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Abstract: In the era of Industry 4.0 and beyond, ball bearings remain an important part of industrial
systems. The failure of ball bearings can lead to plant downtime, inefficient operations, and significant
maintenance expenses. Although conventional preventive maintenance mechanisms like time-based
maintenance, routine inspections, and manual data analysis provide a certain level of fault prevention,
they are often reactive, time-consuming, and imprecise. On the other hand, machine learning
algorithms can detect anomalies early, process vast amounts of data, continuously improve in almost
real time, and, in turn, significantly enhance the efficiency of modern industrial systems. In this work,
we compare different machine learning and deep learning techniques to optimise the predictive
maintenance of ball bearing systems, which, in turn, will reduce the downtime and improve the
efficiency of current and future industrial systems. For this purpose, we evaluate and compare
classification algorithms like Logistic Regression and Support Vector Machine, as well as ensemble
algorithms like Random Forest and Extreme Gradient Boost. We also explore and evaluate long
short-term memory, which is a type of recurrent neural network. We assess and compare these
models in terms of their accuracy, precision, recall, F1 scores, and computation requirement. Our
comparison results indicate that Extreme Gradient Boost gives the best trade-off in terms of overall
performance and computation time. For a dataset of 2155 vibration signals, Extreme Gradient Boost
gives an accuracy of 96.61% while requiring a training time of only 0.76 s. Moreover, among the
techniques that give an accuracy greater than 80%, Extreme Gradient Boost also gives the best
accuracy-to-computation-time ratio.

Keywords: machine learning; deep learning; predictive maintenance; ball bearings; data analysis

1. Introduction

The study of ball bearings in rotating machines has evolved over time due to tech-
nological advancements. Ancient civilisations developed early rotational devices such as
waterwheels and windmills [1]. The rise of industrialisation further prompted innova-
tion in rotating machines. These advancements led to the development of more efficient
and sophisticated rotating machines with novel applications in various fields, including
transportation, manufacturing equipment, domestic equipment, and power production.
Ball bearings, consisting of outer and inner rings, a set of balls, and a cage, reduce friction
and improve smooth rotation. They are an integral part of any rotating machinery and
are responsible for 40 percent of machinery breakdowns [2–4]. These breakdowns are
associated with their installation, poor maintenance strategy, fatigue, and regular wear.

The performance and efficiency of rotating machinery are greatly affected by bearings.
Unexpected bearing faults often develop from their installation, maintenance strategy,
fatigue, and regular wear, posing diagnostic challenges. These faults can be classified into
two categories: distributed defects that affect a wide area, and localised defects that start
as single-point defects (ref Figure 1). Inspection techniques like visual checks, ultrasound,
and vibration analysis [5] help identify these faults, which is vital for machinery reliability.
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(a) (b)
Figure 1. Example of two ball bearings with distributed and localised defects. (a) A ball bearing with
distributed defects; (b) A ball bearing with a localised defect.

Distributed Defects: These defects impact bearings significantly and are challenging
to identify based on specific frequency. They occur due to various reasons such as heat, vi-
brations, noise during operation, production errors, and excessive loads [6]. These faults can
cause early rotor system failure or severe damage, making their detection challenging [7].
However, several inspection techniques such as visual observations and non-destructive
methods can be employed [5].

Localised Defects: These faults are single-point issues caused by flaws in the manufac-
turing process, quality of raw material, or fitting errors [8]. Over time, as the bearings age,
these localised defects progress and expand, leading to distributed fault patterns. These
manifest as distinct vibrations, minimal changes in the load torque, and the emergence of
multiple frequencies [9,10]. The distributed and localised defects pose a big problem to the
throughput and efficiency of modern rotating machines. A timely identification of these
faults can greatly improve the efficiency of rotating machines, and machine learning has a
huge role to play in this regard.

By investigating failures, industries can identify weaknesses and refine their designs
and manufacturing processes, leading to better quality. When products have defects or
fail to meet standards, it results in unhappy customers, a decrease in market share, and
increased costs due to quality-related problems such as recalls or repairs [11]. Even brief
failures can impact continuous operations, leading to missed deadlines, financial losses,
and delayed deliveries. To keep the production line running smoothly and safely, it is
essential to have a well-organised system in place that effectively manages all aspects of the
equipment, including machines and components. This requires a system that can diagnose
potential breakdowns and taking proactive measures to prevent any impending faults or
downtime. Implementing preventive measures through condition monitoring systems
uncover cost-effective solutions, enhance safety by identifying and minimising hazards,
and contribute to product development and innovation by providing valuable insights
for iterative improvements. In the past, preventive maintenance techniques like time- and
usage-based maintenance, fixed replacement intervals, and manual data analysis have
been used. While these traditional methods provided some level of preventive capability,
they were often reactive, time-consuming, and imprecise. In future industrial systems, the
usage of advanced technologies like Internet of Things (IoT) [12], digital twin [13], and data-
driven approaches like big data analytics, machine learning, and cloud computing [14–16]
are being explored and employed.

