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Abstract: The article focuses on the use of short-time Fourier transform (STFT) to detect the unbalance
of a drive with a flexible connection between the driving machine and the load. The authors present
the unbalance model and justify, through subsequent experiments, why the STFT-based approach is
appropriate. The effectiveness of the presented method of analyzing signals from acceleration sensors
was confirmed experimentally by designing an artificial neural network for detecting the unbalance.
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1. Introduction

Unbalance is a destructive phenomenon that affects all rotating elements, including
the rotors of electrical machines. The vibrations generated by the unbalanced rotor are
transferred to the stator, which affects the reliability of the drive system. From an economic
point of view, it is essential to monitor rotating parts for unbalance, especially precision
servo drives. This paper focuses on unbalance detection in a two-mass servo system
connected by a long (elastic) shaft. The unbalance was modeled by applying additional
masses to the rotating disc, which was rigidly mounted to the motor shaft. During the
tests, the value of the test mass and its mounting position on the disc were changed. The
authors also decided to check whether the thickness of the linking shaft has an influence on
the vibration level by using three shafts with different diameters. The Short Time Fourier
transform (STFT) was used to analyze the data for the purpose of unbalance detection.
The other important issue was the explanation of the usage of the time-frequency analysis
instead of the classic Fourier transform. Additionally, the authors present a sample of
artificial neural network detectors that distinguish between healthy and faulty plants as
well as determine the amount of unbalance. The presented analysis is an important basis
for the development and examination of various methods of classifying the problems
discussed in the article.

2. Literature Overview

Electric motors are widely used in various industries. Depending on the application,
the most commonly used machines are squirrel-cage induction motors and permanent
magnet synchronous motors (PMSM). Apart from safety and economic considerations,
reliability is one of the most important factors for the users of such drives. To reduce
repair costs, it is essential to detect the initial phase of damage as soon as possible. Modern
diagnostic methods make it possible to detect both electrical faults (including short-circuits
of various nature, phase breaks, problems with incorrect winding connection, etc.), me-
chanical faults (including the most common: bearing damage, eccentricity, misalignment
of the drive system, unbalanced of rotating elements, shaft deflection, etc. as well as the
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demagnetization associated with permanent magnet motors [1–4]. The main causes of
demagnetization are high temperatures in the motor, mechanical damage to the magnet,
and its naturally occurring aging. Mechanical damage to the magnet is also associated with
the unbalance of the rotor.

Currently developed diagnostic systems should be able to detect damages occurring in
electrical machines at the initial stage, thanks to which the maintenance will be able to plan
necessary service repairs. Low-cost diagnostic systems based on cheap microprocessors,
measurement cards, and available programming environments are characterized by a
modular structure, which can be expanded with new functionalities in a relatively short
time [5–9]. The basic diagnostic signals used in the process of detecting faults in electrical
machines include stator current, mechanical vibrations (acceleration), and noise (acoustic
wave). The effectiveness of the diagnostic process depends not only on the analyzed
diagnostic signal but also on the applied method of its processing. As an example, there
could be the analysis of the root mean square value (RMS) of mechanical vibrations, based
on which the technical condition of the machine can be determined, but it is not possible to
determine what causes its incorrect operation. [10]. Each of the analyzed signals contains
symptoms of various faults. Depending on the approach, one can focus on detecting
single failures or develop an algorithm to identify different failures. The [11] presents the
application of fast Fourier transform (FFT) to the analysis of mechanical vibrations. On this
basis, it was possible to detect cracked rotor cage bars, eccentricity, and damaged bearings
of the induction machine. Another example of using a mechanical vibration signal to
identify many different damages is presented in [12]. The authors discussed the possibility
of using the mean, maximum, and RMS values and additionally cross factors, kurtosis, and
peak values for rotor unbalance detection. Cracked induction machine rotor cage bars and
the damage to the main motor bearing race were also considered. Additionally, the artificial
neural network classifiers were used to distinguish between those failures. In [13], motor
phase currents and vibrations were utilized to detect the failure of the stator of the PMSM.
In this case, wavelet analysis of vibrations can detect as many as 15% of turns short-circuit
within one phase. Mechanical vibrations are a universal diagnostic signal, as shown in [14],
where this signal was also used to detect electromagnetic damage. An example of the use of
vibroacoustic to detect misalignment of a drive system consisting of a motor, a cylindrical
gear, and a worm gear can be found in [15].

