
Citation: Abboush, M.; Knieke, C.;

Rausch, A. Representative Real-Time

Dataset Generation Based on

Automated Fault Injection and HIL

Simulation for ML-Assisted

Validation of Automotive Software

Systems. Electronics 2024, 13, 437.

https://doi.org/10.3390/

electronics13020437

Academic Editor: Dimitra I.

Kaklamani

Received: 13 November 2023

Revised: 14 January 2024

Accepted: 17 January 2024

Published: 20 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Representative Real-Time Dataset Generation Based on
Automated Fault Injection and HIL Simulation for ML-Assisted
Validation of Automotive Software Systems
Mohammad Abboush * , Christoph Knieke and Andreas Rausch

Institute for Software and Systems Engineering, Technische Universität Clausthal,
38678 Clausthal-Zellerfeld, Germany; christoph.knieke@tu-clausthal.de (C.K.);
andreas.rausch@tu-clausthal.de (A.R.)
* Correspondence: mohammad.abboush@tu-clausthal.de

Abstract: Recently, a data-driven approach has been widely used at various stages of the system
development lifecycle thanks to its ability to extract knowledge from historical data. However,
despite its superiority over other conventional approaches, e.g., approaches that are model-based
and signal-based, the availability of representative datasets poses a major challenge. Therefore, for
various engineering applications, new solutions to generate representative faulty data that reflect
the real world operating conditions should be explored. In this study, a novel approach based on
a hardware-in-the-loop (HIL) simulation and automated real-time fault injection (FI) method is
proposed to generate, analyse and collect data samples in the presence of single and concurrent
faults. The generated dataset is employed for the development of machine learning (ML)-assisted test
strategies during the system verification and validation phases of the V-cycle development model.
The developed framework can generate not only time series data but also a textual data including
fault logs in an automated manner. As a case study, a high-fidelity simulation model of a gasoline
engine system with a dynamic entire vehicle model is utilised to demonstrate the capabilities and
benefits of the proposed framework. The results reveal the applicability of the proposed framework
in simulating and capturing the system behaviour in the presence of faults occurring within the
system’s components. Furthermore, the effectiveness of the proposed framework in analysing
system behaviour and acquiring data during the validation phase of real-time systems under realistic
operating conditions has been demonstrated.

Keywords: HIL testing; real-time validation; fault injection; automotive software systems; dataset
generation; machine learning

1. Introduction

This article is an extension of our published paper, in which a framework for represen-
tative dataset generation of automotive software systems based on a manual fault injection
process was proposed [1]. Recently, the advanced functionalities of modern automotive
software systems have played a crucial role in reshaping our future mobility, e.g., ADAS [2].
However, along with the rapid development of software-driven systems, major challenges
in testing and validation have also emerged [3,4]. This is because of the ever-expanding
system architecture, with several hundred ECUs connected to the system via multiple
system buses [5,6]. Consequently, with such a complex system containing many millions
of lines of code, the probability of a fault is very high [7]. To ensure an acceptable level
of safety and reliability, the functional safety standard ISO 26262 [8] has been introduced,
which defines the requirements and recommendations for the development process.

In accordance with model-based design and the V-model development approach,
the System Under Test (SUT) is tested at each level of the development process. In other
words, the testing process is performed for different states of the SUT, i.e., the executable

Electronics 2024, 13, 437. https://doi.org/10.3390/electronics13020437 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020437
https://doi.org/10.3390/electronics13020437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5533-0029
https://orcid.org/0009-0006-8018-2351
https://orcid.org/0000-0002-6850-6409
https://doi.org/10.3390/electronics13020437
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020437?type=check_update&version=2


Electronics 2024, 13, 437 2 of 20

model, the model code and the implemented code on the target machine [9]. Several
platforms have been leveraged to carry out the testing and validation activities known
as X-in-the-loop [10]. Among them, Hardware-in-the-Loop (HIL) real-time simulation is
recommended by ISO 26262 as a safe, flexible, reliable, and effective platform [11]. Recently,
HIL has played a vital role in the verification and validation of automotive-embedded
control systems under real-time conditions. Replacing the real hardware elements with a
realistically simulated system not only eliminates potential risks, but also reduces test costs
for various applications, e.g., electric drives, power electronics, power grids, railways and
automotives [12]. The HIL-based system validation is currently a hot topic in academia
and industry due to its ability to provide efficient, fast, and realistic real-time simulations
with high accuracy. On top of that, by serving as a digital test drive platform, HIL has
contributed to overcoming the limitations of real test drives in terms of time, cost, effort and
risk to the tester [13]. However, at the system integration testing level, an enormous amount
of datasets from heterogeneous components and subsystems are generated as a result of
tests’ execution [14]. Moreover, despite the test automation of the SUT, the execution results
of the Test Cases (TCs) are documented as pass/fail in the test report [15]. Therefore,
analysing the vast amount of test records based on traditional approaches is costly, difficult,
and time consuming [16]. This is why an intelligent system capable of analyzing the test
results of HIL in an efficient way without domain knowledge is necessary.

Over the last decade, advances in computing resources have paved the way for the
widespread application of a data-driven approach to tackle the problem of Fault Detec-
tion and Diagnosis (FDD). Central to this approach is the idea of extracting knowledge
from historical data and constructing non-linear relationships between input and output
classes to discover hidden patterns. Unlike other FDD approaches, neither expert knowl-
edge nor a precise mathematical model is required. Hence, the data-driven approach
has attracted the attention of researchers, and the development of FDD methods has in-
creased rapidly in various technical fields. Deep Learning (DL) and Machine Learning
(ML)-based methods, as subsets of the data-driven approach, are widely used in various
phases of the software development life cycle, i.e., software requirements, software archi-
tecture and design, software implementation, software quality and analysis, and software
maintenance [17]. For example, in the testing and analysis phase, DL and ML are con-
cerned not only with the generation and selection of TCs, but also with the detection and
analysis of defects and anomalies. However, despite the remarkable accomplishments
in different domains, one of the major challenges impeding DL and ML methods is the
lack of representative datasets [18,19]. Besides a sufficient amount of high-quality data,
acquiring datasets with diverse scenarios that reflect real-world operating conditions can
also be a challenge. Furthermore, the dynamic environment with changing conditions
and satisfying the real-time requirements is another complicating factor when applying
the data-driven approach with real-time system validation. Above all, in the automotive
industry, especially for safety-relevant real-time systems, it is important to ensure that
data-driven approaches comply with the applied development standards, e.g., ISO 26262.
As a result, the availability of datasets is a constraint for the development process of DL-based
FDD in real-world applications.

As mentioned above, one of the core elements of FDD model development is the
dataset. In principle, obtaining fault-free data can be realised by recording the system
behaviour in a fault-free mode [20]. However, obtaining representative data that captures
the system’s responses under fault conditions is complicated in terms of difficulty and
cost [21]. In the automotive domain, due to the confidentiality of test data, it is rare to
have publicly available real-world data that includes faulty behaviour [22]. Moreover,
even in the case of limited data availability, the ratio of faulty to healthy data is small
and unstable, which in turn leads to the problem of unbalanced data. One reason for
this is the difficulty in simulating the open set of failure modes under complex working
conditions [2]. Moreover, the implementation of hardware faults in real-world applications
is not feasible [23].



Electronics 2024, 13, 437 3 of 20

In order to train a robust intelligent FDD model, the following dataset requirements
should be ensured: 1. A high-quality dataset with a sufficient number of samples, including
healthy and faulty operating conditions; 2. A high degree of fault classes coverage; 3. Con-
sideration of the occurrence of the single and simultaneous faults; 4. Consideration of
real-time constraints on system behaviour under normal and faulty conditions; 5. Offering
different types of datasets, i.e., time series and textual data.