Compared to existing manual data analysis techniques, the utilisation of Machine
Learning (ML) has the potential to perform the function of forecasting and anticipating
malfunctions [17] through the creation of algorithms that can detect patterns from data and
use that understanding to make accurate predictions or choices. In particular, machine
learning algorithms are very good at recognising anomalies in data, learning from pat-
terns, data analysis, and optimisation of maintenance schedules. In recent years, machine
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learning [18] has become widely accepted and is being employed in a broad range of
applications. There is hardly an area of everyday life where machine learning or deep
learning algorithms are not finding their applications. Today, we see their application in
fields such as self-driven cars [19], smart management of energy consumption in renewable
energy communities [20,21], healthcare, transportation, supply chain and operations, image
classification, and fault detection [16,22,23], to name a few. The integration of machine
learning into fault detection for predictive maintenance is crucial as it facilitates the exami-
nation of vast quantities of information to recognise patterns and produce precise forecasts.
Machine learning supplements maintenance planning in industries by analysing extensive
datasets pertaining to a production process [22], detecting malfunctions and anomalies,
and enabling proactive preventive maintenance strategies. Machine learning as a branch of
artificial intelligence has proven to be a potent instrument for creating intelligent predictive
algorithms across numerous applications. However, the effectiveness of these applications
is contingent upon the suitable selection of the machine learning technique [22].

This study aims at exploring machine learning models that can accurately analyse
vibration data collected from ball bearings. To achieve this goal, vibration data under
various operating conditions are collected. Due to the availability of labelled target data,
supervised learning is considered. Raw time-series data are transformed into a structured
dataset with statistical features, which are then used as input data. Random Forest (RF),
Linear Regression (LR), Support Vector Machine (SVM), and Extreme Gradient Boost
(XGBoost) algorithms are trained on the dataset before testing and comparing them for
performance evaluation purposes. These models are compared with a neural network long
short-term memory (LSTM) to determine the model that provides the best classification
result for predictive maintenance of ball bearing systems. The success metrics depends
on how well these trained models can predict different health states of the ball bearing.
The models can be useful in industrial analysis to optimise machine safety and reduce
maintenance cost. Comparison results show that XGBoost gives the best trade-off in terms
accuracy and computation time.

The rest of this paper is organised as follows. Section 2 gives a detailed overview of
the related work. Section 2 also details the novelty and contribution of this work. Section 3
explains the experimental setup developed and used in this work. This section gives details
about the experimental configuration, data preprocessing, feature engineering, and data
transformation. The simulation results and critical analysis of those results is presented in
Section 4. This work is concluded in Section 5 with a discussion on future work.

2. Related Works

In recent years, machine learning, which is a sub-field of artificial intelligence [18], has
become widely accepted and has been employed in a broad range of applications such as
self-driven cars [19], forecasting and anticipating malfunctions [17], smart management
of waste water treatment [24–26], smart building in healthcare [27,28], transportation,
supply chain and operations, image classification, and fault detection [16,22,23]. The
integration of machine learning into fault detection for predictive maintenance is crucial
as it facilitates the examination of vast quantities of information to recognise patterns and
produce precise forecasts. Prognostic and diagnostic maintenance models are two basic
approaches to ML-enabled predictive maintenance that are used to identify and address
equipment issues before they lead to failure. Diagnostics maintenance involves using
various tools and techniques to inspect equipment and identify any issues after they have
occurred [29]. Vibration analysis is utilised to detect faults in rotating machinery or perform
regular inspections to identify wear or damage in components. Once these faults have
been identified, maintenance personnel can take action to repair or replace the affected
parts. Prognostic maintenance, on the other hand, uses data analytics and machine learning
algorithms to analyse data from sensors and other sources to identify patterns and trends
that may indicate future issues [29]. This approach monitors the performance of a machine
and uses data analysis to predict when it may fail based on changes in performance metrics.
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Prognostic maintenance allows maintenance personnel to take proactive steps to address
potential issues before they lead to unplanned downtime or equipment failure.

In the research work of [22], the authors explored Support Vector Machine (SVM),
Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Recurrent Neu-
ral Network (RNN), and Deep Generative Systems (DGN) to identify mechanical part
failure by using low-cost sensors for preventive fault detection. The study highlights their
effectiveness in fault detection with CNN and RNN resulting in higher accuracy. However,
this comes with higher computational costs, the need for reliable data and labelling, and the
potential for treating fault diagnosis as a clustering problem. The authors in [2] presented a
time-frequency procedure for fault diagnosis of ball bearings in rotating equipment using
an Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for fault classification. It
combines a wavelet packet decomposition energy distribution with a new method that
selects spontaneous frequency bands utilising a combination of Fast Fourier Transform
(FFT) and Short Frequency Energy (SFE) algorithms. This method is potentially effective
and efficient for bearing fault detection and classification in various conditions, making it
appropriate for online applications. In [30], the researchers performed experimental find-
ings involving a comprehensive analysis of the roller bearing’s inner ring and cylindrical
rollers. Several conventional techniques such as visual observation, Vickers Hardness (HV)
testing, 3D Stereo-microscopy, Scanning Electron Microscopy (SEM), and lubricant inspec-
tion were employed. The study attributes severe wear to three-body abrasive wear and the
introduction of metallic debris from broken gear teeth outside the roller bearing. Lubricant
inspection was performed incorporating Fourier transform infrared spectroscopy, which
concludes that the lubricant had not deteriorated significantly. The authors of [31] proposed
the self-attention ensemble lightweight CNN with Transfer Learning (SLTL), combining
signal processing via continuous wavelet transform (CWT) and integrating a self-attention
mechanism into a SqueezeNet-based model for fault diagnosis. This method can be utilised
on hardware platforms with limited capabilities while delivering high performance levels
with a reduced amount of training dataset. SLTL achieves significant classification accuracy
while keeping model parameters and computations low. However, challenges faced by the
authors include manual sample selection and the absence of adaptive methods, hampering
its optimisation and resource-efficient deployment.