From the diagnostics point of view, both the signal and the signal processing method
are equally important. To detect the unbalance of the drive system with a PMSM, the
mechanical vibration signal can be subjected to FFT, bispectrum, full-spectrum, and orbit
shape analysis, as shown in [16]. The authors obtained the largest changes in the amplitudes
characteristic of unbalanced symptoms from the bispectrum analysis. The research took into
account the influence of test mass and rotational speed on the ability to detect the unbalance.
In [17], mechanical vibrations were subjected to FFT analysis to detect the unbalance of the
PMSM, on which demagnetization and dynamic eccentricity were additionally modeled.
In [18], FFT analysis and a bispectrum of mechanical vibrations and stator current were
used to detect the unbalance of the rotor of an induction motor powered by a frequency
converter. The effectiveness of the proposed methods was confirmed on two different
induction machines (different manufacturers and a number of pole pairs). The unbalance
was modeled both by using an external disc to which the test masses were screwed and by
mounting an additional mass directly to the rotor. The tests were carried out for different
supply voltage frequencies. The stator current after the Park transformation was also
discussed in [19,20]. The signal after the transformation was analyzed using the discrete
wavelet transform. The effectiveness of the proposed approach was confirmed in both
simulation and experimental studies conducted in non-stationary conditions. Continuous
wavelet transform is discussed in [21]. The stator current was also analyzed. Positive test
results were obtained in simulation tests in non-stationary conditions at low load values.
In [22], an attempt was made to detect damage to blades in marine current turbines. The
analysis included information obtained from both phase current sensors built into the
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generator and external sensors such as accelerometers, cameras, and temperature sensors.
The advantages and disadvantages of the analyzed diagnostic methods are presented in
numerous tables. The Hilbert transform can also be used to detect unbalance. In [23],
the online detection of rotor unbalance in an induction motor is discussed. FFT analysis,
Hilbert transform, envelope analysis, and discrete wavelet transform were used to search
for symptoms. The stator current and mechanical vibrations were analyzed as well.

The short-time Fourier transform (STFT) is used to detect damage in dynamic states.
STFT allows the detection of both the type of damage and the time of its occurrence.
It is used to analyze stator current and mechanical vibrations. In [24], it was used to
detect damage to the stator of a PMSM based on the stator current analysis, the stator
current envelope, and the stator current spatial vector module. The authors presented
the advantages of using STFT compared to classic FFT analysis. In [25], the possibility
of detecting the unbalance of an induction motor rotor based on STFT analysis of the
stator current Park vector was presented. The obtained results were compared to the
approach based on FFT analysis of the stator current. The use of STFT to detect mechanical
damage, such as friction of the blades against the stator in turbochargers, based on the
vibration signal during startup and coasting of a rotating machine, is presented in [26].
The authors demonstrated the superiority of the proposed method over the traditional
method based on FFT analysis. In [27], STFT analysis of the noise of an undamaged
motor and the motor with unbalance, misalignment, and damaged bearing were used
to precisely determine the time of failure. In [28], the use of variable—window STFT
was proposed to detect winding faults in a PMSM. The stator current signal was used in
the tests. A convolutional neural network was used to automate the detection process.
The proposed approach was validated using a simulation data set and reference data sets
with damaged bearings for various rotational speeds. In [29] STFT analysis, continuous
wavelet transform (CWT) and Hilbert-Huang transform were used to identify the damage
based on the analysis of the start-up process vibrations. The article analyzes the proposed
methods in terms of the lowest possible level of induced error and the time needed for
calculations to detect shaft misalignment and damage resulting from rotor-stator friction.
The [30] presents comparative studies of various time-frequency analyses of mechanical
vibrations, including STFT, for detecting damage to an induction motor during start-up.
The authors focused on detecting the damage to the rotor cage, unbalance, and bearing
damage during engine startup and demonstrated the superiority of time-frequency spectral
analysis of mechanical vibrations over current analysis. In the paper [31], an efficient
deep learning (DL) algorithm model was developed for rotating shaft unbalance detection
for both binary and multi-class identification. A Convolutional Neural Network (CNN)
was also implemented to determine feature extraction. Accelerometer data collected by a
vibration sensor was used to train the algorithm. This time series data was preprocessed
to extract important vibration features using the FFT and the STFT. The advantage of the
STFT method over the FFT method was also demonstrated. In [32], the input data was first
pre-processed using STFT. Then, a model was developed for classifying the system state
based on multi-output classification using CNN. The proposed model was evaluated based
on its performance and robustness in classifying complex faults, including the variation of
various shaft unbalance features. The paper [33] presents so-called predictive maintenance
using vibration sensors and predicting various faults. A mathematical model of the system
was developed, and the research was verified experimentally. Among other things, the
focus was on shaft unbalance, which is one of the main faults found in any rotating system,
leading to excessive vibrations that directly or indirectly lead to premature failure of the
device in question. A predictive model has been developed using CNN, which is used to
predict time series data of industrial turbine rotor unbalance with monthly prediction in a
real-time setting.