Therefore, overcoming the problem of the unavailability of representative dataset is
still an open issue, and collecting faulty data that meets the above requirements should be
further explored. In this article, we attempt to bridge this gap by proposing a novel frame-
work for generating and collecting a representative real-time dataset, including healthy
and faulty samples, during the development of Automotive Software Systems (ASSs). To
demonstrate the benefits and applicability of the proposed framework, a high-fidelity simu-
lation of a gasoline engine system is used as a case study. Vehicle dynamics, environment, a
driver, and powertrain models were also considered to capture the detailed characteristics
of the vehicle during data acquisition. The main contributions of the proposed framework
can be summarised as follows:

• We propose a novel framework capable of generating real-time faulty datasets, taking
into account the time constraints of the system behaviour.

• The framework enables the system behaviour to be automatically analyzed under
realistic operating conditions in order to determine the critical faults that lead to a
violation of the functional safety requirements.

• Not only single but also simultaneous fault occurrence can be simulated, covering the
major types of random hardware sensor and actuator faults in ASSs.

• The faults are automatically injected into the targeted components in real time, without
modifying the original system model and without having to use physical hardware.

• Real-time HIL simulation and high-fidelity simulation models are used to provide
high-quality real-time coverage of the data collected.

• Finally, our proposed framework provides the ability to collect two types of represen-
tative datasets, i.e., time series and text log data.

The rest of this paper is structured as follows: Related work and other contributions
are presented in Section 2. Section 3 introduces the proposed approach, highlighting the
key stages of dataset collection and preparation. The implementation steps and the case
study are described in Section 4. Section 5 summarises the results and findings. Finally,
Section 6 presents the conclusion and future work.

2. Related Work

To tackle the problem of the unavailability of faulty data, several solutions have been
proposed in the literature. Some of them have used online public datasets, while others
have had to generate the data depending on the real prototype or simulated system. For
example, Rengasamy et al. [24] used a standard gas turbine engine dataset provided by
NASA. This dataset is employed to develop a DL-based model for predictive and diagnostic
tasks. Similarly, based on Audi’s industrial dataset, an intelligent model relying on DL
methods for fault detection, isolation, identification and prediction has been developed
in [25]. The target system of the work is autonomous automotive driving. Despite the
advantage of using published standard data, the fault classes depend on the source and
cannot be flexibly extended under identical operating circumstances. As an alternative
solution, a static injection of the faulty sample into the data, based on normal distributions
with one standard deviation, is used. For other researchers, the employment of a real
prototype was an available alternative solution. For example, aiming at developing a
robust FDD for vehicle engines, a real engine has been employed in [26] to capture the
system behaviour under normal and abnormal conditions. As the data collected closely
matched the real industrial application data, the developed model showed a high degree
of applicability and robustness to environmental conditions such as noise. However, the
major limitation of the applied technique is the potential risk and damage to the target



Electronics 2024, 13, 437 4 of 20

physical system in case of fault injection. Similarly, as a self-powered sensor to generate
electrical signals, Yang et al. [27] proposed an EG-DEG device to record the flow rate
of liquids. Based on the generated data, an intelligent system was developed to detect
the particles and analyse the fluid. In the same respect, but for IoT applications, a new
representative data-driven IoT/IIoT dataset has been proposed in [28] to be used for the
training and evaluation of intrusion detection systems. From the proposed medium-scale
testbed of datasets, new data characteristics, i.e., telemetry data, operating system data and
network data of IoT/IIoT, can be generated and collected.

Depending on the hydraulic machinery test bench, sensor-related datasets have been
collected and used to develop DL-based FDD of hydraulic systems in [29]. In order to pro-
vide representative faulty data, three types of sensor faults were injected into the collected
dataset, i.e., constant, gain, and bais. However, the generated dataset does not reflect the
working environment or provide any contextual information under faulty conditions in the
real time. What is more, it does not offer a scenario that includes simultaneous failures. In
the same regard, Bafroui et al. [30] proposed an FDD model for an automotive gearboxes
system based on data collected from an experimental test bench in the laboratory. Some
other studies have been carried out, based on data collected from real vehicle prototypes,
to develop an intelligent solution for detecting unknown faults in test drive recordings [31].
However, in addition to the high cost, this type of experimentation could pose a risk not
only to the vehicle but also to the tester in the event of a critical situation. Moreover, some
types of faults cannot be investigated where the entire physical system could be damaged.

To overcome the limitations of using real physical systems, a simulation platform
has been used to generate representative datasets. Based on modelling and simulation
techniques, many researchers have proposed solutions to address the problem of the
unavailability of data. For example, Tagawa et al. [32] used the FI method with a simulated
system in the MATLAB/Simulink environment to generate the faulty dataset. In the
aforementioned work, four driving scenarios were carried out to generate erroneous
data alongside normal data. Similarly, Biddle et al. [33] approached the problem of
faulty data unavailability by injecting five different types of faults into the simulated
system, namely erratic, hard-over, drift, spike and stuck-at fault. To this end, the failure
modes were modelled in the simulation environment, i.e., MATLAB/IPG CarMaker co-
simulation, and then the faults were artificially injected according to the fault parameters.
Consequently, an ML-based architecture for multiple faults in the multi-sensor FDD was
created based on the collected data. However, despite the ability to reproduce the test
under critical conditions with a high degree of confidence, the real-time conditions remain
unconsidered. The effect of this is that the application of the target model in the real world
becomes increasingly restricted. Not only that, the currently developed FDD models are
validated based on simulation data generated by a simulation platform. By doing so, the
real industrial conditions, such as influences, noise and uncertainties, are ignored [34].
In the context of autonomous driving, the Carla simulator has been used to generate
object detection datasets in [35], including realistic driving images. The key feature of the
generated dataset is the consideration of abnormal weather and lighting conditions, which
improves the performance of the developed intelligent object detection system. However,
the generated datasets focus on the images and contain neither faulty sensors’ reading data
nor system behaviour under the actuator faults. In the railway domain, a visual simulation
framework called TrainSim has been proposed in [36] to generate synthetic datasets for the
development of DL-based models. The generated datasets contain a wide range of realistic
railway scenarios with labelled data using a set of simulated sensors. Cameras, LiDARs,
and inertial measurement units have been used in the work to produce a variety of labelled
images, but without considering time series data.

Recently, with the aim of overcoming the limitations of pure simulation, real-time HIL
simulation has been introduced as a solution for generating a dataset covering various
critical conditions [37]. For example, in [38], real-time simulation data collected from a
HIL platform was used to develop an intelligent fault detection model for vehicle air brake



Electronics 2024, 13, 437 5 of 20

systems. By performing a virtual test drive under normal conditions, the healthy dataset,
i.e., the wheel speed data of the four wheels, is collected. Despite the consideration of real-
time constraints with realistic vehicle operating conditions, the work carried out is limited
to two single-fault scenarios. In [39], to conduct the FDD strategy of traction systems in
high-speed trains, two FI simulation platforms have been used, i.e., software-based FI
and HIL-based FI. Through the proposed platform, six types of faults were considered
so that two types were injected at three locations, i.e., sensor, traction motor, and traction
converter. Despite the significant results achieved by the proposed framework compared
to the state of the art, the dataset of the work is limited to specific type of faults and focuses
on the system operation under the single faults. Similarly, a sensor-related fault dataset
generated from HIL simulation is used in [40] to develop an integral diagnostic strategy for
electric traction drives in railway applications. However, in order to capture the system
behaviour under faulty conditions, the fault mode was simulated by extending the original
system model with additional simulation blocks. This, in turn, could lead to the real-time
constraints of the SUT being violated. Furthermore, the manual preparation of test cases
and scenarios to identify the system state under an abnormal operation is time consuming.
The more complex the system architecture, the more time and effort it takes to model
faults [12].

