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Abstract: 3D (Three-Dimensional) scene inpainting aims to remove objects from scenes and generate
visually plausible regions to fill the hollows. Leveraging the foundation of NeRF (Neural Radiance
Field), considerable advancements have been achieved in the realm of 3D scene inpainting. However,
prevalent issues persist: primarily, the presence of inconsistent 3D details across different viewpoints
and occlusion losses of real background details in inpainted regions. This paper presents a NeRF-
based inpainting approach using uncertainty estimation that formulates mask and uncertainty
branches for consistency enhancement. In the initial training, the mask branch learns a 3D-consistent
representation from inaccurate input masks, and after background rendering, the background regions
can be fully exposed to the views. The uncertainty branch learns the visibility of spatial points by
modeling them as Gaussian distributions, generating variances to identify regions to be inpainted.
During the inpainting training phase, the uncertainty branch measures 3D consistency in the inpainted
views and calculates the confidence from the variance as dynamic weights, which are used to balance
the color and adversarial losses to achieve 3D-consistent inpainting with both the structure and texture.
The results were evaluated on datasets such as Spin-NeRF and NeRF-Object-Removal. The proposed
approach outperformed the baselines in inpainting metrics of LPIPS and FID, and preserved more
spatial details from real backgrounds in multi-scene settings, thus achieving 3D-consistent restoration.

Keywords: image inpainting; NeRF; 3D reconstruction; adversarial training; object removal; NeRF
inpainting; uncertainty estimation

1. Introduction

A NeRF (Neural Radiance Field) [1] is a deep learning-based 3D reconstruction method
that was proposed by Mildenhall et al. in 2020. Employing multi-layer perceptron networks
in conjunction with ray casting [2], a NeRF adeptly learns the color information of points
in 3D scenes, thereby enabling the generation of high-quality 3D scenes from a small
number of 2D (Two-Dimensional) image samples. In recent years, research into NeRFs has
advanced significantly. Numerous endeavors have aimed at augmenting their performance
and expanding their applicability via, for instance, improving the training speed [3–5],
reducing view input requirements [6,7], facilitating scene editing [8,9], and extending their
functionality to dynamic scenes [10,11]. Driven by the needs of practical applications, NeRf
editing methods [9,12–19] have emerged as a focal point of current research. Among these
methods, NeRF inpainting [17–19] holds particular prominence as a widely applicable
editing technique with considerable potential. It involves removing specified objects from
NeRF scenes and inpainting the resultant hollow regions. Unlike well-established 2D
inpainting methods, NeRF inpainting necessitates additional 3D consistency. Nevertheless,
prevailing approaches exhibit certain limitations in preserving real background details and
inpainting visually plausible structure and texture. The primary objective of this paper
was to improve existing NeRF inpainting methods by maximizing the preservation of real
details and achieving superior inpainting outcomes.
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Existing 2D image inpainting methods [20–30] have demonstrated impressive capa-
bilities to restore and reconstruct specified regions in complex images while ensuring
high fidelity. Some of them [24,25] utilize image generation networks as a foundation for
image inpainting, while others [26–29] improve the inpainting networks by leveraging
image characteristics, such as the frequency domain and structure. However, most of the
above-mentioned methods use 2D convolution as the basic module and cannot be directly
applied to 3D scenes with multiple views. Furthermore, directly removing or inpainting
objects in NeRFs is challenging owing to the intricate association between network param-
eters and the geometric appearance of the scene. Consequently, retraining NeRFs using
inpainted views as priors has become a mainstream solution. Shen et al. [17] pioneered
a comprehensive two-stage architecture tailored for NeRF inpainting. In their approach,
the initial training phase involves reconstructing the original scene using a NeRF, thus
producing color and depth view sequences. These view sequences, coupled with masks of
the target object, are subsequently input into a 2D inpainting model. During the inpainting
training phase, RGB (Red Green Blue) and depth images generated by the 2D model serve
as priors for a new NeRF to obtain an inpainting scene. This method relies solely on a
single inpainted view as supervision for the repaired region, which makes it challenging to
model view-dependent effects. Consequently, the inpainted region becomes blurry when
rendering from other viewpoints. Addressing this limitation, Mirzaei et al. [18] used all
inpainted views as supervision, employing perceptual loss to train inpainted regions to
avoid blurring issues arising from the direct utilization of color loss under 3D inconsistent
multi-view priors. Additionally, they utilized a depth map to establish pixel correspon-
dences between different views [31], enabling the acquisition of color information from
another view to fill in the current view. This strategy facilitates the incorporation of real
background information to complete the restored region. However, directly using color
from other viewpoints ignores the view-dependent effects, and inaccuracies in the NeRF
introduce errors in the filling process. Moreover, an exclusive reliance on perceptual loss
can lead to texture-based artifacts in the inpainted regions. In response to these challenges,
Weder et al. [19] proposed a strategy aiming to address the 3D-consistent issue by learning
the confidence of each view and progressively removing low-confidence images from the
training set during the training process. The difficulty, however, lies in the fact that inac-
curate masks cause the loss of real background information, and for scenes with complex
textures, this method remains susceptible to artifact generation.

Recent advancements in NeRF inpainting highlight two primary challenges that ne-
cessitate attention. Firstly, most existing methods do not introduce or introduce inaccurate
3D background information. Unlike 2D images where one pixel corresponds to an entire
camera ray, 3D scenes present a complexity wherein some camera rays may traverse both
the foreground and background. In such cases, simply disregarding the foreground region
during rendering can yield background views. Therefore, the background region com-
pletely occluded by the target object in the training set represents the actual area requiring
inpainting. Secondly, current methods have yet to achieve 3D-consistent inpainting results
while simultaneously considering texture and structure. The intermediate results obtained
by a 2D model for the same scene may not be consistent. Training a NeRF using 2D results
with simple color loss tends to induce blurring issues, while relying solely on a perceptual
loss will lead to excessive texture artifacts. Hence, integrating the two types of losses to
improve inpainting performance constitutes a promising avenue worthy of exploration.

In this paper, we propose a novel architecture for removing selected objects based on
a NeRF and subsequently inpainting the resultant hollow regions. Our model integrates
a mask branch and an uncertainty branch to overcome the issue of losing real 3D back-
ground information. During the initial training phase, the mask branch captures detailed
segmentation masks of the target object to achieve background rendering and expose more
background information. By fully utilizing the generalization capability of the NeRF, it
contributes to acquiring 3D-consistent annotations for the target object. In the uncertainty
branch, each point in the 3D scene is modeled as a Gaussian distribution, and the visibility
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of the spatial points is learned in an unsupervised manner by minimizing the negative
log-likelihood. After background rendering, regions with a high variance are identified
as requiring inpainting. Then, optimized masks are input to a pre-trained 2D inpainting
model to obtain prior outputs for subsequent training. Throughout the inpainting training,
we employ a dynamic weight loss to address the imbalance between structure and texture
of the inpainting NeRF. Moreover, the same loss as in the first stage is utilized to train the
uncertainty branch, incorporating the output variance as a measure of 3D consistency in
2D priors, resulting in improved outcomes.