In [32], the authors employed frequency domain vibration analysis and envelope
analysis, in combination with Kernel Naive Bayes (KNB), Decision Tree (DT), and k-
nearest neighbors (KNN), to detect bearing failures. The authors in [33] incorporated a
Random Forest (RF) classifier and Principal Component Analysis (PCA) to detect bearing
failures in induction motors utilising a time-varying dataset while similar work of [34]
considered using Linear Discriminant Analysis (LDA), Naive Bayes (NB), and SVM to
evaluate waveform length, slope sign changes, simple sign integral, and Wilson amplitude
for bearing faults detection in induction motors.

In the light of the comprehensive literature review, it is evident that a lot of existing
work has previously used conventional predictive maintenance mechanisms to improve
the efficiency of industrial systems. There is some recent work that has used deep learning
models but mainly for mechanical part failure prediction. Deep learning models are
often favoured for vibration data analysis, which is well suited for complex and very
large datasets. However, this study introduces a comparison framework for ML models
and a deep learning model. Statistical methods are employed to extract features from
vibration signals, while ensemble techniques serve as tools for feature classification. This
research incorporates methodical experimental setup and modelling for bearing state
classification. These features are fed into the suggested classifiers to diagnose bearing faults
state using multi-class logic. Finally, this study presents a holistic view of various machine
learning models, indicating the advantage of using ensemble method like XGBoost for
classification prediction of ball bearings, with a specific emphasis on the uniqueness of each
model’s computational efficiency. To the best of our knowledge, this kind of comprehensive



Electronics 2024, 13, 438 5 of 20

work has not been conducted before for the predictive maintenance of ball bearing-based
mechanical systems. The contributions of this work are also summarised below:

• Employment of statistical methods for feature extraction and usage of ensemble
techniques for feature classification of vibration data of the ball bearings.

• Development of framework for various machine learning and deep learning algo-
rithms’ performance evaluation.

• Comprehensive comparison of different machine learning and deep learning algo-
rithms’ performance with a special emphasis on their computational efficiency.

3. Experimental Setup

The ability to effectively identify and categorise faults is vital for maintaining reli-
able and safe operations in industrial machinery and systems. This requires robust and
reliable systems that can classify faults for predictive maintenance purposes. This study
explores an experimental setup to identify the classification of faults in complex systems
like rotating components. The main aim of this study is to explore, evaluate, and compare
the performance of different machine learning models and a deep learning model in the
accurate identification and classification of bearing faults. This section consists of:

• Experimental Configuration;
• Methodology;
• Classification Method.

3.1. Experimental Configuration

The dataset for the model training originates from Prognostics Center of Excellence
Data Set Repository | NASA [35]. It stems from a run-to-failure experiment on a shaft
bearing subjected to a 6000-pound load, rotating steadily at 2000 RPM. Four bearings
along the shaft produced three datasets. Having the relevant data is crucial for identifying
malfunctions, faults, and bearing health states. Each dataset contains one-second snapshots
of vibration signals, with 20,480 data points sampled at 20 kHz. The first dataset used two
accelerometers per bearing, while the other two used one. Dataset 1 identifies failure to
inner race and rolling element of bearing 3 and bearing 4, respectively. Dataset 2 highlights
damage to bearing 1 outer race, while dataset 3 focuses on damage to bearing 3 outer
race. In conducting this study, we opted for the inclusion of dataset 1, although dataset 2
remained a viable alternative. Notably, dataset 3, recognised for its inconsistency in bearing
data diagnosis, has not found application in existing literature [36].

3.2. Methodology
3.2.1. Data Preparation

Relevant data are selected and preprocessed to create a final dataset. Data quality
validation was conducted, addressing issues such as missing data and inconsistencies in
labelling. Time units were standardised, and all dates were converted to a consistent format.
For outliers, a boundary that reflects the normal pattern of an operating ball bearing was
created. Before coming to conclusions about these unusual data points, it is essential to
study and understand their occurrences. Are these irregularities due to measurement
errors, mechanical glitches, or just extreme yet valid values? Rather than just removing
these outliers, models such as tree-based, which are less sensitive to outliers than linear
models, can be considered. There were no missing data found in the dataset, while wrong
labelling was addressed to fit the models.

3.2.2. Feature Engineering and Data Transformation

The vibration signals consist of the performance and health of four bearings. These
signals play a pivotal role in the health monitoring of rotary equipment. As visually
represented in Figure 2, different time-domain features offer valuable insights into the
behavioural patterns, comprising metrics like mean, standard deviation, kurtosis, and root
mean square. To better understand the health pattern of these bearings, new functionalities
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were created using pre-existing data [37], resulting in their operational health states being
organised into dictionaries. Each entry in the dictionary shows a health state and the time
period when a bearing remained in that state. To determine the health status of a bearing
at any moment, a built-in function is used. When given a specific time and the bearing’s
dictionary, this function identifies the bearing’s health status during that time. If there are
no matching states found for the provided time, it returns ‘None’, indicating a data gap
or an undefined state. By going through the dataset, every timestamp is labelled with its
corresponding health state or status for each bearing.

(a) (b)

(c) (d)
Figure 2. Statistical features of the vibration signals. (a) Mean of vibration signals of four ball bearings
over multiple cycles; (b) Standard deviation of vibration signals of four ball bearings over multiple
cycles; (c) Kurtosis of vibration signals of four ball bearings over multiple cycles; (d) Root mean
square of vibration signals of four ball bearings over multiple cycles.