The unbalance, in the available literature, is modeled in various types of electrical
machines. Modeled unbalance was detected both in induction motors [18,23,25,27,30]
and PMSM [16,17,19–21], in marine current turbines [22], or in the commutator motor
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of a hammer drill or blender [34]. The analysis of the literature shows that the problem
of unbalance applies to every rotating machine. Therefore, in this work, the authors
focused on detecting the unbalance of a two-mass system with a long shaft consisting of
two brushless alternating current (AC) servomotors (PMSM). The vibration acceleration
signal was subjected to STFT analysis. It was analyzed how the amount of the installed test
mass and the place of its installation influences the level of generated vibrations. Moreover,
the effect of the diameter of the long shaft on the ability to detect the unbalance was
examined. The authors show why, despite performing tests in a steady state, a signal
processing method that is dedicated to transient analysis should be used.

As discussed above, rotor unbalance is the most common source of vibration in ma-
chines with rotating parts, especially servo drives. On the other hand, detecting rotor
unbalance and determining the level of rotor unbalance, which is the aim of this article,
further leads to the application of various methods of rotor balancing. The aim of rotor
balancing is to prevent excessive bearing load and fatigue damage, thereby increasing
the life of the system in question. In a recent paper [35], an extensive literature review
of different rotor balancing methods was carried out. Traditional methods, including the
influence coefficient method (ICM) [35,36] and the modal balancing method (MBM) [35,36],
are presented, and the research progress, stages of operation, and advantages and disad-
vantages of these methods are discussed. Rotor balancing methods are presented in relation
to flexible joints that may be unstable at critical speeds. Paper [36] presents an application
note on rotor balancing in static and dynamic processes of mobile equipment. On the other
hand, the paper [37] presents the problem of uncertain transients of a rotor system and
its balancing in a transient process with acceleration, in addition to a wide review of the
literature on balancing methods. The multi-dimensional ellipsoid model (MEM) method
used there is used to describe the uncertainties, while the Monte Carlo Simulation (MCS)
and Chebyshev interval algorithm (CIA) are introduced to obtain the transient uncertain
responses of the rotor system, respectively.

3. The Unbalance Model

The unbalance of rotating elements is encountered every day. This phenomenon
occurs not only in the rotors of electrical machines but also applies to shafts, clutches, car
wheels, or during uneven distribution of laundry in a washing machine. Unbalance occurs
when a rotor with uneven mass distribution relative to the rotation axis is put into rotation.
When unbalance occurs, unbalanced centrifugal forces and moments act on the bearings,
which cause an increase in the level of mechanical vibrations and noise [38]. Figure 1 shows
a graphical interpretation of the unbalance, which is described in the form of an additional

mass m mounted at an angle α at a distance
→
R from the rotation axis O. The introduction of

the additional mass causes the center of gravity of the rotating element to shift from point
O to point O1 by a vector

→
e , called the eccentricity of the center of gravity [39]. Therefore,

the unbalance is defined as the product of the unbalance mass m and the vector
→
R on which

it is placed [39]:
N = m

→
R. (1)

When the unbalanced element is put into rotation at a speed ω, the additional mass m

causes a centrifugal force
→
F [39,40]:

→
F = m

→
Rω2. (2)

According to Equation (2), the unbalanced changes linearly with the change in the
unbalance mass and its support relative to the axis of rotation and with the square of the
angular velocity ω.