The contributions of this paper are as follows:

(1) The mask branch is introduced based on the radiance field. By leveraging the strong
generalizability of the radiance field, it is possible to train 3D-consistent segmentation
results from mask information that may contain errors. Using this branch for rendering
background views enables the preservation of more real background information
during the 2D inpainting process;

(2) The uncertainty branch based on the normal distribution is innovatively used in the
NeRF inpainting task. Every spatial point is modeled as a Gaussian distribution,
and the uncertainty branch outputs the variance. Through minimizing the negative
log-likelihood loss, it is possible to learn the visibility of spatial points in an unsuper-
vised manner. This branch aids in identifying regions in the background views that
require inpainting, thereby optimizing the mask used for 2D manipulation;

(3) A new dynamic weight training strategy is proposed to further enhance the optimiza-
tion effect by utilizing the uncertainty branch. During the inpainting training stage,
the uncertainty branch is adopted to measure the 3D consistency of 2D inpainted
views. Based on the variance output from this branch, the confidence of the sampled
ray’s color is calculated and used as dynamic weights for both the color loss and
adversarial loss. This approach achieves a balance between structure and texture in
the inpainted regions of 3D scenes.

2. Related Work
2.1. Image Inpainting

Image inpainting is a digital image processing technique that aims to remove un-
wanted or damaged regions from an image and replace them with appropriate content.
Traditional methods for image inpainting predominantly rely on statistical information
and geometric structures of images, broadly categorized into diffusion-based [20,21] and
patch-based methods [22,23]. However, they have high computational complexity and
low fidelity.

The integration of deep learning into computer vision has sparked massive scholarly
interest in image inpainting methods based on deep learning. Recent research focuses on
leveraging generative network advancements to achieve more realistic image inpainting
effects. Wang et al. [24] utilized prior information from pre-trained StyleGAN [32] to
perform image inpainting using GAN (Generative Adversarial Network) inversion, while
Liu et al. [25] opted to inject initial image and mask information into the generation process.
The subsequent advent of the DDPM (Denoising Diffusion Probability Model) [33] also
provided new impetus for image inpainting. RePaint [30] used a pre-trained unconditional
DDPM as a generative prior model. Other methods attempt to mine information beyond
image color and use it to further optimize the inpainting process. The work of Cao et al. [26]
and their improved method [27] repaired the multi-scale structure as a guide for subsequent
color inpainting to achieve an improved overall generated structure. Domain transforma-
tion operations can also yield good results. Yu et al. [28] used wavelet decomposition to
handle conflicts between different frequencies in images, while Suvorov et al. [29] combined
Fourier transformation to enhance the receptive field of convolution and improve the ability
to repair large areas.

These approaches are only designed for 2D image scenarios. This implies that when
they inpaint different views of the same scene, inconsistent results will be obtained. How-
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ever, the individual image inpainted result is visually good, so we consider the 2D model
outputs as priors. Thus, the contribution of this paper lies in its applicability to any 3D
scene represented by a NeRF, enabling the attainment of 3D-consistent inpainting results.

2.2. NeRF Edit

NeRFs, an implicit 3D scene representation based on neural networks, have gar-
nered growing attention in recent years. Rapid advancements and improvements have
been made regarding training speed [3–5], geometric quality [34,35], and dynamic rep-
resentation [10,11]. Moreover, NeRF scene editing has also become a hot research topic,
emphasizing the editing of texture and geometry. Specifically, texture editing involves
using pre-trained 2D models as priors [12], using style loss as guidance [13], and perform-
ing traditional color modification using color palettes [14]. Geometric information editing
predominantly revolves around learned standard spatial representations and additional
deformation fields [15]. Furthermore, research related to interactive NeRF editing has
focused more on interactive target selection [16] or semantic editing [9].

Within the realm of 3D scene editing, NeRF inpainting has made notable strides in re-
cent research endeavors [17–19]. The NeRF-In [17] approach proposed the NeRF inpainting
architecture for the first time, using a video segmentation model on the sequence of images
rendered by a NeRF to select objects to be removed. It utilized an image inpainting model
for object removal at the 2D level, treating its outputs as priors, alongside leveraging the
inpainted depth map for geometric supervision. The Spin-NeRF [18] approach improved
upon this approach by using SemanticNerf [36] to optimize the mask of the target object and
added a perception loss to obtain better results. Weder et al. [19] evaluated the consistency
of each inpainted image during training to optimize subsequent training.

Nevertheless, some of these methods overlook the 3D characteristic of the scenes and
directly mark the object masks in a 2D image, resulting in the loss of some real background
information. Others struggle to strike a balance between structure and texture, leading to
blurring or other artifacts. Our method was built upon the NeRF-In approach with two-
stage training. In the first stage, background information is preserved extensively, while in
the second stage, we improve the repair results through a unique dynamic weight loss.

2.3. Uncertainty Estimation

Uncertainty estimation refers to estimating the reliability of network outputs. To
achieve uncertainty in the network, Bayesian neural networks [37,38] set the weights as a
probability distribution, optimizing the distribution’s parameters during the optimization
process. One common approach is to use variational inference with Dropout layers and
input the same data multiple times [39]. The posterior distribution is extensively adopted
for uncertainty estimation.

Uncertainty estimation in a NeRF is mainly used to learn the uncertainty of spatial
point attributes, like the color or density, caused by insufficient or inconsistent training
views. These methods utilize the framework proposed by Kendall et al. [40] designed
for uncertainty estimation in the field of computer vision to quantitatively assess the
reliability of a NeRF’s outputs or enhance generalization performance. Most methods
model spatial points as parameterized distributions to estimate uncertainty. The work on
NeRF-w in [41] used uncertainty estimation to handle transient scene information present
in outdoor images, while the ActiveNeRF [42] method employs it for active learning of
sample selection in few-shot scenarios. The DS-NeRF [43] approach extends uncertainty
estimation in color to the geometric level of the radiance field, providing depth supervision
with some freedom, thereby achieving better generalization ability with sparse supervision.