Models are constantly built with the aim to improve accuracy and enhance perfor-
mance. To achieve this, it is vital that data transformation is considered in ensuring that
the data align with the investigative or operating needs of the project at hand. Using
the built-in method, each timestamp is matched with corresponding bearing health state.
Within the function, there is a loop that assigns health states to each timestamp. At first
glance, this might seem repetitive since the function has been utilised, but it offers an
alternative approach for cross-checking or demonstrating different methods. After this
step, the column names in the dataset are updated to mirror their specific bearing. The
data related to each bearing are then merged together, streamlining the dataset. In order to
optimise the performance of the machine learning model, the class column is converted
from text into a format that is more compatible with machines.

The radial basic function for the SVMs classifier is applied to measure the similarity
between data points to capture non-linear relationships. The ensemble method of Random
Forest is used to withstand overfitting and improve accuracy by combining the predictions
of multiple decision trees. The algorithm constructs many decision trees and each tree is
built using a random subset of the training data and features [38]. While it measures the
impact of each feature on prediction accuracy, it may overlook complex interactions and
dependencies between variables. However, the interpretability of the model is limited,
as understanding the internal workings of each tree and the overall model can be chal-
lenging [39]. This is a significant advantage when dealing with noise in a dataset. The RF
algorithm can also handle missing values naturally without relying on data substitution.
When it comes to feature importance, the algorithm can provide ranking representation for
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better understanding of the underlying patterns in the vibration data. Logistic regression
employs the logistic function, or sigmoid function [40], to model the relationship between
input variable and the response variable. The algorithm is fairly straightforward and the
results are interpretable which can function as an effective baseline model. It requires
less computational resources compared to complex models while it provides probability
estimates as its output which can be insightful in understanding the reliability of the pre-
dictions. In handling imbalanced data and regularisation issues, XGBoost is very much
reliable as it has built-in regularisation parameters, which mitigate the risk of overfitting
and handling imbalanced classes in vibration data. The XGBoost algorithm works by
building an ensemble of decision trees [41], each of which predicts equipment failure based
on a subset of the features. The algorithm then combines the predictions of the individual
trees to make a final prediction. Once the XGBoost model is trained, it can be used to
predict equipment failure based on new data [42]. Before the actual training starts, the data
are split into training and test sets.

Finally, the data structure is adjusted to fit an LSTM neural network, which is particu-
larly good at handling time series data [43]. The LSTM network involves a more complex
configuration, with special features called gates. These gates control and monitor the flow
of memory details, making LSTMs more efficient at storing data over longer dependencies.
The dataset was initially separated into features (X) and target labels (y), with the target
variable being the ’class’ attribute. This process involved encoding the categorical target
labels into numerical values using the ordinal-encoding. The dataset was then split into
training and testing sets, with 70% of the data allocated for training (X_train, y_train) and
the remaining 30% for testing (X_test, y_test). The random_state parameter was set to
ensure the reproducibility of our results. This train–test split allowed us to assess the gener-
alisation performance of our models on unseen data, facilitating a robust evaluation of their
effectiveness. Finally, the input data structure was adjusted utilising the MinMaxScaler
ranging from 0 to 1 to fit a LSTM neural network, which is particularly good at handling
time series data. The reshaping was performed to have a sequence length of 12. The
StratifiedKFold of cross-validation method was integrated to assess the performance and
generalisation of the LSTM model by splitting the dataset into multiple folds or subsets of
5. The data were shuffled before splitting, and random_state = 42 provided a fixed seed
for reproducibility. In the loop, we iterated over the folds created by the StratifiedKFold.
For each iteration, train_index and val_index represent the indices of the training and vali-
dation subsets, respectively. Using the indices obtained from the current fold, we created
training and validation sets for the current iteration. Inside the loop, we performed the
hyperparameter tuning and training of the LSTM model using the training subset. Then,
we evaluated the model on the validation subset to obtain performance metrics.

3.3. Classification Method

Predictive maintenance is a key application in machine learning, and the choice of
model should suit the specific challenge. When the goal is to determine the remaining
operational life of a machine, regression models are often considered as they provide
continuous value predictions [44]. However, for predicting potential machine failures or
understanding the current health status, classification models are more suitable [45]. In fail-
ure analysis of vibration data, it is evident that classification models should be considered.
Vibrations can provide insight into the health status of machines and components, allowing
classification models to effectively categorise faults as ‘early state’, ‘normal state’, ‘suspect
state’, or ‘failure state’ conditions, among other health status. While deep learning models,
such as neural networks can capture sophisticated trends in vibration data, they require
extensive data and processing or computational power [46]. However, simpler models
such as decision trees and classification algorithms are faster, straightforward, and more
interpretable but could miss delicate pattern. In industrial scenarios, tree-based or linear
models can offer more insight than complex neural networks. Some models might perform
well on training data but falter with new data when faced with the challenge of overfitting.
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In this work, we use different classification, ensemble, and deep learning algorithms. A
discussion on these algorithms and their parameter tuning is provided next.

3.3.1. Classification Algorithms

Logistic Regression, which is a common statistical modelling technique for binary clas-
sification tasks, predicts the probability of an event happening based on input features [47].
This model was initially trained using a specific technique, followed by hyperparameter
tuning to enhance its performance. The influence of individual hyperparameters on model
performance is not dominant. The RandomizedSearch method was employed to suggest
values for the regularisation parameter, searching according to logarithmic progression [40]
between 10−3 and 103. L2 regularisation was applied to penalise the magnitude of coef-
ficients. With Optuna hyperparameter tuning, trials are looped over. For this model, 20
trials were considered and executed, each assessing various values of hyperparameters.
The model having the best performance on validation data was selected.

