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Abstract: The concept of learning has multiple interpretations, ranging from acquiring knowledge or
skills to constructing meaning and social development. Machine Learning (ML) is considered a branch
of Artificial Intelligence (AI) and develops algorithms that can learn from data and generalize their
judgment to new observations by exploiting primarily statistical methods. The new millennium has
seen the proliferation of Artificial Neural Networks (ANNs), a formalism able to reach extraordinary
achievements in complex problems such as computer vision and natural language recognition. In
particular, designers claim that this formalism has a strong resemblance to the way the biological
neurons operate. This work argues that although ML has a mathematical/statistical foundation, it
cannot be strictly regarded as a science, at least from a methodological perspective. The main reason
is that ML algorithms have notable prediction power although they cannot necessarily provide a
causal explanation about the achieved predictions. For example, an ANN could be trained on a
large dataset of consumer financial information to predict creditworthiness. The model takes into
account various factors like income, credit history, debt, spending patterns, and more. It then outputs
a credit score or a decision on credit approval. However, the complex and multi-layered nature of
the neural network makes it almost impossible to understand which specific factors or combinations
of factors the model is using to arrive at its decision. This lack of transparency can be problematic,
especially if the model denies credit and the applicant wants to know the specific reasons for the
denial. The model’s “black box” nature means it cannot provide a clear explanation or breakdown
of how it weighed the various factors in its decision-making process. Secondly, this work rejects
the belief that a machine can simply learn from data, either in supervised or unsupervised mode,
just by applying statistical methods. The process of learning is much more complex, as it requires
the full comprehension of a learned ability or skill. In this sense, further ML advancements, such as
reinforcement learning and imitation learning denote encouraging similarities to similar cognitive
skills used in human learning.

Keywords: machine learning; scientific method; imitation learning; mirror neurons

1. Introduction

The notion of learning is far from sharing a unique interpretation as the scientific liter-
ature presents different perspectives, ranging from pedagogic to philosophic approaches,
even involving sociology or hard sciences. For example, according to Bloom [1], learning
is the acquisition of knowledge or skills (“Learning is a relatively permanent change in
behavior potentiality that occurs as a result of reinforced practice or experience”), while
according to Jonassen [2], learning is the construction of meaning (“Learning is the process
whereby individuals construct meanings based on their experiences.”). Authors such as
Vygotsky [3] consider learning as a social phenomenon, which originates from dynamic
transactions between an individual and the surrounding environment. Similarly, Piaget [4]
relates learning to social development, besides requiring information acquisition. As the
process necessitates an intense social exchange, Jarvis [5] claims that it is not related to time
or places but is an ongoing activity.
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ML seeks to exploit supervised or unsupervised algorithms that can learn a specific
task (for example, classification or clustering) from a dataset. The former technique re-
quires a dataset including the specification of examples of a target variable under study;
the remaining variables are called predictors. The latter technique involves, for example,
dataset clustering, which returns in output two or more data clusters, whose points are
grouped according to spatial distance and, ultimately, by similarity. Other cases of unsuper-
vised learning include self-organizing maps (SOMs), principal component analysis (PCA),
and so forth. A training algorithm takes as an input a dataset of known observations,
which is partitioned into “train” (TR) and “test” (TS) subsets (80% and 20% of the initial
dataset). The algorithm is then trained on TR until it can achieve the task with acceptable
performance. In the second phase, the prediction ability of the algorithm is tested against
the “test” dataset. ML researchers claim that an algorithm has learned a task when it
can generalize its judgment when considering new observations that were not part of the
original dataset. More formally, determining whether an ML model has “learned” or not
depends on the specific context and the goals of the model. However, some general criteria
can be considered to assess whether a model has successfully learned, as per Table 1.

Table 1. ML model learning benchmarks.

Benchmark Description

Accuracy The model should be able to make accurate predictions or classifications on unseen data. This means that the
model should generalize well beyond the training data it was exposed to.

Generalizability The model should not be overly specific to the training data and should be able to perform well on data from
different sources or with different distributions.

Robustness The model should be resistant to noise and outliers in the data and should not be easily fooled by adversarial
examples.

Interpretability The model should be understandable and explainable, allowing us to understand how it makes its decisions and
identify potential biases or limitations.

Efficiency The model should be able to train and make predictions efficiently, especially for large or complex datasets.