This paper aligns with the above methods in modeling parameterized distributions,
but it stands out as the pioneer in applying uncertainty estimation to the NeRF inpainting
task. In our approach, uncertainty is used to represent the visibility of points and the
consistency of 2D inpainted views, which are achieved through minimizing the negative
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log-likelihood loss. In this approach, we are able to apply different weights to loss functions
for structure and texture, achieving a balanced effect.

3. Method

This study introduces UC-NeRF, a novel architecture designed for removing specified
objects from the NeRF and subsequently inpainting invisible regions. The aim of the NeRF
was to reconstruct a 3D scene from given sets of views I = {Ii}n

i=1, and their corresponding
poses P = {Pi}n

i=1 and camera intrinsic K. On this basis, an initial mask Mi for a given view
Ii was further added to the inputs of NeRF inpainting to specify the object to be removed.
Compared to existing methods, the UC-NeRF approach excelled in recovering the complete
scene geometry and color information, ensuring both visual plausibility and 3D consistency
within the inpainted area.

For NeRF implementation, TensoRF [5] was used as the baseline due to its faster con-
vergence speed. We first introduced two branches: the mask branch Gm and the uncertainty
branch Gβ (refer to Section 3.1). These two branches could enhance the representation capa-
bilities. The input views and masks were then optimized by mask optimization (refer to
Section 3.2) to capture as much background information as possible throughout the dataset.
Subsequently, the optimized images were re-drawn using an off-the-shelf image inpainting
model. When training the inpainted NeRF, the output of the uncertainty branch was used
to dynamically balance the weights of the color loss and adversarial loss to achieve better
3D-consistent results (refer to Section 3.3). In summary, our method could maximize the
utilization of 3D scene information in the entire dataset to minimize inconsistent view
areas caused by the 2D model, thereby achieving more accurate object removal and scene
inpainting. The overall architecture was divided into two stages: the initial training stage
and the inpainting training stage, as shown in Figure 1.

w/o Mask

Synthetic Novel Views

Render

Render

Input Images & Masks

UC-NeRF

2D Inpainted Images

& Depth Maps

UC-NeRF

Initial NeRF

Inpainted NeRF

Rendered Images

& Uncertainty Maps

Refined Images, 

Depth Maps & Masks

INP

Figure 1. Overall architecture of UC-NeRF consisting of two stages: The first stage, termed the initial
training stage, involved training the initial radiance field, where the input image and mask were
utilized, with the color loss Lrgb and mask loss Lmask with uncertainty to optimize color, depth,
and mask images. The 2D model was then used for inpainting. In the second stage, namely, the
inpainting training stage, uncertainty serves as a basis for evaluating 3D consistency. It was used to
dynamically calculate the weights for the color loss LMSE and adversarial loss Ladv at the sampled
pixels, and balance the inpainted results in terms of structure and texture.
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3.1. Stage 1: Initial NeRF Training

Most current work on NeRF inpainting inadequately leverages 3D information of the
entire dataset during 2D inpainting. Consequently, larger inpainting areas are needed,
implying that more 3D inconsistencies are introduced during 2D inpainting.

In this paper, a radiance field with uncertainty perception was introduced to further
optimize the area to be inpainted and display more real scene information. Inspired
by Kendall et al. [40], the radiance of each spatial point was modeled as a Gaussian
distribution rather than an exact value. Driven by the color loss Lrgb involved with
uncertainty, the variance values differed in unobserved areas, with lower variance in
surface areas. Therefore, when exclusively rendering the background, areas with high
variance required inpainting. The subsequent sections first introduce the baseline TensoRF
used in this study (refer to Section 3.1.1), followed by the description of the additionally
incorporated uncertainty branch (refer to Section 3.1.2) and the mask branch (refer to
Section 3.1.3).

3.1.1. TensoRF

TensoRF served as the baseline of our experiments. It innovatively adopts the concept
of tensor VM (Vector Matrix) decomposition to radiance fields, replacing the MLPs (Multi-
Layer Perceptrons) and improving both storage and query efficiency:{

σ = Gσ(x)
c = MLP(Gc(x), d)

, (1)

where σ is the density of point x, and c is the RGB color of x observed with the view direction
d. Also, Gσ ∈ RI×J×K is the geometry grid, storing information about the density; I, J, and
K denote the mesh resolution; and Gc ∈ RI×J×K×P is the appearance grid, which stores
appearance features. RGB colors could be output via a lightweight MLP decoder. In this
study, the geometry grid Gσ was treated as a 3D tensor and stored after VM decomposition.
And, given the additional feature dimension of the appearance grid Gc, an outer product
with additional vectors was introduced. The RGB color of the sampled pixel could be
obtained by volume rendering:

Ĉ(r) =
N

∑
i=1

αici, where αi = exp(−
i−1

∑
j=1

σjδj)(1 − exp(−σiδi)), (2)

where N is the number of sampled points in ray r, ci and σi are the radiance and density
predicted by the model at the spatial point r(ti), respectively, αi denotes the weight of
the color value at the sampled point on the ray, and δi = ti+1 − ti is the distance between
two points. TensoRF was trained using the MSE (Mean Squared Error) color loss:

LMSE = ∑
r∈R

∥Ĉ(r)− C(r)∥2 (3)

This architecture design was able to elevate both training speed and reconstruction
quality. In this paper, we added the uncertainty branch and the mask branch to the above
architecture. Specifically, the overall model is then denoted as:

σ = Gσ(x)
c̄ = MLP(Gc(x), d)
m = Gm(x)
β2 = Gβ(x)

(4)

The uncertainty branch Gβ was used for variance learning, and the mask branch
Gm focused on learning foreground and background information. They both adhered to
the original geometry branch’s structure, employing the same VM matrix decomposition
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approach. Figure 2 shows the architecture of our model, wherein Gm and Gβ added to the
baseline signify the mask branch and uncertainty branch, respectively, yielding the mask
probability m and variance β2 as outputs.

Density

Color

Mask 

Ucertainty

TensoRF

Render

w/o

Masks

Depth Map RGB Image

Mask Uncertainty Map

Figure 2. Model structure of the proposed UC-NeRF. The proposed UC-NeRF model extended the
baseline model by incorporating two additional branches: the mask branch Gm and the uncertainty
branch Gβ. The radiance field achieved background rendering through Gm, while optimized masks
for areas to be inpainted were achieved using Gβ.