Support Vector Machine (SVM), which is a supervised learning method used for binary
and multi-class classification tasks [48], aims to find the hyperplane that best separates a
dataset into classes. A set of hyperparameters are employed at the level of regularisation.
A lower value creates a wider boundary but may result in some incorrect classifications. A
higher value tends towards a narrow boundary and aims for more accurate classification of
the training data [49]. In this work, C-value was picked from a range that spans from 10−3

to 103, which was chosen logarithmically. The method explores various values over several
ranges to identify the best balance between margin and classification error. The Radial
Basis Function (RBF) kernel was utilised in order to manage nonlinear data by moving it
into a space with more dimensions (higher-dimensional space). The RBF kernel coefficient
is set by the gamma parameter, and in this study, scale was chosen. This means the gamma
value adjusts according to the variance in the features, which makes it suitable for many
applications. The SVM model was trained using the training dataset. The training start
time and finish time were noted to determine how long the training process takes. After
training, this model predicts results on test data. The prediction accuracy was compared
against the true outcome. The performance metrics were then logged with SVM as the
identifier.

3.3.2. Ensemble Algorithms

Random Forest is an ensemble learning technique which combines results from several
trees [38], enhancing accuracy and generalisation, which aids in preventing overfitting. To
fine-tune this classifier, the trial methods, which systematically experiment with various
aspects of model development to find the best structure, were utilised to designate possible
values or ranges for various hyperparameters. The total number of trees in the ensemble
ranges between 102 and 103. Various parameters are used to determine the longest path
from the root of the tree to a leaf, the least number of samples needed for a node split, the
number of features that should be considered during each split, and the square root of the
aggregate features which iteratively enhance the learning rates [33], regularisation, and tree
depth during the optimisation progression to find the best combination of hyperparameters.

The scalable effect of XGBoost aids in optimising a loss function by adding, at each
step, a new tree that best reduces the error of the previous collection of trees [41]. Various
hyperparameters were employed to optimise the reliability and accuracy of the model. The
learning rate determines the magnitude of steps it takes to minimise errors from a range
between 10−2 to 3 × 10−1. The model has multiple decision-making trees set between
numbers of estimators, to help it make informed predictions. Each tree is allowed to train,
but only with maximum depth parameter. When it makes its decision trees, the model
utilises only half of the available features or the full set with the aid of Column Sampling by
Tree. Gamma acts as a tuning mechanism. With higher gamma values, the model adopts a
more cautious approach to predictions. The model employs a method to boost its learning,
and when arranging data, it groups them using a specific technique. Once the classifier is
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set up with these parameters, the model starts its training cycles on the provided dataset.
The duration of this training process is captured. The model is then tasked with making
predictions on a separate set of test data. The accuracy of these predictions is evaluated by
contrasting them to the true output from the test data, and the total time taken to train the
model is also logged.

3.3.3. Long Short-Term Memory for Classification

LSTM has been designed to address issues like vanishing and exploding gradients,
making it particularly effective at identifying trends over long sequence of data. They are
widely used in time series forecasting due to the sequential characteristic of data [50]. In
this study, the neural network configuration comprises alternating LSTM and dropout
layers. Initially, the trial object provided by the optimisation framework is used to suggest
values for selecting integers in a logarithmic scale, floating-point number, and the learning
rate. After defining the algorithm, it is compiled using sparse categorical cross-entropy
as the loss, the Adam optimiser [51] with the chosen learning rate, and accuracy as the
metric to track during training. The model is trained on the training data for 50 epochs
with a batch size of 32 while 30% of the training data is reserved for validation. Once model
training is completed, the predictions for the test set are generated in probability format
and then converted to class labels. The model’s accuracy and the duration of operation are
also logged.

RandomSearch initialisation was employed to sample the hyperparameters from
predefined ranges (min_value = 32, max_value = 512, step = 32). This randomness allows
the parallelisation of hyperparameter trials and for a further efficient exploration of various
combinations, covering a diverse set of configurations early in the tuning process. This
exploration is beneficial for identifying regions of the hyperparameter space that led to
good model performance. Different configurations can be evaluated concurrently, which is
useful when dealing with computationally expensive models. This speeds up the overall
tuning process. The hyperparameters are described below:

The value range of the units ranged from 32 to 512, and after careful evaluation, the
optimal number of units was determined to be 480. Similarly, dense units ranged from
32 to 512, and the optimal configuration was identified as 128 dense units. The activation
function was evaluated with both ’tanh’ and ’softmax’. The ’tanh’ activation function was
found to be an excellent choice, contributing to the model’s overall effectiveness. Finally, the
optimisation algorithm utilised was ’adam’, which was selected for its ability to combine
the advantages of Root Mean Square Propagation (RMSprop) and Momentum, facilitating
faster convergence, and improving the model’s effectiveness.

4. Results and Analysis

This section provides a complete summary, interpretation, and analysis of the results
of this study. The performance metrics employed are examined to enhance the depth and
clarity of the models’ interpretation. The tests were conducted on a computer with an Intel
Core i5—12450H processor featuring Octa core processor with a burst speed of 4.4 GHz.
This machine had 16GB of RAM, NVIDIA RTX 30 Series 3050 graphics card with 4 GB
RAM GDDR6, and ran on a 64-bit Windows 11 operating system. Once the initial setup
and configuration were accomplished, standardisation tests were conducted prior to the
main tests to prevent background tasks from influencing the model execution process.