Employing a representative real-time dataset generated from HIL, and based on hybrid
DL techniques, an intelligent fault classification model has been proposed in [41,42] to
be used during the development phases of ASSs, i.e., system integration testing. The
basis of the developed model is the faulty data collected by programmatically injecting
different sensor faults into the target system in real time without changing the model. As
an extension of the aforementioned work, in this study, the simultaneous occurrence of the
faults is considered, including transient and permanent faults. Moreover, an automation
tool is employed to perform the fault injection process with high efficiency in terms of
time and effort. Thus, the proposed work enables not only the fault injection but also the
analysis and evaluation of the faults’ effects to be performed automatically. As a result,
besides the time series data, the textual logs of the test execution results are collected.
Regardless of the currently available datasets for ML-based FDD, which neither represent
real environments nor fulfil the time constraints, representative real-time datasets of ASSs
based on an automated FI framework and a HIL simulator were proposed in this work.
To reflect the real-world operating conditions, the drawbacks of the dataset with balance
classes were overcome by considering the transient faults that lead to imbalanced data. An
overview of the related work is provided in Table 1, highlighting the key features of the
proposed work in comparison with other related work.



Electronics 2024, 13, 437 6 of 20

Table 1. Overview of the related work.

Related Work Dataset Application Domain Target System Data Generation Faults Remarks

[24] Time series data
from NASA

Prognostics and
health management Gas turbine engine NA Sensor-related faults

Coverage: low
Concurrent faults: not considered.
Real-time constraints: not considered.

[25] Industrial dataset
from Audi FDD and health forecasting Autonomous vehicles NA Sensor-related faults

Coverage: low
Concurrent faults: considered.
Real-time constraints: considered.

[26] Real engine dataset Fault detection and classification Combustion engine Using engine test rig Sensor and
actuator-related faults

Coverage: high
Concurrent faults: not considered.
Real-time constraints: considered.

[30] Vibration signal dataset Fault diagnosis Automotive gearbox Using experimental
test bench Sensor-related faults

Coverage: low
Concurrent faults: not considered.
Real-time constraints: considered.

[31] Real test drive dataset Anomaly detection Test recordings of
automotive systems Using real vehicle Sensor-related faults

Coverage: low
Concurrent faults: not considered.
Real-time constraints: considered.

[32] Non-real-time
Simulation dataset Fault detection and analysis Automotive systems Using MATLAB

simulation platform Sensor-related faults
Coverage: low
Concurrent faults: not considered.
Real-time constraints: not considered.

[33] Non-real-time
Simulation dataset

Fault detection, identification
and prediction

Control system of
autonomous vehicle

Using MATLAB/IPG
CarMaker co-simulation
platform

Sensor-related faults
Coverage: low
Concurrent faults: not considered.
Real-time constraints: not considered.

[35] Driving images Dataset Object detection system Autonomous driving Using Carla simulator Abnormal weather and
lighting conditions

Coverage: low
Concurrent faults: not considered.
Real-time constraints: not considered.

[38] Time series real-time
simulation dataset Fault detection and identification Air brake automotive

systems Using HIL simulation Sensor-related faults
Coverage: low
Concurrent faults: not considered.
Real-time constraints: considered.

Proposed work Textual and time series
real-time simulation dataset

Single and simultaneous FDC for
HIL testing of ASSs

Validation of
real-time ASSs Using HIL simulation Sensor-related faults

Coverage: high
Concurrent faults: considered.
Real-time constraints: considered.



Electronics 2024, 13, 437 7 of 20

3. Methodology

In this section, the proposed framework is presented, including real-time HIL simula-
tion, FI framework, data analysis, and management, as shown in Figure 1.

Figure 1. Proposed framework for representative real-time dataset generation.

3.1. Real-Time HIL Simulation System

The HIL system is the core of the framework, in which the complex target system is
simulated and executed in real time. It consists of two main parts, namely the HIL simulator
and the target prototype (controller). The HIL simulator is responsible for the real-time
execution of the controlled system (plant). In our case, the controlled system is the entire
vehicle model. The engine model, the vehicle dynamics model, the environment model, the
traffic model, and the powertrain model are the main subsystems of the selected system. It
is worth noting that the model of the SoftECU, i.e., the virtual ECU, is also included in the
model of the controlled system. This allows the entire vehicle model, including the ECU
model, to be executed in the HIL simulator as a Rapid Control Prototype (RCP), known as
the offline mode. MicroAutoBox II, on the other hand, is the target machine of the SUT on
which the ECU model is deployed and executed. MicroAutoBox II is regarded as the RCP
and acts as the real ECU. Both parts of the HIL system are connected via the CAN bus. To
establish the connection, the signal interface is modelled on both sides in the simulation
environment, i.e., in the ECU model and in the plant model. The generated code of these
models is injected into the ECU and HIL simulator via an Ethernet from the host PC.

On the host PC, the configurations and experiments are carried out. For this purpose,
four software tools from dSPACE are used, namely MotionDesk, ConfigurationDesk, Mod-
elDesk, AutomationDesk, and ControlDesk [43]. In addition to parameterising the system
model, the ModelDesk is used to design the test drive scenarios and the TCs. Thanks to the
model-based design approach, once the model was configured, the code for both models,
i.e., SUT and plant, is automatically generated and deployed using ConfigurationDesk.
MotionDesk is used to visualise the driving environment and dynamic traffic in 3D. Finally,
ControlDesk is used for instrumentation, measurements, data acquisition, and real-time
experiment control. This tool also allows switching between offline (SoftECU) and online
(Real ECU) execution modes.



Electronics 2024, 13, 437 8 of 20

3.2. FI Framework with HIL

The FI process takes place at the signal interface between the ECU and the HIL
simulator during a real-time execution. This ensures the real-time execution of the ECU
and plant system model as a black box without modification. Furthermore, the injection
process is executed programmatically, without extending the target system model with
additional components. The input to the FI framework is healthy data representing the
system behaviour under normal conditions. The target signals are then manipulated
according to user-configured fault attributes. Three attributes should be configured in
the fault injector prior to injection, i.e., fault type, fault location, and FI time. The fault
type covers most sensor and actuator faults such as gain, offset, hard-over, stuck-at, delay,
noise, packet loss, drift, and spike faults. The target sensor and actuator signal is identified
as the location for faults to be injected. The duration of the FI and the time at which the
fault is injected are specified according to the drive cycle or standard system behaviour.
During the real-time execution of the HIL, once the above FI attributes have been specified,
the fault injector manipulates the accessed healthy signals on the CAN bus accordingly.
The manipulated signals interact with the system variables in a closed loop between the
simulator and the ECU. As a result, the system response to the abnormal state of the faulty
components, such as sensor or actuator, is captured as a deviation in the system behaviour,
which is recorded as multivariate time series data. For each fault test case, the fault injection
process is repeated during the system execution to achieve high coverage and diverse
conditions in the collected datasets. In the case of simultaneous faults, the same process is
performed, taking into account that two types of faults are injected simultaneously at two
different locations.

To overcome the drawbacks of the manual fault injection process, in this study, the
automatic execution of real-time fault injection was enabled in the proposed framework. To
this end, an automation software tool, i.e., AutomationDesk, was used. AutomationDesk
allows not only the automatic execution of systematic test cases, but also the automatic
evaluation and reporting of test results. These features were the reason for selecting the tool
as the environment for the automatic execution of the fault injection and evaluation process.
Test scenarios, including the environment, roads and dynamic objects, are designed in
ModelDesk and initiated for execution in AutomationDesk’s test routines. Fault injection
scenarios, on the other hand, are designed in AutomationDesk as a sequence of block
hierarchies, as shown in Figure 2. In these routines, the fault injection process takes place
in three phases: reading, manipulating signals, and writing. In the read block, the locations
of the faults to be injected, i.e., the system components, are accessed via the signals of the
system variables. The signals of the selected variables are then passed to the manipulation
function, where the signals are manipulated according to the specified fault injection
configurations. It is noteworthy that the injection process is performed by the source code
of the manipulation function representing the fault modes, without extending the original
architecture of the system model. Finally, the faults are activated by the write block at
run-time without violating the timing behaviour of the SUT.