The unbalance of electrical machines can be detected when the rotor starts to rotate.
The resulting unbalanced centrifugal force acts on the machine’s body, causing it to vi-
brate. Since, according to Equation (2), the unbalance depends on the angular velocity ω,
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an increase in the amplitude of the rotational frequency is observed in the spectrum of
mechanical vibration [41]:

fru = fr =
n
60

=
ω

2π
, (3)

where fru (Hz) is the fault frequency related to the rotor unbalance, fr (Hz) is the rotating
frequency of the shaft, and n is the rotational speed (rpm).
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Figure 1. Graphical representation of machine unbalance.

4. Two-Mass System with Flexible Joint

The two-mass system is well known in literature [42–49] as a model of basic intercon-
nection between motor and load, and numerous speed and position control algorithms
have been developed over time [47,50–53]. The main problems caused by this type of
object are resonances and antiresonances that occur at specified frequencies [53]. The
Formulas (4) and (5) describe the natural resonant and antiresonant pulsations of the un-
damped system (the most common two-mass systems have very low damping) presented
in Figure 2. Other symbols mean: TT is the torsional torque, k is the stiffness factor of the
shaft, ω1 and ω2 are the motor and load side speeds, and θ1 and θ2 describe the position of
the motor and load side. The resonance causes both masses J1 and J2 and the shaft to go
into very strong vibrations; on the other hand, the antiresonance causes the propelled mass
J1 to achieve very low speed, and strong vibrations occur between the shaft and the load
mass J2.

ωr =

√
k

J1 + J2

J1 J2
, (4)

ωa =

√
k
J2

. (5)

Depending on the control strategy and design requirements, the resonance and antires-
onance vibrations can be actively damped by the control system, or filters can be applied to
prevent the control system from inducing the vibrations. Regardless of the reason for the
oscillations, the occurrence of the vibrations leads to oscillations in the speed signal and,
therefore, modulates the centrifugal force (2).
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5. STFT Transformation

The Fourier transform assumes that the signal being analyzed is periodic and station-
ary. The analyzed signal is then decomposed into a specific number of sinusoidal signals
with a specific frequency. Unfortunately, in most cases, signals measured on real objects do
not meet these basic requirements. The transition from the time domain to the frequency
domain results in obtaining information about the frequency of a given component, but
knowledge about the moment of its appearance is lost. Therefore, the signal subjected to
such analysis should be stationary due to the loss of time information. In other words, the
spectrum from the Fourier Transform can be interpreted as the average value of spectral
components in a given signal. These disadvantages are not present in the short-time Fourier
transform, which is used to analyze non-stationary time-varying signals. STFT allows the
detection of the frequencies present in the measured signal and determines the time of
changes that may occur in it. There is some trade-off between time and frequency when
configuring STFT. This compromise is achieved by appropriately positioning and choosing
the type of the windowing function. A long window allows for high resolution in the
frequency domain at the expense of lower resolution in the time domain. In the case of a
short window, the nature of the obtained resolutions is the opposite. The use of STFT to
analyze the signal x(t) is based on shifting the windowing function w(t) along the time axis
by the value τ and decomposing the obtained signal parts into a complex form using the
Fourier transform, which contains information about the phase and amplitude of the signal
in time and frequency domain. The continuous STFT is described by [24,54,55] (6):

STFTC(τ, ω) =

∞∫
−∞

x(t)w(t − τ)e−jωtdt. (6)

When performing measurements with a constant sampling frequency, the obtained
signal is discrete; therefore, STFT can be written as [24,55] (7):

STFTC(τ, ω) ≡ STFTD[m, k] =
n=N−1

∑
n=0

x[n]w[n − mH]e−j 2πnk
N , (7)

where: N is the number of samples (points) of FFT, n is the index of input sample in the time
domain that depends on the length of the windowing function, x[n] is the input signal, w[n]
is the windowing function, m is the position of windowing function, H is the overlapping
between successive windows, and k is the frequency index. The time resolution of STFT
depends on H, and it is described by the formula H/fs, where fs is a sampling frequency.