4.1. Exploratory Data Analysis

The crucial step of this section provides understanding and insights into the dataset
to uncover patterns, inconsistencies, trends, and relationships within the vibration data
as discussed in Section 3. In Figure 3, four test files are presented. The patterns show
how the vibration varies over time as the bearings go through their cycles. The vibration
intensity is measured in “g” units and ranges from −0.8 to 0.8. The cycles, numerically
identified from 0 to 20,480, represent the operational phases of the ball bearings. Within the
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vibration data, traceable spikes emerge. Between cycles 3000 and 8000, there are noticeable
spikes indicating moments when vibration suddenly increased quite a bit and then rises
significantly. These occurrences likely indicate sudden changes in operating conditions or
as a result of external factors impacting its performance. Between cycles 11,000 and 16,000,
there is a recurring pattern of spikes in the vibration amplitude. This anomaly shows a
consistent occurrence in the vibration behaviour of the ball bearings during this cycle range.

Figure 3. Vibration signal intensity plot of ball bearings.

The data had been carefully cleaned to eliminate potential outliers in terms of noise,
irregularities and abnormal vibration readings that might affect the accuracy of the feature
extraction process, as depicted in Figure 4. By employing an array of statistical and
mathematical techniques, diverse range of significant features from the vibration data
were computed for a more insightful knowledge. Fundamental measurements such as
mean, standard deviation, kurtosis, root mean square (RMS), skewness, entropy, maximum
amplitude, peak-to-peak amplitude, crest factor, clearance factor, shape factor, and impulse
were involved.

(a) (b)

(c) (d)
Figure 4. Root mean square anomaly detection for four ball bearings. (a) Root mean square anomaly
detection of ball bearing 1; (b) Root mean square anomaly detection of ball bearing 2; (c) Root mean
square anomaly detection of ball bearing 3; (d) Root mean square anomaly detection of ball bearing 4.

Fast Fourier Transform, Cepstrum Analysis, and Amplitude Envelope were employed
to explore the periodic components and anomalies in the vibration signals are illustrated in
Figures 5–7. In the Fast Fourier Transform, it can be deduced that the bearings have energy
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distributed symmetrically around zero frequency (both positive and negative showing
a projecting DC offset close to 0) with a dominant frequency component at about 290
magnitudes for mean, standard deviation, and root mean square. The Cepstrum Analysis
reveals a significant Cepstrum value around data point zero, indicating an excited frequency
close to 0 Hz. The Amplitude Envelope plots shared more insights into the relationship
and trends between the data signals and the amplitude envelope. This suggests that there
is a significant magnitude of energy around 0 Hz, indicating dominant harmonic in the
signal while the presence of energy forming a “tiny cone” shape indicates the presence of
noise or other low-frequency components in the signal. This perspective is based on the
zoomed-out image represented in Figures 5–7. We know that the fault for inner race and
ball spin has been determine by [36]. However, in reality this is not the case. The kurtosis
feature of the bearings has a concentrated distribution of signal levels across the frequency
series with the presence of short spikes signifying distinct periodic events. Close to the zero
frequency, there is the presence of widening DC component with rapid decline in energy as
it moves upwards in magnitudes.

(a) (b)

(c) (d)
Figure 5. FFT analysis of four ball bearings vibration signals. (a) FFT analysis of ball bearing 1
vibration signals; (b) FFT analysis of ball bearing 2 vibration signals; (c) FFT analysis of ball bearing 3
vibration signals; (d) FFT analysis of ball bearing 4 vibration signals.
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(a) (b)

(c) (d)
Figure 6. Cepstrum analysis of four ball bearings vibration signals. (a) Cepstrum analysis of ball
bearing 1 vibration signals; (b) Cepstrum analysis of ball bearing 2 vibration signals; (c) Cepstrum
analysis of ball bearing 3 vibration signals; (d) Cepstrum analysis of ball bearing 4 vibration signals.

(a) (b)

(c) (d)
Figure 7. Amplitude envelope analysis of four ball bearings vibration signals. (a) Amplitude envelope
analysis of ball bearing 1 vibration signals; (b) Amplitude envelope analysis of ball bearing 2 vibration
signals; (c) Amplitude envelope analysis of ball bearing 3 vibration signals; (d) Amplitude envelope
analysis of ball bearing 4 vibration signals.
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4.2. Performance Metrics and Model Evaluation

It is essential to carefully select the appropriate metrics when assessing the effective-
ness of ML models on ball bearing vibration data. Considering the characteristics of the
vibration data and the importance of identifying early faults in ball bearings, the following
performance metrics were considered:

1. Accuracy provides an overview of how the model’s true outcomes align with the
actual outcomes. In the case where faults are uncommon, a high accuracy could be
misleading. For instance, a model that predicts “no fault” can have a misleading high
accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

2. Precision informs how many of the predicted positives are actual positives. In rotating
machines, a model with high precision minimises false alarms, ensuring reliability
and productivity.

Precision =
TP

TP + FP
(2)

3. Recall evaluates the model’s efficiency at detecting and spotting all true positive
instances. It is essential for ball bearing health monitoring, because industries want to
ensure as many true positives as possible are detected. Misclassifying a fault could
lead to mechanical failure, leading to significant financial loss or safety risks.

Recall =
TP

TP + FN
(3)

4. Harmonising precision and recall, thereby providing a unified performance metric like
F1, is essential. This balance aids imbalance data such as infrequent fault occurrences
when comparing different models.

F1 score = 2 × TP
TP + FP + FN

(4)

Different ML models are evaluated based on the four performance metrics mentioned
above. The analysis of ML models covers the initial outcomes produced by each model
and a detailed exploration of hyperparameters aimed at optimising their performance at
various stages of the models evaluation process. Further details on the different ML model
results are provided next.