3.3. Dataset Collection and Preparation

As a result of executing the test cases, including fault injection, the system behaviour
is recorded as time series data and evaluated against the expected behaviour. In this
way, the critical faults that lead to a violation of the functional safety requirements can be
automatically identified and documented in the generated test reports. The specifications
of the recording process are set by the logging system in the HIL platform. At the system
level, engine speed, engine torque, vehicle speed, throttle position, engine temperature,
intake manifold pressure and rail pressure are considered as system variables in the data
acquisition process. In this way, the fault-free data samples are collected by running the
system under fault-free conditions. On the other hand, the faulty samples are collected as
a result of system execution under faulty conditions, i.e., random sensor/actuator fault.
Notably, the dataset containing unbalanced data is collected by injecting transient faults



Electronics 2024, 13, 437 9 of 20

temporarily for a certain period of time into the target sensor/actuator signals. As a result,
the ratio of faulty samples to healthy samples is different in the generated dataset. For the
development of an intelligent model using ML/DL methods, the collected dataset from the
injection of critical faults as well as the healthy data are then considered as a representative
real-time dataset.

Figure 2. Automated real-time fault injection process.

Beside the data generation, data are pre-processed to remove outliers and redundant
patterns. The main steps in data preparation are variable selection, data cleaning, data
labelling, scaling and normalisation, balancing, and data division. In addition, data are
converted into a suitable format, e.g., CSV, Mat or XML, to be ready for the ML/DL model
development process. This phase also involves the correction of missing samples and the
reduction in irrelevant data. In this way, not only can the computational cost be reduced, but
the problem of over-fitting can also be avoided. To perform the labelling process, a multi-
class, multi-label approach has been used in this work, so that all possible classes can be
considered and labelled. To ensure that attributes with large values do not outweigh those
with smaller values, the normalisation process is performed using the Z-score function by
scaling the variable values in a range between [0, 1]. Finally, the pre-processed data are
visualised on the host PC to obtain a deeper understanding of the patterns and features
before training the DL/ML model. It is noteworthy that the data management is conducted
through a host PC. This is where the system requirements, test case specifications, scenario
descriptions, and test methods are documented.

4. Case Study and Experimental Implementation

To validate the applicability of the proposed framework, this section presents the
selected case study, highlighting the system architecture and implementation steps.



Electronics 2024, 13, 437 10 of 20

4.1. Case Study

As a case study from the automotive domain, the gasoline engine system from
dSPACE [43] was used to validate the proposed approach. The architecture of the sys-
tem is shown in Figure 3. It can be observed that the various systems and subsystems have
been modelled to accurately reflect the actual physical characteristics. MATLAB/Simulink
was selected as the graphical simulation and modelling environment to model the dynamic
system. The Simulink tool has important features for designing, analysing, and testing
the dynamic system using the model-based approach. It also provides the ability to test
the SUT in a simulated environment and automatically generate code before deployment,
supporting real-time simulation. However, despite the realistic simulation of the chosen
system, it does not allow lateral control driving. To overcome this limitation, in our case,
a complex gasoline engine model was integrated into the vehicle dynamic system model.
Thereby, lateral and longitudinal driving with manual and automatic transmission can
be simulated. The major subsystem models that structure the gasoline engine are the
exhaust, fuel, air path, cooler, and the piston engine system. Various components have been
modelled and interconnected in a block diagram environment so that the comprehensive
functions of the gasoline engine are simulated. Additionally, the powertrain, driver, and
environmental models are included to capture the overall dynamic characteristics of the
vehicle. The gasoline engine is controlled by the ECU in two modes, i.e., offline and online.
In the offline mode, the soft ECU is internally connected to the engine, whereas a separate
ECU model in the RCP is used as the real ECU to enable the online mode. Finally, the
interface between the real ECU model and the gasoline engine model is realised using a
Real Time Interface CAN multi-message blockset (RTICANMM), where the fault injections
are configured and modelled. Thanks to the RTICANMM feature, the system signals can be
accessed and manipulated programmatically without modifying the original system model.

Figure 3. System architecture of the case study.

4.2. Experimental Setup

There are three levels of configuration in our case study, namely the system model con-
figurations, experiment configurations, and FI configurations. At the first level, dSPACE’s



Electronics 2024, 13, 437 11 of 20

software tools, ModelDesk and ConfigurationDesk, are used to specify the parameters
and variables of the models based on the GUI. In addition, driving scenarios and TCs
are designed based on the specifications. In our case, two driving scenarios are selected,
namely “Highway” and “Ftp 75”, as shown in Figure 4. This allows us to cover highway,
non-urban/open road, and urban driving scenarios. Once the system and test configura-
tions are specified, the code can be automatically generated and deployed to the target
machines using a ConfigurationDesk. Two target machines are employed in our study,
MicroAutoBox II for the ECU system and the HIL SCALEXIO simulator for the entire
controlled vehicle system. As shown in Figure 5, data are transferred between the ECU and
the HIL simulator via the CAN bus. Thanks to the ability of the model-based development
approach to generate code from the model, the model code is automatically generated and
deployed on the target machine. For this purpose, the ConfigurationDesk tool is used to
build the generated code and transfer it to the corresponding hardware, i.e., MicroAutoBox
II and HIL simulator. The RTICANMM interface plays an important role in providing
access to all system variables at runtime. Therefore, implementing the FI framework with
RTICANMM provides the ability to inject faults into the target components in real time
without changing the system architecture.

(a) (b)

Figure 4. Driving scenario of the selected case study. (a) Highway driving scenario. (b) Ftp 75
driving scenario.

Figure 5. Real-time hardware-in-the-loop simulation.

Finally, the 3D visualisation of the driving manoeuvres, i.e., the defined scenarios, is
modelled with MotionDesk. In other words, MotionDesk receives the data from the HIL



Electronics 2024, 13, 437 12 of 20

simulator and provides a visualisation of the moving objects in realistic 3D scenes. In this
way, the normal and abnormal conditions of the driving environment, e.g., roads, weather,
dynamic objects, can be considered, which in turn provides a good understanding of the
simulated system.

On the second level, the configurations of the fault injector are set. To be specific, the FI
attributes, i.e., fault location, fault type and FI time, are configured. As already mentioned,
all system signals, i.e., sensors and actuators, can be accessed via the CAN bus interface.
Therefore, the degree of coverage of our developed framework is high compared to the
traditional approach. Some examples of sensor signals accessed are crank angle, battery
voltage, engine speed, accelerator pedal position (APP), ignition and starter request, EGR
mass flow, intake and exhaust manifold pressure, fuel pressure, coolant temperature, and
railbar sensor. The actuators involved are the throttle valve, the fuel metering unit, the
pressure control valve, and the ignition angle adjuster. Due to the significant effect of a fault
in the APP and RPM sensor on the vehicle behaviour, we selected these locations for the FI
in our study. On the other hand, nine different types of single faults and 15 combinations
have been identified to demonstrate the coverage of the fault data generation. In this way,
not only the single fault-based dataset but also the concurrent faults-based dataset can be
collected. Finally, the timing and duration of the fault injection is determined based on the
selected drive cycle. FI can be permanent until the faulty component is addressed, or it
can be transient, occurring frequently for a specified duration. By injecting permanent and
transient faults, both balanced and imbalanced datasets can be acquired for developing
a reliable FDD model for real-world applications. The detailed configuration of the FI
framework for single and simultaneous faults is shown in [44].