3.1.2. Mask Branch

The main purpose of adopting the mask branch in this paper was to facilitate back-
ground rendering and expose more real background details. We used the output of an
off-the-shelf video segmentation model FSEG as priors. In this paper, we chose STCN [44].
An initial mask Mi and a set of original views I = {Ii}n

i=1 were given as inputs, and then
the masks corresponding to all the views were obtained by the segmentation model:

{Mi}n
i=1 = FSEG({Ii}n

i=1, M1) (5)

Typically, the masks {Mi}n
i=1 predicted using the 2D model are often coarse or erro-

neous. According to the work of Andrew et al. [36], NeRFs can generalize well to labels
with noise. Therefore, this property was exploited to obtain high-quality 3D segmentation
results, while paving the way for subsequent mask optimization.

As previously described, the mask branch served to upgrade the 2D masks information
to 3D. The UC-NeRF received the point x as input, and this mask branch output the
probability m = Gm(x) used to measure the point belonging to the foreground. This can be
obtained by the volume rendering equation:

M̂(r) =
N

∑
i=1

αimi (6)

Unlike color driven by the MSE loss, the Gm was trained using the focal loss:

Lmask = ∑
r∈R

FFocalLoss(M̂(r), M(r)), (7)

which allowed the mask probability to be closer to 0 or 1. In addition, the strategy of freezing
gradients to backpropagate in other parts of the model and only updating parameters in
Gm using Lmask could prevent inaccurate masks from adversely affecting the geometry
branch. Overall, this trained mask branch was able to accurately calculate the probability
of a spatial point belonging to the foreground or background.

3.1.3. Uncertainty Branch

As mentioned above, the UC-NeRF approach utilizes the uncertainty branch to imple-
ment the visibility measurement of spatial points. The color of the point x was modeled
as a Gaussian distribution, whose mean and variance were parameterized as the outputs
c̄ and β2, respectively, denoted as ĉ ∼ N (c̄, β2). The rendered ray color Ĉ(r) was a linear
combination of colors of the sampled points, so Ĉ(r) also followed a Gaussian distribution:
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Ĉ(r) ∼ N (
N

∑
i=1

αi c̄i,
N

∑
i=1

α2
i β2

i ) ∼ N (C̄(r), β2(r)), (8)

where C̄(r) is the mean of the ray’s color distribution, and β2(r) is the variance of the
distribution. Since the color predicted by the model was a parametric distribution rather
than an exact value, the MSE loss could no longer be used for training. Instead, the negative
log-likelihood was adopted as the loss function:

Lrgb = − log p(Ĉ(R)|θ)

=
1
|R| ∑

r∈R
(
∥C̄(r)− C(r)∥2

2β2(r)
+

log 2πβ2(r)
2

) (9)

Essentially, the first term of this loss promotes the predicted color to closely align
with the color in the image with an increase in variance, while the latter term prevents an
unbounded increase in variance and ensures that color loss weights do not diminish to a
point where color distortion occurs. Invisible spatial points can only obtain small gradients
during training. To further enlarge these point variance values, a negative L1 loss L−l1 was
used. This enabled the unsupervised acquisition of spatial point uncertainty to represent
the degree of visibility. Combining the two newly added branches, the total loss for the
first stage of training was defined as:

Ls1 = Lrgb + Lmask + Lreg1, (10)

where Lreg1 denotes some of the regularization terms in the initial training stage, includ-
ing the commonly used L1 density loss, TV smoothing loss, and L−l1 mentioned above.
The completion of the first training stage yielded an initial radiance field, with each point
in the space having a color mean c̄, density σ, variance β2, and a foreground probability m
indicating whether it is an object that is specified to be removed. These parameters laid the
groundwork for subsequent mask optimization.

3.2. Optimization and 2D Inpainting
3.2.1. Mask Optimization

In line with other inpainting approaches, we also adopted an off-the-shelf 2D restora-
tion model as prior for the second stage of training. However, in this paper, an additional
optimization step was adopted. Existing methods often involve segmenting objects in
the original views and performing repairs, which introduces a fake background through
the 2D model. In fact, the mask can be further divided into two parts: the exposed real
background in other views and the completely unknown background. The latter actually
requires inpainting. So, our method was based on a process that included removing the
object, exposing the background, and redefining the area to be repaired.

The first step was to remove objects. After completing the initial NeRF training, Gm in
our model was used to query the foreground probability m and background probability
1−m. The value of 1−m for the object was close to 0, while it was near 1 for the background.
As the branch was trained by the focal loss, 1 − m was mostly distributed at two extremes.
Hence, there was no need for discretization. During volume rendering, the density was
multiplied by 1 − m, which led the α of the object in Equation (2) to approach 0. As a result,
only the background was shown in rendered images:

C̄opt(r) =
N

∑
i=1

(exp(−
i−1

∑
j=1

(1 − mj)σjδj))(1 − exp(−(1 − mi)σiδi))c̄i (11)

Rendering from the corresponding viewpoints of the training set I in this manner
generated the background views set Iopt. Similar rendering of the background depth maps
Dopt yielded the following:
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Dopt(r) =
N

∑
i=1

(exp(−
i−1

∑
j=1

(1 − mj)σjδj))(1 − exp(−(1 − mi)σiδi))di (12)

However, simple removal resulted in extremely poor performance within regions
of the image that were occluded by the foreground object in the entire training set. Gβ

could determine regions that required inpainting by serving as a good measure of the
observability. A higher output from this branch signified a greater probability of the point
being unobserved. Following this, we rendered the uncertainty maps of the background:

β2
opt(r) =

N

∑
i=1

(exp(−
i−1

∑
j=1

(1 − mj)σjδj))
2(1 − exp(−(1 − mi)σiδi))

2β2
i (13)

Since the regions requiring no inpainting were trained by the loss Lrgb in the first
training stage, the variance value would be smaller, while that of other regions would be
larger. Therefore, Gm was employed for the rendering of the complete scene to obtain the
corresponding mask M̂ = {M̂i}n

i=1 for foreground objects, and the β2
opt of the background

region was adopted as the benchmark. A value larger than the benchmark was judged as
the to-be-inpainted regions:

Mopt(r) =
{

1, if β2
opt(r) > τ

0, else
, where τ = Fpercentiler∈Rb

(β2
opt(r), s), (14)

where Rb denotes the rays determined as background in a mask M̂i. Moreover, s is
a hyperparameter delineating the percentile, which means that the variances of pixels
corresponding to the foreground in M̂i greater than the s% background variance were
defined as regions to be repaired. In the experiments, s was set to 99 to satisfy most of the
scene requirements. The optimized repair mask Mopt was obtained in this way.

At this point, the image mask optimization was completed, and the optimized image
Iopt, depth map Dopt, and mask Mopt were obtained. The optimized image was rendered
without the target object and only the background was displayed. Moreover, the optimized
mask could cover the hollow areas well, facilitating the retention of more real information
for subsequent inpainting.