4.2.1. Logistic Regression

After 20 test trials, the best outcome (lowest value) was an objective value of about
0.3179. This corresponds to an accuracy of 1–0.3179. The most effective setting for the
C-value was about 95.28. In Table 1, the model shows accuracy of 67.71% of all predictions
made by the model are correct. The harmonic mean of Precision and Recall have given
a better assessment of the incorrectly classified cases than the accuracy outcome. It is
essential to consider the F1 score when data classes are not evenly distributed. Of all
positive predictions made by the model, about 79.45% are correct. From all actual positive
cases, the model successfully detects around 55.41% of them.

Table 1. Evaluation Metrics for Logistic Regression.

Performance Metrics Values

Accuracy 67.71%
F1 Score 59.72%
Precision 79.45%

Recall 55.41%



Electronics 2024, 13, 438 14 of 20

4.2.2. Random Forest

A broad hyperparameter tuning was conducted to optimise the model’s performance.
The primary goal was to achieve the highest accuracy and reduce inconsistences as much
as possible. During the optimisation process, various sets of hyperparameters were as-
sessed while undergoing 20 trials with each trials testing different combination of hyper-
parameters. The best configurations identified were: ‘n_estimators’: 967, ‘max_depth’:
10, ‘min_samples_split’: 4, ‘min_samples_leaf’: 2, ‘max_features’: ‘sqrt’}. These optimal
settings attained a good accuracy rate of 84.46%, as shown in Table 2. This suggests that
in all 85% of the instances, the RF model made true predictions. A high precision value
indicates that a significant amount of the RF model’s positive predictions were correct as it
accurately detected about 79.71% of all true positive cases.

Table 2. Evaluation Metrics for Random Forest.

Performance Metrics Values

Accuracy 84.46%
F1 Score 83.56%
Precision 90.07%

Recall 79.71%

4.2.3. Support Vector Machine (SVM)

A study was conducted to optimise the SVM model. The objective was to fine-tune
the model’s performance by leveraging different hyperparameters. Each trial represented a
unique combination of these hyperparameters, and after each test, the model’s performance
was assessed. For instance, during the first trial, the model employed a linear approach
with parameters such as C = 9.63, gamma = 10, coef0 = −0.28, and class_weights = None.
This trial resulted in an accuracy of approximately 0.5560. After 20 trials of study, the
model indicated the average cross validation score of about 0.7420. Once the model was
fine-tuned, an accuracy value of 83.69% was achieved while F1 score was approximately
0.8465, depicting the model’s capability in balancing precision and recall. Table 3 shows
the SVM classifier made positive predictions with about 91.37% accuracy and managed to
correctly detect about 80.94% of all true positive instances.

Table 3. Evaluation Metrics for SVM.

Performance Metrics Values

Accuracy 83.69%
F1 Score 84.65%
Precision 91.37%

Recall 80.94%

4.2.4. Extreme Gradient Boosting (XGBoost)

The non-boosted XGBoost classifier was initially employed for this application to
compare with the performances of the other classifiers. The XGBoost accurately predicted
about 85.01% of cases in the test dataset, which is a strong performance.

A new hyperparameter optimisation task was initiated to improve the performance of
the model. This task consisted of 20 trials, with the first iteration giving the best improve-
ment with a value of around 0.9661. The key hyperparameters tested involved a learning
rate of 0.2469 and the use of 535 estimators. The model presented an overall improvement
when compared to other models employed in this study. As shown in Table 4, the model
achieved about 96.61% accuracy, which reveals the percentage of predictions made from
all predictions. A harmonious balance between the accuracy of positive predictions and
the fraction of positives that were captured was approximately 0.9710. The values 0.9810
and 0.9617 of precision and recall, respectively, show a high consistency of the model’s
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predictions. The average cross validation score on the training data is approximately 0.8516.
The model learning curve is represented in Figure 8.

Figure 8. XGBoost Learning Curve

Table 4. Evaluation Metrics for XGBoost.

Performance Metrics Values

Accuracy 96.61%
F1 Score 97.10%
Precision 98.10%

Recall 96.17%

4.2.5. Long Short-Term Memory (LSTM)

According to literature, the LSTM, which is a type of RNN designed to handle sequence
of data such as time series has been employed as a deep learning model to compare with
other machine learning models in terms of performance and computational time. The LSTM
model was trained for 50 epochs with both training and validation metrics recorded at the
end of each epoch. The loss and accuracy on the training set started at 1.2653 and 0.5326,
respectively, and by the tenth epoch, they improved to 0.8678 and 0.5977, respectively.
This is an indication that the model was learning and improving its predictions on the
training set over time. The validation loss and accuracy provide insight into how the model
might perform on unseen data. There exist a decrease in validation loss and an increase in
validation accuracy across the epochs. However, there were variations, indicating model
overfitting.

To improve the training process and model convergence, amplitude scaling was also
employed to transform the input data. The boosted LSTM model correctly detected about
79.30% of the instances, as shown in Table 5. While a better value of 0.7748 F1 score was
achieved over the non-boosted algorithm. This indicates a reasonable balance between the
precision and recall. Precision numbers indicate that 86.83% of the instances detected as
positives are true positives of the ball bearing health state. The model was able to identify
about 73.87% of the true positive instances for each class. After 50 tested epochs, ‘unit’ and
‘dense_units’ values of 128 and 128 were found as the best choices, respectively. Activation
was evaluated with ‘tanh’ and ‘softmax’, with ‘tanh’ being the better configuration. The
Adaptive Moment Estimation (Adam) was employed to combine the Root Mean Square
Propagation (RMSprop) and Momentum for a faster convergence and effectiveness of the
model. The training and validation accuracy for this model is shown in Figure 9.
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Figure 9. Boosted LSTM Training and Validation Accuracy.