The experimental setup takes place on the last level, where the measurements, record-
ing and instrumentation are carried out. The sampling time of the signal measurements in
this study is set to 0.001 s. At the system level, six variables of the target system are selected
to represent the recorded system behaviour under normal and fault conditions. These
system variables are the throttle position, engine temperature, mean effective engine torque,
engine speed, intake manifold pressure, rail pressure, and vehicle speed, as illustrated in
Figure 6.

Figure 6. Generated time series dataset.

With the aid of ControlDesk, which can be used to configure and control the runtime
experiments, the system is executed under various conditions. Once the real-time execution
is complete, the system response to the faults is captured as time series data and stored in a
CSV file containing system variables and data samples. On the other hand, TCs designed
in ModelDesk are executed on the target SUT to generate the documented error logs as the
text data. The TCs should contain the data inputs and the expected outputs. According
to the actual system behaviour, the defined expected output is then compared with the
measured output. Depending on the test execution, the results can be either a pass or fail.
Thanks to ModelDesk’s ASM test functionality, the TCs are automatically executed and
evaluated. Note that the generated report contains key information about the specifications
of the TCs as well as the execution results (passed or failed). The report also contains



Electronics 2024, 13, 437 13 of 20

a failure log describing the failure that occurred. Using the logs of the failed TCs, an
intelligent model for RCA can be developed based on natural language processing and
machine learning methods.

5. Results and Discussion

In this section, the results of the data collection for the different FI configurations are
presented. Specifically, the generated data are described, highlighting the effects of single
and concurrent faults on system behaviour. Moreover, the log data of failed TCs generated
in the test report is presented.

5.1. Representative Time Series Dataset

In real time, both the SUT and the controlled system are executed under normal
and abnormal conditions according to the aforementioned system and FI configurations.
A total of 40 experiments were conducted with single and simultaneous faults in two
driving scenarios. In particular, two files as healthy data from “highway” and “ftp 75”
scenarios, 18 files representing the single fault types, and 30 files for simultaneous faults
with 14 combinations were collected. As a result, 50 CSV files have been obtained as HIL
test records. Considering six types of single fault and sampling time 01001, the total number
of faulty data samples from the data collection phase is 947,000, with 420,000 samples for
each experiment, as shown in Table 2. On the other hand, the total number of faulty
data samples from the concurrent FI process is 2,267,000, with 420,000 samples for each
experiment, as can be observed in Table 3.

Table 2. Collected dataset description of the single faults.

Fault ID Fault Type Fault Duration Dataset Samples Faulty Samples

H Healthy - 420,000 -
F1 Gain 165–320 s 420,000 155,000
F2 Stuck-at 172–330 s 420,000 158,000
F3 Noise 175–310 s 420,000 135,000
F4 Packet loss 170–332 s 420,000 162,000
F5 Delay 170–326 s 420,000 156,000
F6 Drift 164–345 s 420,000 181,000

Table 3. Collected dataset description of the simultaneous faults

Fault ID Fault Type Fault Duration Dataset Samples Faulty Samples

F1F2 Gain and Stuck-at 166–338 s 420,000 172,000
F1F3 Gain and Noise 164–340 s 420,000 176,000
F1F4 Gain and Packet loss 170–329 s 420,000 159,000
F1F5 Gain and Delay 177–334 s 420,000 157,000
F1F6 Gain and Drift 164–324 s 420,000 160,000
F2F3 Stuck-at and Noise 174–330 s 420,000 156,000
F2F4 Stuck-at and Packet loss 164–327 s 420,000 163,000
F2F5 Stuck-at and Delay 173–324 s 420,000 151,000
F2F6 Stuck-at and Drift 178–342 s 420,000 164,000
F3F4 Noise and Packet loss 166–320 s 420,000 154,000
F3F5 Noise and Delay 179–328 s 420,000 149,000
F3F6 Noise and Drift 169–341 s 420,000 172,000
F4F5 Packet loss and Delay 176–336 s 420,000 160,000
F4F6 Packet loss and Drift 166–340 s 420,000 174,000

Focusing on packet loss and stuck-at as examples of fault types, the system behaviour
under the injected fault can be captured at the system level on vehicle and engine speed
signals. In Figure 7a, the stuck-at fault was injected into the RPM sensor after 10 s of the
driving cycle. The engine’s behaviour deviates significantly from 750 rpm in the normal



Electronics 2024, 13, 437 14 of 20

range to 2300 rpm as soon as the fault is activated, which in turn leads to an increase in
energy consumption. Until 180 s, the control unit is unable to cope with the occurred
fault. However, after 180 s, the system tries to overcome the fault and behave according
to the desired behaviour. Then, the deviation and fluctuations occur again from 210 s and
290 s, respectively. The reason behind this change is the driving variations and conditions
between the acceleration mode, deceleration mode and the steady state mode. In other
words, the control strategy cannot properly mitigate the disturbance when the vehicle is
accelerating and decelerating rapidly, as shown in Figure 7b.

(a) (b)

(c) (d)

Figure 7. Effect of the single faults on the system behaviour. (a) Engine system behaviour under
stuck-at fault. (b) Vehicle system behaviour under stuck-at fault. (c) Engine system behaviour under
packet loss fault. (d) Engine system behaviour under noise fault.

On the other hand, by injecting the packet loss into the APP sensor during the driving
cycle, the effect of the fault on the vehicle speed and the engine speed cannot be directly
observed, as shown in Figure 7c. However, from sec 75 onwards, significant fluctuations
can be observed. At the system level, the behaviour of the vehicle and engine deviates from
the standard in the form of severe jerking. At this moment, the ECU tries to overcome the
signal losses for a certain period. This is due to the fact that the behaviour remains in a
state of fluctuation, while the loss time is less than 3 s.

Similarly, once a noise is injected into the APP sensor at 25 s, the effect can be observed
in the form of a strong amplitude fluctuation in the RPM signals (see Figure 7d). The effect
is particularly noticeable during the stationary period of the vehicle speed; i.e., between
20–55, 80–125 and 280–330 s, the fault effect is manifest. On the other hand, during the
driving mode, the SUT seeks to exhibit the desired driving behaviour despite the occurrence
of the fault. Therefore, the system will follow the defined scenario between 125 and 280 s
with an acceptable range in the RPM signal.



Electronics 2024, 13, 437 15 of 20

According to the scenario “ftp 75”, what can be observed in Figure 8a,b is the effect of
injecting a single fault into the APP and RPM sensors, respectively. Specifically, the APP
sensor signal is manipulated by the stuck-at value, and the effect of the fault is directly
observed at the system level as a constant value, i.e., 1160 rpm. On the other hand, the
effect of the delay in the RPM sensor signal causes the engine speed to fluctuate between
265–307 s, as shown in Figure 8b. During this period, the ECU cannot perfectly perform
the desired behaviour with an increasing delay of the received signal, especially when the
driving mode is changed.

(a) (b)

(c) (d)

Figure 8. Effect of the simultaneous faults on the system behaviour. (a) Engine system behaviour
under stuck-at fault. (b) Engine system behaviour under delay fault. (c) Vehicle system behaviour
under stuck-at and delay faults simultaneously. (d) Engine system behaviour under stuck-at and
delay faults simultaneously.