The result of the STFT operation may be a three-dimensional energy graph (spec-
trogram), which is the result of combining spectra of the windowed signal shifted in
time [24] (8):

spectrogram(τ, ω) = |STFT(τ, ω)|2. (8)
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6. Laboratory Bench and Research Methodology
6.1. Laboratory Stand Description

The bench consists of two brushless AC servomotors from UNIMOTOR with a rated
power of 3 kW and a rated speed of 3000 rpms. The motors are interconnected via a long,
replaceable metal shaft. On the motor side, a disc was mounted to which a test mass was
screwed every 60 degrees on a radius of 42 mm. The metal frame of the test laboratory
stand (with the motors attached) was placed on a concrete foundation, which was intended
to eliminate vibrations in the drive system. The analyzed signal is mechanical vibrations
measured by a three-axis accelerometer (type 4506 from Brüel and Kjær) mounted on
the bench frame near the propelling machine. Signals from sensors are collected with a
NI 9234 card from National Instruments with a sampling frequency of 12.8 kS/s. Figure 3
shows a photo of the laboratory stand of the drive system with a spring connection enabling
modeling of unbalance.
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The rotor unbalance was modeled using four test masses: 7.5 g, 15.9 g, 24 g, and 45 g.
The tests were carried out at a constant angular velocity of 60 rad/s. The drive system
operated without active load torque on the load side. As part of the research, four series
of measurements were carried out, in which the impact of unbalance on the operation of
the motor itself and the impact of unbalance, and the diameter of the shaft connecting
the engine with the working machine on the operation of the entire drive system were
examined. During the tests, three shafts with diameters of 6 mm, 8 mm, and 16 mm were
used. The control structure is presented in Figure 4. There are two control loops: the current
control loop and the speed control loop, based on the active disturbance rejection control
(ADRC) [47]. The parameters of the control loop were constant during all the tests. The
control strategy was implemented in Analog Devices SHARC DSP 26369. The PMSM was
powered by a laboratory 3-phase inverter.
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6.2. The Effect of the Laboratory Bench Frame Resonance—Frequency Analysis Limit

As part of the identification of the laboratory stand, the system’s response to mechani-
cal impact stimulation was checked. For this purpose, a series of 9 impulse shocks of similar
amplitude were performed during 20 s, and the acceleration was recorded in the three
directions indicated in Figure 3. The measured signals were subjected to STFT analysis,
and the results are presented in Figure 5.
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According to Figure 5, the bench is characterized by different vibration spectra in each
direction. In the radial direction (Figure 5)—the “x” axis of vibration measurement (direc-
tion of impact), the lowest resonance frequency occurs at approximately 500 Hz. Moreover,
an increase in vibrations is observed at approximately 300 Hz. In the tangential direction
(“y” axis of vibration measurement), resonance occurs at a frequency of approximately
340 Hz, while in the axial direction (“z” axis of vibration measurement), the response
to excitation occurs at approximately 440 Hz, with the highest resonance occurring at
approximately 800 Hz. The drawing also shows a close-up of the low-frequency band for
vibrations measured in the “y” axis. The close-up shows vibrations occurring at approx-
imately 60 Hz and in the vicinity of the constant component. Due to the occurrence of
unbalance symptoms already in the low-frequency band and the appearance of resonance
at a frequency of approximately 80Hz (Figure 5, “y” axis), the spectrograms presented later
in the article have been limited to the 4–45 Hz band. Limiting the presented bandwidth
does not affect the ability to detect unbalance and only improves the readability of the
presented results.

6.3. Laboratory Bench Identification—Comparative Analysis of Thin Shaft Influence on the
Laboratory Stand Properties

Every real object is characterized by vibrations during operation. These vibrations may
come from the motor itself, the working machine, or the drive system, which, in this case, is
a long shaft. These oscillations should be identified before detecting irregularities occurring
in the tested drive system. Figure 6 shows spectrograms of mechanical vibrations measured
in three axes, both of the tested motor itself and the complete drive system with the 6 mm
shaft. The table shows that due to the good attachment of the station to the concrete
foundation, vibrations in the “x” axis have a very low value (approximately two orders
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less than vibrations in the “y” and “z” axes). In the case of vibrations generated by the
motor itself, the rotational frequency fr of approximately 9.6 Hz, and its first (for vibrations
measured in the “y” and “z” axes) and second multiples (only for vibrations measured in
the “y” axis) are clearly visible in the “y” and “z” axes. Coupling the engine with a long,
thin shaft with the working machine resulted in a significant increase in the fourth multiple
of the rotational frequency in the “y” axis, the amplitude of which is approximately half of
the amplitude of the rotational frequency. In the case of the “z” axis, a slight increase in the
amplitude of the 4fr frequency is observed.
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Figure 6. Spectrograms of acceleration signals (x, y, z, axis) with drive coupled by a 6 mm shaft,
compared to the situation where no shaft was installed.