Table 5. Evaluation Metrics for LSTM.

Performance Metrics Values

Accuracy 79.30%
F1 Score 77.48%
Precision 86.83%

Recall 73.87%

4.3. Computational Time Analysis

To achieve an efficient training time suitable for real-world applications, the time
taken for each model’s training was used to evaluate its computational efficiency. The
models were configured and optimised. The parameters of the ML models, including the
number of LSTM units and dense units, were tuned to find the best configuration. The
start and end times of each model training were recorded to calculate the training time for
each experiment. The analysis reveals that the training time for each model varied based
on the hyperparameter configurations. The training time variations are shown in Table 6,
highlighting the impact of optimising algorithm parameters on computational efficiency.

Table 6. Computational Comparison.

Classifier Training Time (s)

Logistic Regression 0.13
Random Forest 23.91

SVM 1.12
XGBoost 0.76

LSTM 80.58

4.4. Comparative Analysis

In a data-driven industrial setting, the evaluation of model performance is of great
necessity. A thorough comparative analysis of various models is often conducted to
determine a well-suited process for a given task. Each of Equations (1)–(4) plays a distinct
and fundamental role in the evaluation process. The comparative analysis highlights the
vital role of performance metrics in assessing the effectiveness of ML models. The selection
of the most appropriate model focuses on the specific objectives of the task at hand. The
performance metrics comparison of different ML models under consideration is shown in
Table 7.
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Table 7. Comparative Analysis Evaluation of Each Model.

Model Name Hyperparameters Accuracy F1 Score Precision Recall Training Time

Logistic C = 95.28 67.71% 59.72% 79.45% 55.41% 0.13 s
Regression solver-lbfgs

Random n-estimator = 967 84.47% 83.56% 90.07% 79.71% 23.91 s
Forest criterion = gini
SVM C = 9.63 83.69% 84.65% 91.37% 80.94% 1.12 s

kernel = rbf
XGBoost n-estimator = 535 96.61% 97.10% 98.10% 96.17% 0.76 s

max-depth = 4
LSTM units = 128 79.30% 77.48% 86.83% 73.87% 80.58 s

dense-units = 128

In the context of accuracy, XGBoost achieved an overall measure of 96.61% at a training
time of 0.76 s, indicating how well the model predicted both the positive and negative
categories. This reflects the research work of [52], who demonstrated the effectiveness of
XGBoost in various classification tasks. In contrast, Logistic Regression recorded the lowest
accuracy of 67.71% at a training time of 0.13 s. The XGBoost model recorded the highest
F1 score of 97.10%, which offers a balanced metric especially in cases of imbalanced class
distribution. On the other hand, Logistic Regression logged the lowest value at 59.72%.
This inconsistency highlights the challenges of Logistic Regression in imbalanced datasets,
as discussed by [53].

It is evident that XGBoost is not only superior in terms of performance but is also
significantly efficient in terms of training times. This efficiency can be attributed to its
use of parallel and distributed computing, enabling it to reach optimal solutions faster.
Furthermore, XGBoost introduces randomness in its logic, making it more robust to over-
fitting, and it handles missing values proficiently, resulting in accurate tree structures.

Based on these comparative analysis and observations, it is evident that XGBoost
consistently out-performed other models across various key performance metrics evaluated
in this study. It is also noteworthy to recognise the performance of RF, which aligns with
the findings of [54], surpassing the more sophisticated LSTM exhibiting accuracy value
of 79.30% at a training time of 80.58 s. This could suggest that, for this dataset, tree-
based models might be more efficient than deep learning models. On the other hand, the
under-performing Logistic Regression suggests its shortcomings for this dataset.

5. Conclusions

In the modern industrial systems, inefficient operations, unplanned plant downtime,
and huge maintenance expenses can be caused by mechanical failures in the plant. To avoid
this, conventional preventive maintenance mechanisms like time-based maintenance, oil
analysis, and manual data analysis have been used previously. However, these conventional
methods are time-consuming, reactive, and imprecise. Recently, advanced technologies
like IoTs, big data analytics, machine learning, and cloud computing have been employed
to make the modern industrial systems more efficient. In this work, we have used different
machine learning models because of their high performance, ability to handle large data
and adaptability to learn quickly from their experience. For comparison among different
machine learning models, we have developed a framework to handle the large data from
four ball bearings and extract useful features. The data preprocessing and feature extraction
provided a significant insight of the data. This aided a better understanding of important
patterns from vibration signals that are vital for fault detection. By comparing five distinct
machine learning models, a holistic view on their computational efficiency and capability in
identifying different fault categories was achieved. This comparison made it obvious how
each model performed with ball bearing health status data and highlighted the effectiveness
of early fault detection in modern industrial systems.
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This study leverages machine learning models to evaluate various health status of
four ball bearings with a total 2155 samples of vibration signals. Among the machine
learning models compared, XGBoost emerges as the most favoured choice in predicting
about 96.61% of all instances and 96.17% of all true positive instances at a training time of
0.76s. This study also demonstrated the superiority of XGBoost over other models under
consideration when comparing the ratio of accuracy to computational time while detecting
fault occurrences of the ball bearing. In the future, we would like to generate indigenous
data and expand the dataset size. Larger data size would give us a better understanding of
the accuracy of different ensemble algorithms and would allow us to perform an in-depth
comparison with more deep learning algorithms.
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