3.2.2. 2D Inpainting

After the optimized mask and the image without foreground were obtained via
rendering, they were taken as inputs and fed into a pre-trained 2D image inpainting model
to obtain the inpainted image set Iinp:

Iinp = FINP
(
Iopt,Mopt

)
, (15)

where FINP is the 2D inpainting model without specific limitations. In this paper, LaMa [29]
was chosen for 2D inpainting. To prevent subsequent training as a result of generating
foggy artifacts due to inconsistent views, depth maps were also generated for geometric
supervision using depth repair models. Experiments showed that LaMa exhibits supe-
rior performance in repairing depth maps, so additional models were not introduced in
this paper.

Dinp = FINP(Dopt,Mopt) (16)

Here, mask optimization and 2D inpainting were completed. Next, the inpainted
image was used as a prior for the subsequent inpainting training stage.

3.3. Stage 2: Inpainted NeRF Training

After we minimized the inpainting region and obtained the inpainted image Iinp,
the depth map Dinp, and the optimized mask Mopt, we focused on the inpainting train-
ing stage, which is described in this section.
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It was not a good choice to use a simple pixel-wise loss because the priors were 3D-
inconsistent. Heuristic methods were proposed for this task but resulted in a certain lack
of structural information. Previous methods attempted to use heuristic losses to optimize
repair results but also resulted in a certain degree of loss of structural information. Our
method focused on this problem.

This second stage focused on attaining consistent views with good visual perception
from 3D inconsistent views. Therefore, we combined the color loss LMSE and the adversar-
ial loss Ladv with dynamic weights through uncertainty to achieve better inpainting results.
Figure 3 shows a specific example.

Inpainted Images

Uncertainty Maps

Figure 3. Dynamic weights computed from the 3D consistency of the 2D inpainted views measured
using the uncertainty branch. Two sampling examples are shown on the left. The red boxes represents
two sampling patches. The blue boxes represents the uncertainty output value corresponding to the
red boxes. The darker the color, the lower the uncertainty. The right side is the dynamic weight of the
two sampling patches. The sampling patch with low uncertainty will get a higher MSE loss weight
and a lower adversarial loss weight. Texture inpainting often results in high uncertainty value.

3.3.1. Adversarial Optimization

According to the output of the 2D inpainting model, regions with clearer structures
across multiple views tended to exhibit more consistent results, while regions with uncer-
tain structures, such as grass, leaned towards texture inpainting. Using solely the MSE
color loss for training would lead to poor fitting, because the 3D inconsistency of multiple
views often results in highly blurred results.

In this paper, the texture distributions of inconsistently repaired regions were consid-
ered to be similar. Therefore, a patch-based discriminator was introduced for guidance,
and patch sampling was adopted from the radiance field. We sampled patches with a
resolution of 64 × 64. The rendering results were used as fake samples, and the image
patches of the repaired views were used as true samples. We adopted a simple conditional
discriminator with two parts. The first part had three blocks, each of which consisted, in
turn, of spectral normalization, convolutional layers, instance normalization, and leaky
ReLu.The feature map was connected to the conditional embedding, encoded by {x, d} of
the upper left ray, and fed into the second part with several convolutional and normaliza-
tion layers. Adversarial training was performed to ensure the texture-level truthfulness of
the samples, and the adversarial loss is as follows:
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Ladv = LD + LG

= (E(max(0, 1 − D(preal))) +E(0, 1 + D(p f ake))) + (−E(D(p f ake))), (17)

where preal and p f ake are true and fake samples, respectively. Hinge loss [45] was used here to
ensure that only samples that were not reasonably distinguished would generate gradients.

3.3.2. Dynamic Weight

Utilizing the adversarial loss alone presents two challenges. On one hand, with-
out strong bootstrapping for regions with a clear structure, the network can hardly recon-
struct sharp edges. On the other hand, learning the scene from scratch leads to easy collapse
and slow fitting, which puts a high demand on the discriminator’s fitting ability. The MSE
color loss LMSE is a better choice for structure reconstruction, and striking a balance be-
tween the two losses constitutes a key strategy. This paper introduces the concept of using
the variance, as the output of Gβ, as a measure of 3D inconsistency, though it was used as
a measure of the visibility in the first stage. When training with prior images, the color
values corresponding to a spatial point differed on multiple images and, thus, might cause
fitting failures. These points would make the numerator ∥C̄(r)− C(r)∥2 of the first term in
Lrgb (refer to Equation (9)) very large, compelling the model to magnify the denominator√

2πβ2(r), thereby increasing the variance.
Our training strategy was to use the inpainted depth maps as the geometry supervision

to train the geometry branch Gσ:

Ldepth = ∑
r∈R

∥D̂(r)− Dinp(r)∥2, (18)

where D̂ is the predicted depth value. L2 loss was calculated as the depth loss.
Furthermore, we combined the previously proposed Lrgb for Gc and Gβ with Ldepth

only for Gσ. This step is to obtain the repaired geometry while learning the 3D inconsistency
information of the inpainted view.

Upon achieving network stability, we froze Gβ, Gσ while continuing to train Gc. Given
that the color of each pixel was modeled as a Gaussian distribution, confidence levels were
employed to calculate the weights to balance the MSE color loss LMSE (refer to Equation (3))
and the adversarial loss Ladv: λMSE = Φ

(
b/

√
β2(r)

)
− Φ

(
−b/

√
β2(r)

)
λadv = λ 1

|R| ∑
r∈R

(1 − (Φ
(

b/
√

β2(r)
)
− Φ

(
−b/

√
β2(r)

)
))

, (19)

where λ is a hyperparameter to adjust the strength of two loss functions to the same level,
and Φ is the cumulative distribution function of the standard normal distribution, aiming
to find the cumulative distribution probability of the input parameter under the standard
normal distribution. In addition, b is a hyperparameter used as a given confidence bound
to calculate the confidence of N (0, β2(r)) between the boundaries (−b, b) using Gaussian
distribution standardization. In the experiments, b was set to 0.001 for applicability to the
majority of scenarios. It is worth noting that the weight of the MSE color loss was at the
pixel level, whereas that of the adversarial loss was at the patch level, calculated as the
mean within the patch.