Relevance The model should be relevant to the task at hand and should address the specific problem or question being posed.

Novelty The model should provide new insights or solutions that were not previously known or available.

Impact The model should have a positive impact on the real world, either by solving a problem, improving a process,
or making a decision.

Scalability The model’s ability to maintain performance as the size of the dataset increases.

Fairness Ensuring the model does not create or reinforce unfair bias against certain groups.

Transferability The ability of the model to adapt to different tasks or domains with minimal adjustments.

Compliance Adhering to legal and ethical standards, especially in sensitive areas like healthcare or finance.

Sustainability Evaluating the environmental impact of training and deploying the model, such as energy consumption.

Security Ensuring the model is resistant to attacks and does not expose sensitive data.

User Experience The ease with which end-users can interact with the model and its outputs.

Reproducibility The ability for other researchers or practitioners to recreate the model and achieve similar results.

Artificial neural networks (ANNs) have been used massively in the last few decades for
a wide range of applications, particularly in the fields of computer vision, natural language
processing, and robotics (see [6–8])The original ANN’s architecture—at least in the initial
proposal [9]—is loosely based on the way biological neurons work. Following some initial
difficulties in simulating the boolean XOR operator [10], ANNs (see, for example, [11] for
the historical path) have evolved to more advanced formalisms, such as convolutional
neural networks (CNN). The latter is usually employed in the field of computer vision,
for example, to recognize hand-written symbols. More advanced connective models refer
to long-short term memory (LSTM), which are empowered with the ability to remember
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the sequence of their inputs. As a result, they proved to be successful in recognizing human
written text [12] by preserving the context of a sentence or even forecasting time series and
predicting data patterns (see [13]).

This article presents the following claims:

• The argument regarding the innovative character of ML techniques should be taken
with caution, as some of the deployed techniques are rather old and usually originate
from the field of statistics;

• The argument concerning ML regarded as science does not hold entirely, as some of the
most important ML models (i.e., ANNs) lack explanatory capabilities, although they
preserve powerful prediction powers;

• The term “machine learning” oversells the concept. Although ML models are trained
to accomplish specific tasks, there is no evidence that the model has any kind of
comprehension of the phenomenon under study. This contradicts the essence of
learning itself, as human beings usually learn to perform a task by developing a partial
or even complete understanding of the skill at hand;

• It is not universally true that the knowledge exhibited by an ML model is effective,
as the data used to train the model might be unbalanced, biased, or insufficient to
allow the model to generalize what it has learned;

• On the other hand, innovative ML techniques, such as reinforcement learning (RL) or
even imitation learning (IL) have a resemblance with learning methods exploited by
human beings studied in cognitive sciences.

The target of this work consists of ML researchers and computer engineers. How-
ever, the core of the discussion holds special significance for philosophers of science and
researchers in epistemology. Specifically, this article aims to contribute to the ongoing
dialogue about the epistemological foundations and the scientific status of ML, critically
reviewing its core foundations, limitations, and current perspectives.

The article is organized as follows. Section 2 formalizes the most important ML
connective models. Section 3 reviews the epistemological status of ML, and provides an
analysis of its shortcomings. Section 4 reviews the related work. Finally, Section 5 concludes
this work and suggests some lines of future work. Figure 1 offers a visual representation of
the work’s structure.

Figure 1. Visual representation of the work’s structure.

2. Machine Learning Paradigms

This section formalizes the most important paradigms related to learning process
in AI.

The continuous evolution of the ML field has yielded the introduction of additional
standalone paradigms and methodologies. Within the spectrum of ML, imitation learning
(IL), reinforcement learning (RL), supervised learning (SL), unsupervised learning (UL)
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and semi-supervised learning (SSL) stand out as pivotal domains of investigation. They
share the characteristic of enabling the machine to learn through a model, but they dif-
fer in how the learning operation is performed. Beyond these fundamental delineations,
the AI research landscape encompasses a rich tapestry of methodologies such as self-
supervised learning, active learning, transfer learning, distance learning, ensemble learn-
ing, Bayesian learning, structured learning, hierarchical learning, feature learning, metric
learning, and continual learning. Each of these paradigms makes distinct contributions to
the overarching goal of enabling computational systems to extract insights, make decisions,
and adapt to diverse scenarios. Figure 2 shows the relationship between AI, ML, and the
main advanced ML paradigms that are analyzed in this paper.