In the case of simultaneous faults, two different fault types are injected simultaneously
into two different locations. For example, while the stuck-at fault is injected into the APP
sensor, the delay fault is simultaneously injected into the engine speed sensor. To put it
in another way, two or more factors have contributed to creating a novel pattern in the
signals as a result of the simultaneous FI. Detailed information regarding the setup of the
simultaneous FI can be found at [45]. Figure 8c illustrates the effect of the simultaneous
faults on the vehicle system behaviour, i.e., vehicle speed, between 170–330 s. The vehicle
speed closely follows the desired behaviour up to 170 s, the time at which the faults are
activated. As a result of the large fluctuations shown in Figure 8d, the vehicle is unable to
accelerate at 190 s, the time at which the speed drops to 18 km/h, causing a risk of failure.
However, the system returns to an acceptable state with small deviations.

Although the collected data represents comprehensive characteristics of the system
behaviour, the generated CSV files contain redundant or useless information. For example,
each file contains information about the recording process as well as the data samples.
Hence, the collected data should be pre-processed to remove outliers and redundant
information. Three steps are applied to the data in the pre-processing phase, i.e., removal of



Electronics 2024, 13, 437 16 of 20

useless information and outliers, data scaling and normalisation, and data splitting. After
converting the csv files into Excel format, the training variables are selected and the non-
useful data are removed. By doing so, useful data samples are ensured for the development
of the ML model. The next step is to apply a normalisation function to all variables, as
each variable has a different range of values. Thus, all variable values are scaled in the
range between [0–1]. The last step is to divide the data into three parts, i.e., training data,
validation data and test data. It should be noted that when developing ML models based
on supervised learning, the process of labelling the data should take place before splitting
the data. During this process, the defect class is assigned to the appropriate data for the
classification task. In general, the data in each part are divided into 80% for training, 10%
for validation, and 10% for the test part.

In order to benchmark the proposed framework, the characteristics of the real-time
dataset generated in this study have been compared with the currently available datasets
from the existing systems, as presented in Table 4. It can be observed that most of the
existing simulation systems provide time series data collected from the system components.
However, the occurrence of the concurrent faults has not been considered in the provided
datasets, e.g., CMAPSS, CarMaker, and IIoT datasets. Instead, in our proposed work, data
samples have been collected under both single and concurrent faults in real time. Notably,
the A2D2 dataset only contains samples of single and concurrent faults. However, it is
limited to four fault types under specific driving scenarios, which do not reflect real-world
operating conditions. In our proposed work, besides considering the effect of adverse
weather conditions and lighting, various fault scenarios occurring in the sensors and
actuators were simulated in real time.

Table 4. A comparison of available datasets from the existing systems with the proposed dataset.

Dataset Year Type Size Label Faults Scenarios

CMAPSS [24] 2008 Time series data 76 k Yes Single Limited
A2D2 [25] 2020 Time series data 657 k Yes Single, concurrent Limited

CarMaker [33] 2021 Time series data 3 m Yes Single Limited
IIoT [28] 2019 Time series, logs - Yes Single Diverse

CarFree [35] 2022 Images 5 k Yes - Diverse
TrainSim [36] 2023 Images, point clouds 8k Yes - Diverse

Proposed work 2024 Time series and logs 8.8 m Yes Single, concurrent Diverse

5.2. Automated Test Evaluation

In the proposed framework, besides the automated fault injection, the test case evalua-
tion is also performed automatically with the aid of the AutomationDesk tool. To this end,
the expected output of the SUT should be defined in advance. The evaluation function, in
turn, compares the actual and the expected behaviour. In the case of a discrepancy between
both aforementioned outputs, the executed test cases are evaluated as failed. As can be
observed in Figure 9, the measured output of the SUT is outside the defined tolerance
range, i.e., the vehicle position, which means that the SUT was not able to mitigate the fault,
resulting in a failure. In other words, as a result of the fault propagating from the compo-
nent through the subsystems to other components, a failure occurs at the system-level, as
the required functions can no longer be performed. Thanks to the aforementioned tool,
hundreds of test cases can thus be automatically executed and evaluated without the need
for human intervention. Furthermore, the results are documented in a generated report,
which plays an important role in identifying critical faults. It is worth noting that not all
introduced faults result in a system-level failure; rather, they are mitigated by the fault
tolerance mechanism. On the other hand, faults that lead to failures, i.e., termination of
system functionality, are considered critical faults. The system behaviour resulting from
the injection of critical faults is captured as a representative faulty dataset and then used to
develop the FDD model.



Electronics 2024, 13, 437 17 of 20

Figure 9. Evaluation of the test cases’ execution.

5.3. Representative Textual Dataset

As a result of the TCs execution, comparing the desired system signals with the
observed outputs, a test report was generated. What is of interest in the report is the
logs, written in natural language, describing the failures that occurred. An example of a
generated test report is shown in Figure 10. As can be observed, a short text is written
indicating the failed TCs as information about the causes of the failure. However, without
the expert knowledge of the tester, these transcripts are not able to correctly identify the
failure causes. Therefore, based on the collected logs, an intelligent model can be trained
to perform the RCA process efficiently without human intervention. Furthermore, the
generated logs can be used to provide additional information to support the decision of
the signal-based FDD model. Similar to the time series data, a number of pre-processing
steps are performed on the collected logs prior to model training. The main pre-processing
steps for text data are tokenisation, normalisation, stop word removal and stemming. After
applying Natural Language Processing (NLP) techniques to the collected data, the training
is divided into three parts: training with 80%, validation with 10%, and testing with 10%.

Figure 10. Generated report of test case execution.

5.4. Setup Cost Discussion

Despite the reliability of the proposed framework in simulating realistic system be-
haviour in the presence of faults, several complicating factors concerning the setup and
implementation should be considered. Since three different fault attributes have to be
specified in the setup phase, an unlimited number of possible configurations could be
created, i.e., an unbounded fault space. For complex software systems, the trade-off be-
tween achieving a high test coverage and exploring the most effective critical fault is still a
challenge. Notably, in this study, the fault test cases were identified based on three factors,
i.e., representative and realistic faults to be injected, the impact and speed of the injected
fault causing failures, and the variety of fault scenarios. Besides the setup effort, a real-time
system should be provided to enable a real-time execution of the system model along



Electronics 2024, 13, 437 18 of 20

with the framework. For this purpose, in our study, a MicroAutoBox II embedded PC
(DS1401 Base Board) with 900 MHz processor, 6th Gen.Intel® CoreTM i7-6822EQ, 16 MB
memory and 340 ms boot time for 3 MB application is utilized. Based on the debugging
run-time information for 10-s log and the intended sampling time of 1 ms, the maximum
task execution time is 0.738 ms. Each test case has a test execution time of 40,242.6164 ms,
including the evaluation period.

Finally, depending on the specification of the log data system, a huge amount of data
can be collected from heterogeneous components, which poses another challenge in terms
of the computational cost of ML/DL model development. Specifically, considering 0.001 s
as the sampling period, several million data samples are generated, including outliers, noise
and missing/redundant samples. Therefore, training the ML/DL model not only requires
significant effort and time in the pre-processing and training phases but also demands
powerful hardware with high computational capability, such as GPUs or TPUs, to process
such a large amount of data.