Finally, the total loss during training can be described as:

Ls2 = λMSELMSE + λadvLadv + Lreg2, (20)

where Lreg2 is the regularization loss in the second stage, including the L1 density loss,
TV loss, and other factors. Algorithm 1 shows the training process of this uncertainty-
based dynamic weight training strategy. A balance between structure and texture could be
obtained to achieve better inpainting results.
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Algorithm 1 Inpainted NeRF trained using the dynamic weight strategy

Require: Inpainted images Iinp, Inpainted depth maps Dinp, Train iterations K1 and K2,
Sampled rays r

Ensure: Inpainted NeRF FΘ with branch parameters Θc, Θσ and Θβ, Discriminator D
1: Initialze FΘ.
2: for j ⇐ 0 to K1 do
3: Θσ ⇐ Θσ −∇Θσ

Ldepth
4: Θc ⇐ Θc −∇ΘcLrgb
5: Θβ ⇐ Θβ −∇Θβ

Lrgb
6: end for
7: Initialze D.
8: for j ⇐ 0 to K2 do
9: c, β2, d⇐FΘ(r)

10: Calculate dynamic weights λMSE and λadv of r.
11: Θc ⇐ Θc −∇Θc(λMSELMSE + λadvLadv)
12: D ⇐ D −∇DLadv
13: end for

4. Experiments

To evaluate the efficacy of the proposed method concerning mask optimization and
NeRF inpainting, experiments were conducted following the configurations of
baselines [17–19]. Different datasets, such as NeRF Object Removal [19], Spin-NeRF [18],
and LLFF [46], were tested to verify the inpainting effects in different types of scenes.
The segmentation results were only used as intermediate results for reference. The experi-
mental setup is detailed in following sections.

4.1. Experimental Settings
4.1.1. Implement Details

We implemented our model on NVIDIA RTX 8000, manufactured in the USA . In the
first phase, it was trained for 50,000 iterations. In the second phase, after training all
branches for 25,000 iterations, we separately trained the color branch and discriminator
for 50,000 iterations. Both Lreg1 and Lreg2 include the density TV loss and density L1 loss,
with weights of 1.0 and 1 × 10−5, respectively. Lreg1 also includes L−l1 and the mask
negative L1 loss with weights of 1 × 10−4 and 1 × 10−4. Additionally, we set λ to be 0.01.
The learning rates for the NeRF backbone and the discriminator were 0.001 and 0.0001.

4.1.2. Datasets

To verify segmentation performance, we used the LLFF dataset. The target objects
in some scenes were manually annotated as the ground truth. LLFF contains multiple
real-life scenes, covering indoor and outdoor scenarios with different lighting conditions,
and provides corresponding camera parameters.

To evaluate the inpainting performance of our proposed method, we used three
datasets for validation: LLFF was only used for the visual comparison, while NeRF Object
Removal and Spin-NeRF were specifically used to evaluate NeRF inpainting. Each scene in
both the latter two contains two parts: an image without the target object as ground truth,
and an image with the target object. These scenes exhibit great diversity in material and
lighting, among other factors, enabling a comprehensive assessment of the performance of
our proposed model.

4.1.3. Metrics

We adopted the segmentation metrics of Acc (Accuracy) and IoU (Intersection over
Union) to evaluate the segmentation masks in the first stage. Acc measures the proportion
of correctly classified pixels, whereas IoU calculates the overlap between segmentation
outcomes and the ground truth by dividing the intersection area by the union area.
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For the final 3D-consistent inpainting, we employed four widely used metrics in
inpainting model evaluation, including LPIPS (Learned Perceptual Image Patch Similar-
ity) [47], FID (Fréchet Inception Distance) [48], SSIM (Structural Similarity Index) [49],
and GMSD (Gradient Magnitude Similarity Deviation) [50]. LPIPS uses the output features
of the pre-trained model [51,52] to quantize the difference between images. FID measures
the similarity between images based on statistical features. SSIM is a metric for evaluating
image similarity by comparing the brightness, contrast, and structure differences. GMSD
measures the image distortion level by calculating gradient magnitude differences between
real images and predicted images.

4.1.4. Baselines

The segmentation experiment setting was to input a source mask representing the
user-specified object and propagate it to all views through the model. For single-image
segmentation models, Grab Cut [53] and Edgeflow [54] were selected. By leveraging the
geometry of NeRF, incomplete mask projections were obtained as the input of the two
models. FFD [55] served as the baseline for 3D segmentation models. Additionally, a
comparison was made with the video segmentation model STCN [44].

Following the settings of similar experiments, we compared the following baselines
of NeRF inpainting: Masked NeRF [1], Inpainted NeRF [1], NeRF-In [17], Spin-NeRF [18],
LaMa [29], and MST Inpaint [26]. The Masked NeRF method solely utilizes original views
and masks to train a neural radiance field, with background area supervision only. The
Inpainted NeRF method directly uses inpainted images provided by the 2D model. The
NeRF-In method uses a single 2D inpainted view and background areas of all views as
color supervision. The Spin-NeRF method uses LPIPS loss specifically for the inpainted
region. In addition, the LaMa and MST-Inpaint methods are 2D baselines. To balance
the weakening of the NeRF on image performance, we trained the NeRF with objects and
rendered test views as inputs of the 2D model.

4.2. Results and Discussion
4.2.1. Mask Optimization

Firstly, we tested the performance of the proposed method in mask segmentation.
Table 1 shows the quantitative comparison of our method with the baselines in terms of
segmentation performance. It can be seen that our complete model in this paper surpassed
all baselines. Regarding the two single-image segmentation baselines, their metrics were
lower, likely due to the limitations of single-image segmentation methods in leveraging
correlation information between multiple views. FFD, which was designed for multi-class
classification using prior features, showcased moderate performance. STCN exhibited
commendable segmentation performance. As a video segmentation model, although it
cannot understand 3D information, it can still utilize inter-frame information to optimize
the results. For our method, the former experimental setup with a single mask led to a
large error when significant differences existed between viewpoints of the source mask.
Conversely, the latter yielded better results. This could be attributed to two key factors:
Firstly, the segmentation priors from STCN inherently offer a higher accuracy, setting a
lower bound for our model. Secondly, the mask branch uses the strong generalization per-
formance of radiance fields and the 3D information to further repair some of the erroneous
segmentation in STCN.

The results of mask optimization are shown in Figure 4, which qualitatively demon-
strates the segmentation effects. We can see that STCN produced severely erroneous
results in the orchids scene. Conversely, our method propagated correct segmentation
information to the current view. In addition to rectifying the large-area errors, sharper
and more accurate segmentation results were observed in various details, such as the
mouth of the fossil, the left edge of fortress, and the hole between the flower petals. This
shows that the proposed method is robust and not overly dependent on the accuracy of
segmentation inputs.
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Table 1. Quantitative comparison of the segmentation results with baselines. ↑ means higher value
is better. Our complete framework exhibits a significant advantage over all comparison baselines,
obtaining more accurate segmentation results.