Figure 2. The relationship between AI, ML, and the main ML advanced ML paradigms.

2.1. Imitation Learning

Imitation learning (IL) comprises a learner that outputs responses by reproducing
the observed behavior in the environment. Zheng et al. [14] propose a taxonomy of
applications and challenges. The standard IL model includes the interaction between the
following core elements: an agent, the environment, a teacher, and a policy. The agent (i.e.,
the learner) acquires information for its training. It deploys two main methods for learning
a policy about its future actions: (i) learning from a teacher through a demonstration or
(ii) learning from experience (using a reward or penalty factor to evaluate its progress).
Regardless of the learning method, the agent must observe both the demonstration and
the environment to acquire knowledge for its subsequent decision-making process. The IL
learner is often composed of multiple spatial components, and therefore, its data include
the coordinates of both the components and their joints, also potentially incorporating
spatial limits. The environment comprises a finite and discrete set of stochastic states,
S = {s1, s2, . . . , sn}, where each state represents the situation of the agent (position in the
environment, information of its joints and status of a target). The agent is characterized by
a discrete set of available actions A = {a1, a2, . . . , an}, and interacts within the environment
to achieve a given goal. The objective of the learning process is the development of a correct
policy. The latter is denoted by a mapping between state s and action a to achieve a goal
(i.e., desired behavior, or correct output). The agent uses the policy to decide which action
ai it must take after the actual state si of the environment is inputted. Learning through
teacher demonstration works with a pair (si, dai), where the state si is a vector of features
in that instant, and the action dai is the performed action by the demonstrator (i.e., teacher).
Learning through experience works instead with a reward (or a penalty, if negative) after an
action ai is taken. It works with a tuple (si, ai, ri, si+1) of input state si, performed action ai,
awarded reward ri for the evaluation of the decision and new state si+1 of the environment.
The main difference between the two types of learning is the inclusion of a teacher or a
reward in the model. In both cases, the learning process involves capturing patterns and
relationships within the data, allowing the agent to make informed decisions in similar
future scenarios. The incorporation of a teacher provides explicit guidance, while reward-
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based learning relies on consequential feedback from the environment, emphasizing the
adaptability and autonomy of the agent in refining its decision-making capabilities. The
outputted action is a vector of the parts of the agent that must be moved to change the
environment state according to the learned decision-making policy. Figure 3 shows a
schema of the setting of the IL model. The learner (i.e., the agent) is surrounded by the
environment and uses the provided information from the demonstrator (i.e., the teacher)
and the state si from the environment as the input, to output an action ai. The process is
then repeated. Takayuki et al. [15] observe that the teacher is often human, making IL the
best choice for transferring knowledge from humans to robots. IL performs optimally in
autonomous control systems, and high-dimensional problems are solved efficiently. As
outlined by Hussein et al. [16], one prominent application of IL involves the training of
robots performing various actions, such as driving vehicles. In this context, a robot consists
of multiple movable joints, and the state vector si encapsulates their coordinates before any
action is executed. The vector representing the subsequent state change, si+1, encompasses
the new coordinates of these joints following the performed actions. Moreover, the authors
underscore that, despite IL exhibiting superior performance in scenarios where other
ML paradigms encounter challenges, it is not without limitations. For example, (i) high-
performance results are limited to task-specific environments; (ii) effectiveness is highly
dependent on the quality of the provided demonstrators; (iii) locally optimal solutions
are more often reached than globally optimal solutions; (iv) policy representation issues
impose penalties on both data and computational efficiency.

Figure 3. Imitation learning framework: a visual representation of the IL process.

