96
TextCNN 91.28 91.27 91.26

Bidirectional GRU 92.62 92.57 92.58
FastText 92.60 92.57 92.58

This paper 92.57 92.88 93.08
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Figure 12. Variation curve for model accuracy.

From Table 5, this paper demonstrates that the proposed model implements an ex-
cellent classification effect on the THUCNews dataset, reaching 92.57%. The transformer
model has the smallest such effect, with an accuracy of 90.14%. Among the other models,
the RCNN and DPCNN reach 90.93% and 90.90%, respectively. Regarding recall and F1-score,
the model of this paper is higher than the other models, reaching 92.88% and 93.08%, re-
spectively. The result of the final comparison is shown in Figure 13. To further capture the
loss variation of the model during the iterative process, the loss changes of different models
are shown in Figure 14. Figure 14 illustrates that after using the optimization algorithm,
the loss value of the integrated model steadily decreases and ultimately converges to a
stable numerical interval, while the loss of the other models is overall larger than that of
the integrated model. This result shows the superiority of the optimization algorithm used
in this paper.

Figure 13. Model comparison bar chart.
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Figure 14. Change curve for model loss.

From Table 6, the impact of the three optimization algorithms on each model can
be seen. Table 6 shows the accuracy results of the three optimization algorithms (Adam,
RMSprop and SGD) on the three models (TextCNN, bi-directional GRU and FastText). It
can be seen that RMSprop achieves the highest accuracy on the TextCNN and FastText
models, while it is slightly lower than Adam on the TextRNN model, and SGD performs the
worst. These results indicate that the RMSprop optimization algorithm plays a very crucial
role in this particular text classification task, while the other two optimization algorithms
perform more ordinarily.

Table 6. Results of three optimizer algorithms on the model (unit %).

Precision TextCNN TextRNN FastText

Adam 90.92 90.78 91.91
RMSprop 91.27 90.50 92.57

SGD 86.72 83.13 80.58

Using the aforementioned experimental findings, this study concludes that the classifi-
cation performance of the integrated model is superior to that of the RCNN, transformer
and DPCNN models. They also prove the correctness of the three network architectures
and optimization algorithms designed in this paper.

4.5. Model Generalization Study

To further validate the generalization performance of the integrated model, we extend
the experimental validation to the TNEWS dataset, which contains news data from 15 dif-
ferent categories. We filtered the TNEWS Chinese news dataset using 10 of the 15 categories.
The integrated model shows excellent performance on this dataset, as shown in Table 7,
and we can clearly see that the present model still performs well on the TNEWS dataset.
The accuracy reaches 90.25%, which is much higher than the other models. In addition,
the recall and F1 score of the integrated model are also significantly better than the other
models, reaching 90.44% and 90.34%, respectively. The visualization results are given in
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Figure 15. These results fully demonstrate the generalization performance of the integrated
model on different datasets and its effectiveness in improving text classification accuracy.
Through the validation on different datasets, we believe that the integrated model has high
potential application value in improving text categorization accuracy.

Table 7. TNEWS dataset classification results (unit %).

Model Accuracy Recall F1

RCNN 88.64 89.68 89.16
Transformer 88.17 89.14 88.65

DPCNN 88.75 89.23 88.99
TextCNN 89.46 88.86 89.16

Bidirectional GRU 89.95 89.14 89.54
fastText 89.97 89.73 89.84

This paper 90.25 90.44 90.34

Figure 15. TNEWS dataset visualization results.

4.6. Discussion

The proposed comprehensive model, which integrates an improved shallow FastText
network, a shallow bi-directional GRU network and a shallow CNN design, is critically
evaluated on the THUCNews text dataset, which consists of 200,000 pieces of news text
data in 10 categories. The model achieves an impressive 92.57% accuracy on this dataset,
outperforming established models such as DPCNN, RCNN and transformer models. In
addition, the combined model outperforms the other models in terms of recall and F1
score, reaching 92.88% and 93.08%, respectively. This strong performance highlights the
effectiveness of the optimization algorithm used to reduce the loss values and enhance the
convergence of the model to the global optimal solution.

In addition, extending the experimental validation to the TNEWS dataset, which con-
tains diverse news articles from 15 different categories, further demonstrates the model’s
superior generalization ability. On the TNEWS dataset, the synthesized model demon-
strates an impressive 90.25% accuracy, outperforming other models. The high recall and F1
scores further validate the effectiveness of the model in improving text categorization accu-
racy on different datasets. The use of parallel training methods and integration strategies
in a comprehensive model provides a promising solution in the field of text categoriza-
tion, offering the possibility of superior classification accuracy and strong generalization
capabilities on different datasets. However, it is important to note that the computational
and spatial complexity of the model may have limitations in practical applications. Future
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research efforts could focus on optimizing the efficiency of the model without sacrificing
accuracy, thus enhancing its practical utility.

In conclusion, the integrated model proposed in this study exhibits excellent perfor-
mance on the THUCNews and TNEWS datasets, highlighting its robustness and general-
ization ability across different datasets

5. Conclusions

This study aims to improve the accuracy of news text classification by introducing
an innovative ensemble model. The ensemble model employs three different network
architectures—an improved shallow FastText network, a shallow bi-directional GRU net-
work and a shallow CNN design—to cope with the challenges posed by long texts and
sparse text features. In addition, various optimization algorithms are employed and the
learning rate is dynamically adjusted through optimizer tuning to improve the flexibility of
the model. Ultimately, an improved network structure formed by combining the synthesis
strategy and parallel training methods produces a robust text classification model that
provides a new approach to single classifier and deep ensemble models. The proposed
optimization strategy combines parallel training of multiple shallow networks with an
ensemble strategy to effectively address the depth and accuracy issues of using a single
model. Experimental evaluations on the THUCNews text dataset demonstrate the superior
performance of the ensemble model, with accuracy, recall and F1 scores reaching 92.57%,
92.88% and 93.08%, respectively. It outperforms other models such as DPCNN, RCNN and
the transformer model, highlighting the potential of shallow and deep network architec-
tures to enhance text categorization capabilities and provide classification flexibility. On the
TNEWS dataset, the synthetic model achieves an impressive accuracy of 90.25%, outper-
forming the other models. The high recall and F1 scores further validate the effectiveness
of the model in improving text categorization accuracy on different datasets.And excellent
results are obtained on the TNEWS dataset, which fully validates the generalization perfor-
mance of the model. In conclusion, the integrated model is applicable to a variety of news
text datasets and provides an effective solution in the field of text categorization.

Although the proposed integrated model performs well in text classification, future
research should focus on optimizing its efficiency without compromising accuracy. Explor-
ing techniques to reduce resource requirements and adapting the model to handle various
text data types including multimedia and social media generated content are important
research directions. In addition, we will complete an application that enables automated
management and extraction of useful information, providing solutions to problems related
to the accuracy of text data with multiple labeled categories. Overall, research efforts
should prioritize optimizing efficiency, expanding applicability to diverse text data and
integrating advanced architectures to improve performance in real-world applications.
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