Despite the drive system operating at a constant rotational speed, the amplitudes of
rotational frequencies presented on spectrographs are oscillatory. The oscillatory nature of
the vibrations results from the operation of the control system, which constantly tries to
compensate for defects occurring in the actual drive system. It is worth mentioning that
the measurements were carried out with the drive operating in a cascaded closed speed
control loop with an ADRC controller [47] and proportional-integral (PI) d–q axis current
controller [56]. Confirmation of this thesis will be presented later in the article. Due to the
lack of stationarity of the measured signals, the use of the STFT transform to examine the
unbalanced state of the tested system is, according to the authors, the correct approach.

The rest of the article will discuss only selected results showing the influence of
unbalance and the thickness of the shaft used on vibrations measured in the “y” axis. The
authors chose the “y” axis due to the high level of vibrations occurring in this direction;
however, it must be noted that the vibration along the “y” axis could be caused not only by
unbalance but also by misalignment. This seems to be the right approach, considering the
disruptions that may occur in industrial settings.
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6.4. The Influence of Additional Test Mas Mounting Angle on the Vibration Level

Every rotating machine, even newly purchased, has a slight unbalance. Figure 7 shows
the impact of installing a test mass of 45 g on the vibration level (in the “y” axis) of a
two-mass system connected by a thin shaft. The tests were carried out for a steady state of
10 s. The position of the test mass was changed every 60◦, starting at an angle of 60◦.
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The results shown in Figure 7 show that changing the angle on the circumference of
the disk of the mounted test mass clearly affects the amplitude of the rotational frequency
fr. The biggest vibrations are observed for angles of 60◦ and 120◦. The lowest vibration
level occurs at an angle of 240◦. Figure 7 shows that for an angle of 240◦, there is a loss of
mass, i.e., the additional mass introduced balances the tested dual-mass system. Moreover,
the introduced test mass affects the change in the amplitude of the 4fr frequency, which
may indicate, for example, a deepening level of misalignment of the drive system. This
problem was not examined in detail at the laboratory research stage because it required
the use of specialized research equipment (i.e., a laser alignment system). The tests also
showed that the amplitude of the characteristic rotational frequency-related unbalance
is pulsating, which once again confirms the validity of using STFT analysis to study the
unbalance of a two-mass system with an elastic connection.

Due to the observed greatest influence of the test mass on the generated vibrations of
the dual-mass system, the subsequent tests presented in the article were carried out for the
test mass mounted at an angle of 60◦.

6.5. The Influence of Additional Test Mas on the Vibration Level

Another problem analyzed in the article was the influence of the value of the test mass
mounted at an angle of 60◦ on the generated vibrations. A long, thin shaft was used for
testing. Vibrations in the “y” axis were recorded for 10 s. Four test masses were used for
testing. The results of the STFT analysis are shown in Figure 8.

The results presented in Figure 8 show that the introduction of additional test mass
causes an increase in the amplitude of the rotational frequency fr. For a test mass of 45 g, an
approximately three-times increase in the amplitude is observed compared to the balanced
system. The observed vibrations again have an oscillatory character. Additionally, an
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increase in the amplitude of the 4fr frequency is observed, which may indicate the influence
of the additional mass on the misalignment of the dual-mass system.
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6.6. The Influence of the Shaft Diameter on the Vibration Level

The last analyzed factor that may affect the generated vibrations of the dual-mass
system is the diameter of the long shaft used for linking the motor and load side. As part of
the research, three available laboratory shafts with diameters of 6 mm, 8 mm, and 16 mm
were used. A balanced system was used for the tests, with additional test masses of 24 g
and 45 g mounted at an angle of 60◦. The vibrations were recorded for 10 s in a steady state.
The results obtained from the STFT analysis are presented in Figure 9.