2.2. Reinforcement Learning

Reinforcement learning (RL) comprises a learner who has to discover which actions (or
subsequent groups of actions) to perform to reach the objective of maximizing an assigned
numerical reward. RL is characterized by trial-and-error search and delayed reward phases.
The standard RL model comprises the interaction between an agent, the environment,
a policy, a reward, and a value function. The environment includes a finite and discrete set
of stochastic states, S = {s1, . . . , sn}. Furthermore, the agent is denoted by a discrete set
of available actions, A = {a1, . . . , an}. The agent is the learner, as it pursues a given goal
through its decision on which action to perform at each step. Agent and environment are
connected, as the agent is situated within the environment and interacts with it (by changing
its state). The agent receives the current state si of the environment as an input. Depending
on the action that can return the highest reward ri, the agent behaves accordingly and
produces an output (i.e., the action ai). The future state of the environment depends on
the given current state and on the chosen action. The reward ri serves as the signal from
the environment to the agent after each interaction, indicating the goodness of the action
taken in a specific state. In reinforcement learning, Kaelbling et al. [17] analyzed algorithms
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for systematic trial-and-error searches to discover successful combinations of actions that
maximize the cumulative reward (i.e., maximize the expected measure of reinforcement).
The value function, denoted as V(s) represents the expected cumulative reward from a
given state s onwards. The agent aims to maximize this expected cumulative reward by
selecting actions that lead to higher values of the value function. The goodness of the
model’s performance can be evaluated based on the final values of the value function
across different states. Figure 4 shows a schema of the setting of the RL model. The learner
(i.e., the agent) is surrounded by the environment and uses its state si and its reward ri as
the input to output an action ai. The process is then iterated. Despite RL’s crucial role in
various applications, it has some major drawbacks that negatively impact its performance.
Casper et al. [18] investigate the issue of inputted human feedback, stating that there
exist challenges with the human feedback, with the reward model, and with the policy.
Humans cannot evaluate difficult tasks well and can be easily misled. The reward function
cannot represent different humans from different societies uniquely without introducing
bias. Last, a correctly developed policy can pursue the wrong goal when the true goal is
in reality correlated with other factors. Li [19] presents an extensive taxonomy outlining
the diverse applications of RL in real-world scenarios. In particular, Dworschak et al. [20]
investigate the relationship between RL and design automation, concluding that RL’s
feasibility, training effort, and transferability show encouraging results.

Figure 4. Reinforcement learning framework: a visual representation of the RL process.

2.3. Supervised Learning

Supervised learning (SL) is an ML paradigm where the algorithm is inputted with a
labeled dataset. A defining feature of this method lies in its provision of both observations
and corresponding desired outputs to the learner. The model is trained on input–output
pairs, denoted as (xi, yi), where xi is the input and yi is the corresponding desired out-
put. The primary goal of supervised learning is to establish a mapping between input
and output, enabling the accurate prediction of unseen data in the future. The algorithm
evaluates its predictive accuracy by employing a loss function, quantifying the disparity
between predicted outcomes and actual labels. The loss function L(ŷ, y) represents the
extent of the model’s deviation from the true values, where ŷ signifies the predicted output
and y denotes the actual label. The learning process involves the algorithm adjusting its
parameters iteratively to minimize the discrepancy between its predictions and the true
labels. When the error, quantified by the loss function, reaches an acceptable threshold,
the model is deemed sufficiently trained and therefore able to generalize and accurately
predict outcomes for new, unseen data instances. Figure 5 shows a schema of the setting
of the SL model. The learner obtains the data xi as the input and produces an output
ŷi. The output is compared with the true value yi via the calculation of the loss function
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L(ŷi, yi). The process is then iterated. SL performs excels in classification tasks, as Ay-
odele [21] shows. SL is particularly suitable for the task of training ANNs, as they are
highly dependent on the retrieved knowledge from the inputted data (i.e., on the available
true values of outputs). Mehlig [22] explores classification tasks solved through ANNs
trained using labeled datasets inputted to SL. The perceptron learning process involves the
adjustment of the model weights and biases based on the loss function. The output of a
perceptron where observations and weights are inputted is produced through an activation
function. As a result, the learning process involves adjusting the weights and biases of per-
ceptrons to minimize the loss function value. As highlighted by Liu et al. [23], SL’s success
extends across diverse domains, including information retrieval, data mining, computer
vision, speech recognition, bioinformatics, cheminformatics, and market analysis. How-
ever, the authors caution that achieving low training error does not necessarily guarantee
optimal performance during testing due to the imperative need for generalizability, aiming
to avoid both underfitting and overfitting. One of the primary limitations of SL lies in its
requirement for labeled data during the input phase, necessitating pairs of inputs and corre-
sponding outputs for model training. To mitigate this constraint, semi-supervised learning
(SSL) and unsupervised learning (UL) present alternatives that demand, respectively, fewer
or no output labels as the inputs for training.