6. Conclusions

A novel framework for generating and collecting representative real-time dataset for
ML/DL applications during the system validation process of ASSs is proposed in this
article. To this end, HIL simulation and an automated fault injection method are used
considering real-time constraints. The objective of the proposed framework is to provide the
required dataset for the training, testing, and validation of the DL-based intelligent failure
analysis of HIL test records. Innovatively, it requires neither fault modelling within the
system architecture nor the physical hardware device to perform the FI for data acquisition.
Instead, the target faults are programmatically injected in real time without any modelling
effort and time. Furthermore, the faults are injected and evaluated in an automated manner,
without modifying the SUT model, by using an automation tool, i.e., AutomationDesk. The
proposed framework is able to simulate and collect faulty data in different formats, i.e., time
series and textual. As time-series data, the effect of random hardware faults is simulated at
the system level in the form of transient and permanent faults. In this manner, the system
behaviour under various critical fault conditions can be accurately and reliably captured
in real time. The higher the quality of the captured data, the higher the performance of
the developed DL model. In this study, a complex automotive gasoline engine has been
selected to validate and demonstrate the proposed approach. The outcomes show the
applicability of the approach in representing the effects of single and simultaneous faults at
the system level. Nine different types of sensor and actuator faults were simulated in this
study. Moreover, the combination of two faults at different locations simultaneously was
simulated. On the other hand, the textual descriptions of the failed TCs were generated
as a result of injecting the faults in real time during the system executions. To conclude, a
high quality dataset with a high fault class coverage can be collected with low effort during
real time simulation. Such datasets can be used for developing innovative algorithms and
DL models for various tasks and applications, e.g., the fault detection, diagnosis, prognosis
and root cause analysis of failed TCs.

As future work, the proposed framework can be extended to cover the faults that may
occur in other system components, e.g., ECU and the network. Furthermore, new features
can be added to the proposed framework by considering the user’s behaviour during data
acquisition, i.e., the HIL-based digital test drive. Finally, the proposed framework will be
further improved using the ML approach so that the fault test case generation process can
be performed automatically, effectively and systematically, according to the requirements.

Author Contributions: Conceptualization, M.A.; methodology, M.A.; software, M.A.; validation,
M.A.; formal analysis, M.A.; investigation, M.A.; resources, M.A., C.K. and A.R.; data curation,
M.A.; writing—original draft preparation, M.A.; writing—review and editing, M.A., C.K. and A.R.;
visualization, M.A.; supervision, M.A., C.K. and A.R.; project administration, M.A., C.K. and A.R. All
authors have read and agreed to the published version of the manuscript.



Electronics 2024, 13, 437 19 of 20

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Abboush, M.; Knieke, C.; Rausch, A. Representative Dataset Generation Framework for AI-based Failure Analysis during

real-time Validation of Automotive Software Systems. In Proceedings of the 57th Hawaii International Conference on System
Sciences (HICSS), Honolulu, HI, USA, 6–10 January 2024; pp. 7312–7322.

2. Kukkala, V.K.; Tunnell, J.; Pasricha, S.; Bradley, T. Advanced driver-assistance systems: A path toward autonomous vehicles.
IEEE Consum. Electron. Mag. 2018, 7, 18–25. [CrossRef]

3. Koopman, P.; Wagner, M. Challenges in autonomous vehicle testing and validation. SAE Int. J. Transp. Saf. 2016, 4, 15–24.
[CrossRef]

4. D’Ambrosio, J.; Soremekun, G. Systems engineering challenges and MBSE opportunities for automotive system design. In
Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October
2017; pp. 2075–2080.

5. Pretschner, A.; Broy, M.; Kruger, I.H.; Stauner, T. Software engineering for automotive systems: A roadmap. In Proceedings of the
Future of Software Engineering (FOSE’07), Minneapolis, MN, USA, 23–25 May 2007; pp. 55–71.

6. Ebert, C.; Favaro, J. Automotive software. IEEE Softw. 2017, 34, 33–39. [CrossRef]
7. Bello, L.L.; Mariani, R.; Mubeen, S.; Saponara, S. Recent advances and trends in on-board embedded and networked automotive

systems. IEEE Trans. Ind. Inform. 2018, 15, 1038–1051. [CrossRef]
8. ISO 26262-10:2018; Road Vehicles Functional Safety. Available online: https://www.iso.org/standard/68392.html (accessed on 6

January 2024).
9. Garousi, V.; Felderer, M.; Karapıçak, Ç.M.; Yılmaz, U. Testing embedded software: A survey of the literature. Inf. Softw. Technol.

2018, 104, 14–45. [CrossRef]
10. Shokry, H.; Hinchey, M. Model-Based Verification of Embedded Software. Computer 2009, 42, 53–59. [CrossRef]
11. Himmler, A.; Lamberg, K.; Beine, M. Hardware-in-the-Loop Testing in the Context of ISO 26262; Technical Report, SAE Technical

Paper; SAE: Warrendale, PA, USA, 2012.
12. Mihalič, F.; Truntič, M.; Hren, A. Hardware-in-the-loop simulations: A historical overview of engineering challenges. Electronics

2022, 11, 2462. [CrossRef]
13. Chen, Y.; Chen, S.; Zhang, T.; Zhang, S.; Zheng, N. Autonomous vehicle testing and validation platform: Integrated simulation

system with hardware in the loop. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China,
26–30 June 2018; pp. 949–956.

14. Jordan, C.V.; Hauer, F.; Foth, P.; Pretschner, A. Time-series-based clustering for failure analysis in hardware-in-the-loop setups: An
automotive case study. In Proceedings of the 2020 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), Coimbra, Portugal, 12–15 October 2020; pp. 67–72.

15. Vermeulen, B. Functional debug techniques for embedded systems. IEEE Des. Test Comput. 2008, 25, 208–215. [CrossRef]
16. Nair, V.V.; Koustubh, B.P. Data analysis techniques for fault detection in hybrid/electric vehicles. In Proceedings of the 2017 IEEE

Transportation Electrification Conference (ITEC-India), Pune, India, 13–15 December 2017; pp. 1–5.
17. Shafiq, S.; Mashkoor, A.; Mayr-Dorn, C.; Egyed, A. A literature review of using machine learning in software development life

cycle stages. IEEE Access 2021, 9, 140896–140920. [CrossRef]
18. Badihi, H.; Zhang, Y.; Jiang, B.; Pillay, P.; Rakheja, S. A comprehensive review on signal-based and model-based condition

monitoring of wind turbines: Fault diagnosis and lifetime prognosis. Proc. IEEE 2022, 110, 754–806. [CrossRef]
19. Neupane, D.; Seok, J. Bearing fault detection and diagnosis using case western reserve university dataset with deep learning

approaches: A review. IEEE Access 2020, 8, 93155–93178. [CrossRef]
20. Zhang, S.; Zhang, S.; Wang, B.; Habetler, T.G. Deep learning algorithms for bearing fault diagnostics—A comprehensive review.

IEEE Access 2020, 8, 29857–29881. [CrossRef]
21. Zhang, T.; Chen, J.; Li, F.; Zhang, K.; Lv, H.; He, S.; Xu, E. Intelligent fault diagnosis of machines with small & imbalanced data: A

state-of-the-art review and possible extensions. ISA Trans. 2022, 119, 152–171. [PubMed]
22. Theissler, A.; Pérez-Velázquez, J.; Kettelgerdes, M.; Elger, G. Predictive maintenance enabled by machine learning: Use cases and

challenges in the automotive industry. Reliab. Eng. Syst. Saf. 2021, 215, 107864. [CrossRef]
23. Fernandes, M.; Corchado, J.M.; Marreiros, G. Machine learning techniques applied to mechanical fault diagnosis and fault

prognosis in the context of real industrial manufacturing use-cases: A systematic literature review. Appl. Intell. 2022, 52,
14246–14280. [CrossRef] [PubMed]