Figure 9 shows that increasing the shaft diameter does not affect the value of the
amplitude of the rotational frequency fr. Only for the thickest shaft (16 mm) is the occurrence
of 4fr frequency observed. The introduction of additional test masses of 24 g and 45 g into
the system, mounted at an angle of 60◦, resulted in an increase in the amplitude of the
rotational frequency fr. For a test mass of 45 g, an approximately 2–3 times increase in
the amplitude of characteristic frequency for unbalance is observed. The introduction of
the test mass resulted in a significant increase in the amplitude of the 4fr frequency of the
dual-mass system connected by the thinnest shaft. In the case of a shaft with a diameter
of 6 mm, a slight increase in the amplitude of the 4fr frequency is observed, while for the
thickest shaft, the amplitude decreased. The comparison shows that the thicker the shaft
connecting both machines, the smaller the impact of the introduced test mass on the 4fr
frequency amplitude. The shaft diameter does not affect the oscillatory nature of changes
in the rotational frequency amplitude.
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6.7. The Issues Related to Two-Mass System

The results presented in previous subsections showed that despite the analysis being
performed based on the steady state of the drive, the amplitude of the rotational frequency
fr has an oscillatory character. Figure 10 shows an explanation of the problem.

The comparison presented in Figure 10 shows that the amplitude of the rotational
frequency of the engine itself is quasi-static. The introduction of a long shaft deepens the
oscillations in the fr frequency amplitude, which are further amplified by the introduction
of additional unbalance. The explanation can be found in the q-axis current. The current
iq of the motor itself is characterized by a very small, time-invariant amplitude of the
frequency fr. The introduction of a long shaft is an additional disturbance to which the
control system responds. Additional tests showed that the shafts used are not perfectly
straight, which additionally results in increased vibrations of the rotational frequency and
its multiples. The control system tries to compensate for the introduced disturbances by
modulating the iq current. The current modulated in this way affects the operation of the
two-mass system and the vibrations it generates, which are no longer stationary.
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7. Neural Detector of Rotor Unbalance

To automate the process of detecting and determining the level of rotor unbalance,
unidirectional multilayer neural networks, referred to in the literature as multilayer per-
ceptrons (MLPs), were used. The MLP neural networks proposed in the article (Figure 11)
contain interconnected neurons arranged in layers (input and output, as well as a hidden
layer that has no direct connection to external signals). In addition, there are no connections
between neurons of the same layer [57,58]. The activation functions of the input and output
neurons are linear, while the hidden layer uses a hyperbolic tangent. The output signal of
an individual neuron is expressed by the equation:

yi = f

(
N

∑
i=1

wijxi(t) + w0j

)
, (9)

f (u) = tgh(βu), (10)

where: f is the sample activation function, wij is the weighting coefficients, xi is the input
signals, β is the coefficient correcting the shape of the activation function, u is the argument
of the activation function, and w0j is the bias value.
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The values of the weighting connection coefficients were selected using the Levenberg-
Marquardt algorithm.

Based on the laboratory tests conducted, the symptoms given to the inputs of the
neural networks were prepared accordingly. The algorithm for processing measurement
data is presented in Figure 12.
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Figure 12. The algorithm for processing measurement data.

The study of neural detectors was realized in the Matlab R2023a—Simulink envi-
ronment. As input signals, an averaged value within +/−5% of the kfr frequency width
calculated from the current speed value was given. In addition, the input vector was
expanded to include the speed value to account for varying operating conditions. The
input data was normalized to the range <0, 1>. The learning and testing vectors consisted
of 250 elements. All parameters considering the method of obtaining input data and the
process of learning neural networks are summarized in Table 1.
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Table 1. Summary of parameters considering the method of obtaining input data and the process of
learning neural networks.