Method Acc↑ IoU↑
Grabcut [53] 91.45 48.51

Edgeflow [54] 97.23 84.96
FFD [55] 97.76 86.46

STCN [44] 98.55 91.30
Our (with Single mask) 98.36 98.17

Our (with STCN) 99.21 93.66

OurSTCNGroundtruthInput View Our(Refined Mask)

orchids

horns

fortress

flower

Figure 4. Qualitative comparison of the segmentation against STCN and the results of mask optimiza-
tion. The red boxes indicate the objects we wanted to segment. STCN was used as the segmentation
priors for our model, and its output had errors. The results show that our model is robust against
inaccurate priors, effectively correcting erroneous segmentation and obtaining accurate boundaries.
Optimized views and masks are able to expose the occluded region and reduce the area requiring
inpainting. In certain scenes, mask areas are nearly completely removed.

The last column of Figure 4 showcases the outcomes of mask optimization, serving as
an intermediate result for 2D inpainting. For example, in the fortress scene, the target object
mask was optimized to cut the mask area, exposing the desktop as a background. In the
horns scene, almost all the mask was cut. The information used to fill the mask was derived
from other views. We reduced the mask area by showing more real information in the
current view through the background rendering implementation to minimize subsequent
inconsistencies due to 2D inpainting.

4.2.2. 3D-Consistent Scenes Inpainting

The Spin-NeRF and NeRF Object Removal datasets were used for the quantitative
evaluation of the inpainting results of our proposed method against the baselines. Table 2
highlights the superiority over all other NeRF-based inpainting models in LPIPS and FID.
This signifies that our method can achieve good inpainting results, which is in line with
human visual perception. SSIM was slightly lower than that of some baselines, although the
gap was so small that it could be considered to be at the same level. Masked NeRF and
Inpainted NeRF produced low scores in perceptual metrics. The former lacks inpaint
supervision, resulting in hollow areas. The latter relies on the MSE loss, which prevents
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it from fitting data. Spin-NeRF closely trailed our method but exhibited a lower score on
SSIM. This divergence might be attributed to its error in using the pure perception loss. It
is worth noting that our method was closer to the 2D inpainting method LaMa in terms of
perceptual metrics, which outputs our 2D inpainting priors. The model proposed in this
paper can adeptly extract the features of 2D inpainting and extend its capabilities to 3D
scenes. Considering all the metrics collectively, the proposed method emerges with distinct
advantages over other baselines in the NeRF inpainting task.

Table 2. Quantitative comparison of inpainted results with baselines. ↑ means higher value is better,
while ↓ means lower value is better. Bold font indicates the best, and underlining indicates the
second-best. Our method either secures the top spot or stands as the second-best across all metrics,
presenting a distinct advantage over the baselines.

Spin-NeRF Dataset NeRF Object Removal Dataset

Mothed LPIPS↓ FID↓ SSIM↑ GSMD↓ LPIPS↓ FID↓ SSIM↑ GSMD↓
LaMa [29] 0.0362 98.4 0.9452 0.0717 0.0483 90.3 0.9235 0.0837
MST-Inpaint [26] 0.0549 147.7 0.9440 0.0791 0.0775 118.6 0.9250 0.1012

Masked NeRF [1] 0.0612 210.2 0.9477 0.1084 0.0815 159.7 0.9341 0.1092
Inpainted NeRF [1] 0.0554 141.8 0.9475 0.0947 0.0743 167.0 0.9268 0.1118
NeRF-In [17] 0.0566 122.8 0.9481 0.0869 0.0727 103.5 0.9335 0.0933
Spin-NeRF [18] 0.0365 118.9 0.9451 0.0770 0.0543 114.4 0.9269 0.1012
Ours 0.0351 99.2 0.9480 0.0701 0.0480 81.7 0.9336 0.0788

A further qualitative analysis of the baselines was performed by presenting the visu-
alization results. The focus of the comparison was primarily on 3D baselines, while the
results of the 2D baselines LaMa and MST-Inpaint were used as references.

From the two scenes illustrated in Figure 5, our method preserved parts of the back-
ground occluded by target objects, such as the twigs in the tree scene and the weeds in the
manhole cover scene. This result from our approach integrating all the view information
when rendering the background, ensuring these regions are displayed without undergoing
restoration treatments. NeRF-In achieved a somewhat similar effect by utilizing only in-
painted regions of one view and the background of others. However, this approach lacks
multi-view supervision in the inpainted regions, leading to blurred outputs. Spin-NeRF
lost these details completely, while Masked NeRF preserved these details but produces
hollow-looking images. Inpainted NeRF lost part of the true background. Remarkably, our
method excelled by achieving both good preservation of real background details and good
restoration results, while other baselines achieved one of them at most.

The functioning of dynamic loss weights is elucidated in Figure 6 through the visualiza-
tion of the loss weights for the uncertainty branch. Darker regions represent higher weights
against the adversarial loss and lead to more texture-level restoration, whereas lighter
regions represent higher weights of the color loss, which is believed to be able to better
restore the structure. Empirical observations showed that 2D inpainting models, including
LaMa, tend to yield more consistent inpainting results for regions with clear and regular
structures, as seen in the mesh and fence in Figure 6. Conversely, texture-rich regions are
more inclined to perceptual-level inpainting, varying across different views. Our method
recognized both inpainted results through the uncertainty branch, and further achieved
a balance between structure and texture through dynamic weights. Hence, our method
was able to obtain sharper edges and recover their texture information in appropriate
regions. As regards the baseline methods, NeRF-In led to blurry results due to single-view
supervision. Spin-NeRF suffered from ambiguous structural information because of the
perceptual loss, and Inpainted NeRF performed worse in restoring vegetation texture.
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Masked NeRFNeRF MST-InpaintLaMaGT

Our(loss weight)NeRF-In OurSpin-NeRFInpainted NeRF

Masked NeRFNeRF MST-InpaintLaMaGT

Our(loss weight)NeRF-In OurSpin-NeRFInpainted NeRF

Figure 5. Visualization comparison of manhole cover and tree scenes. The red boxes display the
magnified details. NeRF displays the view without the objects being removed, and the white-covered
areas indicate target objects. The boxed regions serve to illustrate that the proposed method can
effectively address the 3D inconsistency issues evident in the restoration process while preserving
more background details compared to other methods.

Masked NeRFNeRF MST-InpaintLaMaGT

Our(loss weight)NeRF-In OurSpin-NeRFInpainted NeRF

Masked NeRFNeRF MST-InpaintLaMaGT

Our(loss weight)NeRF-In OurSpin-NeRFInpainted NeRF

Figure 6. Visualization comparison of mesh and fence scenes. The red boxes display the magnified
details. The loss weight represents the visualization of dynamic weights in our method, where the
darker color represents a higher weight for the adversarial loss and a lower weight for the color
loss. The dynamic weights allow our method to more accurately identify areas requiring more
structural or textural inpainting, resulting in final inpainting with clearer edges and perceptually
plausible textures.