24. Rengasamy, D.; Jafari, M.; Rothwell, B.; Chen, X.; Figueredo, G.P. Deep learning with dynamically weighted loss function for
sensor-based prognostics and health management. Sensors 2020, 20, 723. [CrossRef] [PubMed]

http://doi.org/10.1109/MCE.2018.2828440
http://dx.doi.org/10.4271/2016-01-0128
http://dx.doi.org/10.1109/MS.2017.82
http://dx.doi.org/10.1109/TII.2018.2879544
https://www.iso.org/standard/68392.html
http://dx.doi.org/10.1016/j.infsof.2018.06.016
http://dx.doi.org/10.1109/MC.2009.125
http://dx.doi.org/10.3390/electronics11152462
http://dx.doi.org/10.1109/MDT.2008.66
http://dx.doi.org/10.1109/ACCESS.2021.3119746
http://dx.doi.org/10.1109/JPROC.2022.3171691
http://dx.doi.org/10.1109/ACCESS.2020.2990528
http://dx.doi.org/10.1109/ACCESS.2020.2972859
http://www.ncbi.nlm.nih.gov/pubmed/33736889
http://dx.doi.org/10.1016/j.ress.2021.107864
http://dx.doi.org/10.1007/s10489-022-03344-3
http://www.ncbi.nlm.nih.gov/pubmed/35261480
http://dx.doi.org/10.3390/s20030723
http://www.ncbi.nlm.nih.gov/pubmed/32012944


Electronics 2024, 13, 437 20 of 20

25. Safavi, S.; Safavi, M.A.; Hamid, H.; Fallah, S. Multi-sensor fault detection, identification, isolation and health forecasting for
autonomous vehicles. Sensors 2021, 21, 2547. [CrossRef]

26. Jung, D. Data-driven open-set fault classification of residual data using Bayesian filtering. IEEE Trans. Control Syst. Technol. 2020,
28, 2045–2052. [CrossRef]

27. Yang, L.; Yu, J.; Guo, Y.; Chen, S.; Tan, K.; Li, S. An Electrode-Grounded Droplet-Based Electricity Generator (EG-DEG) for Liquid
Motion Monitoring. Adv. Funct. Mater. 2023, 33, 2302147. [CrossRef]

28. Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A. TON_IoT telemetry dataset: A new generation dataset of IoT and
IIoT for data-driven intrusion detection systems. IEEE Access 2020, 8, 165130–165150. [CrossRef]

29. Mallak, A.; Fathi, M. Sensor and component fault detection and diagnosis for hydraulic machinery integrating LSTM autoencoder
detector and diagnostic classifiers. Sensors 2021, 21, 433. [CrossRef] [PubMed]

30. Bafroui, H.H.; Ohadi, A. Application of wavelet energy and Shannon entropy for feature extraction in gearbox fault detection
under varying speed conditions. Neurocomputing 2014, 133, 437–445. [CrossRef]

31. Theissler, A. Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection. Knowl.-Based
Syst. 2017, 123, 163–173. [CrossRef]

32. Tagawa, T.; Tadokoro, Y.; Yairi, T. Structured denoising autoencoder for fault detection and analysis. In Proceedings of the Asian
Conference on Machine Learning, PMLR, Hong Kong, China, 20–22 November 2015; pp. 96–111.

33. Biddle, L.; Fallah, S. A novel fault detection, identification and prediction approach for autonomous vehicle controllers using
svm. Automot. Innov. 2021, 4, 301–314. [CrossRef]

34. Yin, Z.; Hu, N.; Chen, J.; Yang, Y.; Shen, G. A review of fault diagnosis, prognosis and health management for aircraft
electromechanical actuators. IET Electr. Power Appl. 2022, 16, 1249–1272. [CrossRef]

35. Jang, J.; Lee, H.; Kim, J.C. Carfree: Hassle-free object detection dataset generation using carla autonomous driving simulator.
Appl. Sci. 2021, 12, 281. [CrossRef]

36. D’Amico, G.; Marinoni, M.; Nesti, F.; Rossolini, G.; Buttazzo, G.; Sabina, S.; Lauro, G. TrainSim: A railway simulation framework
for LiDAR and camera dataset generation. IEEE Trans. Intell. Transp. Syst. 2023, 24, 15006–15017. [CrossRef]

37. Gonzalez-Jimenez, D.; Del-Olmo, J.; Poza, J.; Garramiola, F.; Madina, P. Data-driven fault diagnosis for electric drives: A review.
Sensors 2021, 21, 4024. [CrossRef]

38. Raveendran, R.; Devika, K.; Subramanian, S.C. Brake fault identification and fault-tolerant directional stability control of heavy
road vehicles. IEEE Access 2020, 8, 169229–169246. [CrossRef]

39. Guo, L.; Li, R.; Jiang, B. Fault detection and diagnosis using statistic feature and improved broad learning for traction systems in
high-speed trains. IEEE Trans. Artif. Intell. 2022, 4, 679–688. [CrossRef]

40. Garramiola, F.; Del Olmo, J.; Poza, J.; Madina, P.; Almandoz, G. Integral sensor fault detection and isolation for railway traction
drive. Sensors 2018, 18, 1543. [CrossRef] [PubMed]

41. Abboush, M.; Bamal, D.; Knieke, C.; Rausch, A. Intelligent fault detection and classification based on hybrid deep learning
methods for hardware-in-the-loop test of automotive software systems. Sensors 2022, 22, 4066. [CrossRef] [PubMed]

42. Abboush, M.; Knieke, C.; Rausch, A. GRU-Based Denoising Autoencoder for Detection and Clustering of Unknown Single
and Concurrent Faults during System Integration Testing of Automotive Software Systems. Sensors 2023, 23, 6606. [CrossRef]
[PubMed]

43. Automotive Simulation Models. Available online: https://www.dspace.com/en/pub/home/products/sw/automotive_
simulation_models.cfm#175_26315 (accessed on 11 April 2023).

44. Abboush, M.; Bamal, D.; Knieke, C.; Rausch, A. Hardware-in-the-Loop-Based Real-Time Fault Injection Framework for Dynamic
Behavior Analysis of Automotive Software Systems. Sensors 2022, 22, 1360. [CrossRef]

45. Abboush, M.; Knieke, C.; Rausch, A. Intelligent Identification of Simultaneous Faults of Automotive Software Systems under
Noisy and Imbalanced Data based on Ensemble LSTM and Random Forest. IEEE Access 2023, 11, 140022–140040. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s21072547
http://dx.doi.org/10.1109/TCST.2020.2997648
http://dx.doi.org/10.1002/adfm.202302147
http://dx.doi.org/10.1109/ACCESS.2020.3022862
http://dx.doi.org/10.3390/s21020433
http://www.ncbi.nlm.nih.gov/pubmed/33435428
http://dx.doi.org/10.1016/j.neucom.2013.12.018
http://dx.doi.org/10.1016/j.knosys.2017.02.023
http://dx.doi.org/10.1007/s42154-021-00138-0
http://dx.doi.org/10.1049/elp2.12225
http://dx.doi.org/10.3390/app12010281
http://dx.doi.org/10.1109/TITS.2023.3297728
http://dx.doi.org/10.3390/s21124024
http://dx.doi.org/10.1109/ACCESS.2020.3024251
http://dx.doi.org/10.1109/TAI.2022.3172896
http://dx.doi.org/10.3390/s18051543
http://www.ncbi.nlm.nih.gov/pubmed/29757251
http://dx.doi.org/10.3390/s22114066
http://www.ncbi.nlm.nih.gov/pubmed/35684686
http://dx.doi.org/10.3390/s23146606
http://www.ncbi.nlm.nih.gov/pubmed/37514900
https://www.dspace.com/en/pub/home/products/sw/automotive_simulation_models.cfm#175_26315
https://www.dspace.com/en/pub/home/products/sw/automotive_simulation_models.cfm#175_26315
http://dx.doi.org/10.3390/s22041360
http://dx.doi.org/10.1109/ACCESS.2023.3340865

	Introduction
	Related Work
	Methodology
	Real-Time HIL Simulation System
	FI Framework with HIL
	Dataset Collection and Preparation

	Case Study and Experimental Implementation 
	Case Study
	Experimental Setup

	Results and Discussion
	Representative Time Series Dataset
	Automated Test Evaluation
	Representative Textual Dataset
	Setup Cost Discussion

	Conclusions
	References