Parameter Explanation

Input data

Analyzed signal Vibration acceleration in the Y
axis

Input data Amplitudes of: fr, 2fr, 3fr, 4fr
and current angular velocity

Calculation of kfr amplitude

An averaged value within
+/−5% of the kfr frequency
width calculated from the

current speed value

Normalization of input data Yes, in the range <0, 1>

The number of elements of the
training vector 250

The number of elements of the
testing vector 250

Neural network

Type of neural network Feed-forward backpropagation
network

Transfer function of hidden layers Hyperbolic tangent sigmoid
transfer function (tansig)

Transfer function of output layer Linear transfer function
(purelin)

Network training function Levenberg-Marquardt
backpropagation (trainlm)

Weight/bias learning function
Gradient descent with

momentum weight and bias
learning function (learngdm)

Performance function Mean squared normalized error
performance function (mse)

Maximum number of epochs to train 2000

Performance goal 1 × 10−5

Two neural detectors were prepared based on selected measurement data (vibrations
measured in the Y-axis, a shaft of 6 mm diameter used, a test mass mounted at an angle
of 60◦). The task of the first detector was to tell whether the rotor was unbalanced or not,
while the second one determined the level of unbalance. To average the results of the
effectiveness of detecting unbalance and determining the level of the tested neural detector
structures, 20 consecutive training and testing runs were performed. The results obtained
for the change of neurons in one hidden layer are summarized graphically in Figure 13a,b,
while an example of the performance of a detector with a structure (5-6-1) determining the
mass of rotor unbalance is shown in Figure 13c. The detector made 11 mistakes (detection
efficiency is 95.6%), and all of them concerned the determination of the unbalance mass.

The summary shows that detectors with a small number of neurons in only one hidden
layer can detect rotor unbalance with an average efficiency of over 97% correct indications
(Figure 13a) and with an efficiency of over 88% determine its level (Figure 13b). The highest
average of the 20 training and testing runs for rotor unbalance detection efficiency was
obtained for a network with a (5-4-1) structure. The average detection efficiency was about
99.8%, with a minimum of about 98.8% correct indications. The highest average unbalance
determination efficiency of about 94% with a minimum of about 88% was obtained for a
network with a structure (5-6-1).
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8. Conclusions

The article presents the influence of the elastic connection and additional test mass on
the vibrations generated by the two-mass system of a PMSM electric drive. The research
presented in the article shows that the tested changes are non-stationary and require the use
of appropriate signal-processing methods. The STFT analysis used is ideal for analyzing the
vibrations of the tested two-mass system. A detailed analysis showed that an increase in the
test mass causes an increase in the amplitude of the rotational frequency fr, for the analyzed
electric drive. The angle at which the additional test mass is mounted also causes a change
in the amplitude of the characteristic frequency. The use of the test method (Figure 7) will
make it possible to find the local minimum of the generated vibrations, which should, in
consequence, allow for balancing the tested two-mass system. Changing the shaft diameter
has no significant impact on the ability to detect drive system unbalance. The results
presented in the article confirm the usefulness of STFT for detecting the unbalance of a
dual-mass system connected by a long shaft in the control system of a precision drive with
a PMSM. The developed neural detectors are characterized by high performance in both
detecting rotor unbalance and determining unbalance mass despite their simplicity. All
in all, the STFT approach made it possible to use a simple structure of an artificial neural
network to detect the rotor unbalance and determine the amount of it. The presented
method of drive system diagnostics in the context of unbalance detection can be used
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in modern and developing industries that require a continuous and automated process
of device supervision. The simplicity of the solution makes it possible to implement the
developed method in easily available, low-budget microcontrollers (e.g., the Cortex-M Arm
series), often based on existing measurement infrastructure [9].

For the purposes of this article, the object is assumed to be stationary, which implies the
assumption that the machine’s unbalance will not change during system operation. In such
a situation, the STFT does not have to be calculated in a time similar to the control system
calculation step, which makes it possible to use low-budget computational units. However,
there are propulsion systems in which the speed of unbalance detection may be important
and in which unbalance may appear suddenly (e.g., in the case of unmanned aircraft
drives). In this case, units with high computing power should be used—e.g., dedicated
signal processors. A separate issue that must be faced in the practical implementation
of the unbalance detection algorithm are disturbances in the measurement paths and
unidentified sources of vibrations that are not related to the unbalance itself but generate
accelerations with amplitudes that are comparable to or even exceeding those resulting
from the unbalance itself. This problem was described in Section 6.2 of the article, where
significant amplitude vibrations were observed, the source of which were resonances of the
test stand frame. The problem was solved by using an appropriate low-pass filter.
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