The multi-view results of the proposed method are shown in Figure 7. In the first
room scene, our model tackled the challenges posed by viewpoint-dependent effects,
where smooth surfaces led to drastic color changes due to viewpoint movement. In fact,
the uncertainty branch outputs of these regions were not high, signifying the proposed
model’s ability to discern whether color changes stem from incorrect 2D inpainting or
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actual light reflections from the real scene. In the second scene, the region of the occlusion
was large, and a lot of details would be lost by direct inpainting at the 2D level. Our model
first employed a mask optimization step to retain more real information, such as part of the
vegetation behind the leaves. This reduced the 3D inconsistency that may be brought about
by the 2D inpainting phase. Finally, the results following the training with dynamic weights
showcase enhanced inpainting, which is particularly noticeable in the improved inpainting
of the tree trunk structure and the restoration of the surrounding vegetation texture.

Original

Scene

Inpainted

Scene

Original

Scene

Inpainted

Scene

View 1 View 3View 2

Figure 7. Multi-view inpainted results. This figure primarily showcases two distinctive scenes: one
with smooth surfaces exhibiting severe view-dependent effects, and the other with high complexity,
leading to 3D inconsistencies in the 2D inpainted results. Our model achieved good performance
across these scenarios.

4.3. Ablation Studies

Table 3 shows the different components used in the ablation experiments and their
comparative results. The complete architecture proposed in this paper obtained optimal
results in all metrics. Omitting the first stage of mask optimization resulted in a large
decrease in SSIM, indicating that mask optimization markedly aids the rendered image
and mask pairs in retaining more background information. In addition, a comparison of
the dynamic weights was performed. Three control groups were established: one without
the adversarial loss, one without the MSE color loss, and one assigning equal static weights
(0.5) to both losses. Using the loss without Ladv yielded blurred renderings, resulting in
lower Lpips and FID scores. Conversely, exclusively employing the adversarial loss led to a
substantial drop in SSIM and GSMD. While equal weighting of both losses generated better
results, their metrics still trailed those achieved through dynamic weighting. We cannot
deny that there may be a certain fixed weight that can work well in a particular scene,
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but dynamic weighting can obtain proper hyperparameters automatically for different
scenes at the patch level.

Table 3. Quantitative comparison of the segmentation results with baselines. ↑ means higher value
is better, while ↓ means lower value is better. Bold font indicates the best. Ablation results on the
Spin-NeRF dataset. The metrics underscore the contribution of each component of our architecture
towards improving the final results.

Method LPIPS↓ FID↓ SSIM↑ GSMD↓
Our 0.0351 99.2 0.9480 0.0701
Our (w/o Mask Optimization) 0.0363 103.3 0.9469 0.0730
Our (w/o Ladv) 0.0532 138.3 0.9478 0.0932
Our (w/o LMSE) 0.0426 110.6 0.9464 0.0756
Our (with Static Weights) 0.0382 114.7 0.9477 0.0752

Figure 8 shows the qualitative results of the ablation experiments. The impact of mask
optimization was mainly compared in the first and second scenes. Notably, scenes pro-
cessed with mask optimization effectively preserved details such as bushes and real flowers,
while scenes lacking mask optimization showcased texture artifacts. This highlights the
efficacy of the mask optimization module in retaining real information. The results of
the training strategy based on dynamic weighting were compared in the third scene. It
can be seen that the proposed complete method preserved good structures, such as table
edges, while also generating appropriate textures. However, when the adversarial loss was
removed, the texture details of the scene became blurry. Similarly, removing the MSE color
loss severely weakened the structure, emphasizing the design intent of this paper where
the color loss guides the structure and the adversarial loss guides the texture. Additionally,
experiments employing static loss weights failed to produce satisfactory inpainted results
in the third scene. The proposed method exhibited enhanced performance across different
scene settings. The metrics and visualization of the ablation experiments affirm the pivotal
role each part of the method in this paper plays in improving the experimental results.

Our Our(w/o refine) Our(w/o ) Our (w/o ) Our(static weight)

Figure 8. Quantitative comparison of the ablation experiments. The red boxes display the magni-
fied details. The performance of the complete architecture is illustrated against four comparative
experiment settings: without mask optimization, without adversarial loss, without MSE color loss,
and with static weights. Mask optimization preserves the true background details, and dynamic
weighting obtains a balance between texture and structure.

4.4. Limitations

The proposed method also features some limitations. Since the method uses a 2D in-
painting model as priors, the results for NeRF depend heavily on the same priors. The LaMa
used in this paper occasionally disregards structural aspects and performs texture inpaint-
ing, resulting in, for example, a gradual texture artifact in the public seat in Figure 9. Thus,
our model might also result in such errors. In addition, owing to the absence of lighting
modeling, the method in this paper has flaws in handling shadows, and in some cases,



Electronics 2024, 13, 448 19 of 22

remnants of shadows persist in the scene after object removal. Some recent works are
very inspiring, such as the 3D Gaussian-based method that can perform relighting and
have high expressive power [56]. Decoupling illumination has a positive effect on shadow
removal. We hope to address these issues in future work.

GT w/ ObjectGT LaMa Our

Figure 9. Failure cases. The proposed method relies on the results of the 2D inpainting model. When
the 2D model fails to inpaint properly, the proposed method may also generate similar failure results.

5. Conclusions

In this paper, we propose a NeRF inpainting architecture that can effectively remove
target objects from scenes and obtain reasonable results. The method in this paper orches-
trates a two-stage process to realize inpainting. In the initial training stage, a mask branch
and an uncertainty branch are integrated into the base NeRF for background rendering
and mask optimization, fully exposing the background details of the training view. In the
inpainting training stage, the uncertainty branch serves as a 3D consistency measurement
for the inpainted view, from which dynamic weights are computed to balance the color loss
and the adversarial loss. On this basis, the results are well inpainted at both the structure
and texture levels. Quantitative and qualitative experiments were conducted to demon-
strate the superiority of the proposed method over previous methods. It outperforms all
3D baselines in terms of perceptual metrics, and also has an advantage in structural metrics.
In addition, it was experimentally demonstrated that the added components all notably
enhance the overall model performance. Nevertheless, the work in this paper still has some
limitations in terms of the dependency on the 2D model and the removal of shaded areas,
which will be overcome via further exploration in subsequent work.
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