Figure 5. Supervised learning framework: a visual representation of the SL process.

2.4. Unsupervised Learning

Unsupervised learning (UL) assumes that learning occurs through inputted unla-
belled data into an algorithm. The unsupervised paradigm works by finding patterns,
relationships, grouping, and structures within the inputted data without any guidance.
Therefore, the input data are X = {x1, x2, . . . , xn} and the algorithm must autonomously
identify meaningful representations (i.e., hidden patterns or relationships) within the data.
Naeem et al. [24] explain that UL makes machines more intelligent as it enables them
to learn independently using models that detect trends and patterns and make decisions
based on them. Notable UL applications concern clustering and dimensionality reduction.
Clustering a dataset means partitioning the data into clusters (i.e., groups) such that similar
instances xi are grouped. In a clustering model, C = {c1, c2, . . . , ck} represent the set of
clusters, where each ci is a subset of X. The algorithm aims to minimize an objective func-
tion, often involving the within-cluster variance or a measure of similarity. Mathematically,
it is expressed as

min
C

k

∑
i=1

∑
x∈ci

D(x, µi) (1)

where µi is the centroid or representative of cluster ci, and D() is a distance metric. In
dimensionality reduction, the goal is to represent the data in a lower-dimensional space
while preserving its essential characteristics. The objective is to find a mapping function
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that minimizes the reconstruction error (i.e., the dissimilarity between the original data
points and their new versions).

min
f

n

∑
i=1

∥xi − f (xi)∥2 (2)

Figure 6 shows a schema of the setting of the UL model. The learner obtains the data
xi as the input and produces an output C (for example, the clusters), satisfying the designed
evaluation metric. One notable advantage of employing UL algorithms lies in their inherent
suitability for handling unstructured data. Many UL algorithms are specifically designed
to navigate and extract meaningful patterns from datasets that lack predefined labels or
organized structures. This adaptability makes UL particularly effective in scenarios where
the data are unorganized, allowing these algorithms to discern underlying structures,
relationships, or clusters without the need for explicit supervision.

Figure 6. Unsupervised learning framework: a visual representation of the UL process.

2.5. SemiSupervised Learning

Semi-supervised learning (SSL) is a hybrid form that combines both UL and SL, as the
inputted data are a mixture of both input-only and input–output couples. SSL is advised in
situations where SL is required, but obtaining a complete dataset is not possible (for exam-
ple, for expensive issues). Again, the objective is to learn a pattern to classify future available
data. In addition to unlabelled data X = {x1, x2, . . . , xn}, the algorithm is provided with
some supervision information (i.e., labelled data) X′ = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
Chapelle [25] explains the importance of SSL: it can be used for a variety of tasks where
most data are unlabelled. A disadvantage in using SSL is that, as unlabelled data carry less
information than labelled data, to increase prediction accuracy significantly, a great amount
of input data is required. An advantage is instead that the presence of unlabelled data
helps in improving the model’s generalization and performance. Figure 7 shows a schema
of the setting of the SSL model. The learner obtains the data xi as the input and produces an
output ŷi. The output is confronted with the true value yi (if available) via the calculation
of the loss function L(ŷi, yi). The process is then repeated. Note that the line of the ground
truth is dotted, as most observations are not inputted with their expected output.

2.6. Comparison of the Proposed ML Paradigms

The analyzed ML paradigms share some common features although they present also
major differences.
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Figure 7. Semi-supervised learning framework: a visual representation of the SSL process.

In RL, the focus is on training an agent to make decisions within a given environment.
The agent learns by performing actions and receiving rewards or penalties, thereby de-
veloping a strategy or policy to maximize cumulative rewards over time. This method
is particularly effective in scenarios that require a balance between exploration and ex-
ploitation, such as in-game playing (such as chess or go), autonomous vehicle navigation,
robotics, and recommendation systems. RL does not require labeled data; instead, it relies
on reward feedback from the environment. SL, on the other hand, is centered around learn-
ing a function that maps inputs to outputs. This approach is suitable for tasks such as image
and speech recognition, weather forecasting, and medical diagnosis, where the goal is to
predict the output for a new input based on the learned function. The effectiveness of SL
largely depends on the quantity and quality of the labeled data available for training. UL di-
verges from these paradigms by focusing on identifying patterns or structures in unlabeled
data. Without explicit outcome labels to guide the learning process, UL algorithms seek to
organize the data in some meaningful way. This form of learning is useful in a variety of
applications, including market basket analysis, gene sequencing, social network analysis,
and organizing extensive document libraries, where the underlying patterns within the
data need to be identified. SSL strikes a balance between supervised and unsupervised
learning. It is particularly useful when there is a limited amount of labeled data augmented
by a larger quantity of unlabeled data. By combining elements from both SL and UL, SSL
can improve learning accuracy. This approach is often implemented in scenarios like web
content classification, language translation, and speech analysis, where acquiring a large
set of labeled data can be challenging or very expensive.

Table 2 reports a comparison between RL, UL, IL and SL. The table does not explicitly
show data about SSL, as it is a hybrid form of UL and SL.

2.7. Large Language Models

The emergence and evolution of large language models (LLMs) like GPT-3 in ad-
vanced machine learning represent a paradigm shift in natural language understanding
and generation. These models, trained on extensive corpora of text data, demonstrate
an unprecedented ability to process and produce human language. This capability has
far-reaching implications across various domains [26,27]. In terms of language understand-
ing, LLMs have set new benchmarks in tasks like sentiment analysis, topic classification,
and contextual interpretation. Their Deep Learning (DL) architectures enable them to grasp
nuanced language features, making them adept at understanding context, irony, and even
cultural references in text. This has significant applications in areas like social media moni-
toring, market analysis, and cultural studies, where understanding the subtleties of human
communication is crucial. Regarding language generation, LLMs have shown proficiency
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in creating coherent and contextually relevant text, ranging from writing assistance to
generating creative content. They are being used in novel applications like generating news
articles, writing poetry, and even scripting for virtual assistants. This capability has opened
new avenues in content creation, where the ability to generate diverse and sophisticated
text is invaluable. Moreover, the adaptability of LLMs in handling various language styles
and formats is notable. From formal reports to casual conversations, these models can
tailor their outputs to fit different linguistic styles, making them versatile tools in fields
such as customer service, where they can interact with users naturally and engagingly. In
the educational domain, LLMs are transforming the landscape by offering personalized
learning experiences. They can provide explanations, solve problems, and interact in an
educational dialogue, making them valuable assets in digital learning platforms. However,
with these advancements come challenges and responsibilities. Issues such as data bias,
ethical considerations in automated content generation, and the potential impact on jobs
in content-related fields are areas of ongoing research and debate. Ensuring responsible
use and continuous improvement of these models is paramount to leverage their poten-
tial positively. LLMs represent a significant milestone in machine learning, pushing the
boundaries of what machines can understand and express in human language. As they
continue to evolve, their impact is expected to grow, reshaping the interaction between
humans and technology.

Table 2. Comparison of RL, UL, IL and SL.

Aspect RL UL IL SL

Learning Objective Optimal Policy Discover Hidden
Structures

Imitate Expert
Behavior

Mapping Input to
Output

Input Data State and Reward Signals Unlabelled Raw Data Demonstrations,
State-Action Pairs

Labelled
Input-Output Pairs

Interaction with
Environment Sequential Decision Making No Explicit Interaction Observing

Demonstrations No Interaction

Feedback Signal Reward Signals Evaluation Metrics or
Criteria

Expert
Demonstrations,

Rewards

Correct Output
Labels

Key Mechanism Exploration-Exploitation and
Policy Learning

Clustering,
Dimensionality

Reduction

Imitation and Policy
Learning Pattern Recognition

Training Approach Trial and Error Self-Organization Learning from Expert
Behavior Error Minimization

Applicability Sequential Decision Making Pattern Discovery Skill Transfer and
Imitation

Classification,
Regression

Examples of
Applications Game Playing, Robotics

Clustering,
Dimensionality

Reduction

Autonomous
Vehicles, Robotics

Image Recognition,
Speech Recognition

3. Discussion

Although the issues of bias, fairness, and explainable AI are well-known in the ML
community, their implications and challenges evolve with advancements in technology
and applications. This section revisits these issues in light of recent developments, new
research findings, and emerging technologies, showing how these perennial concerns are
manifesting. Furthermore, it is necessary to stress the urgency of continuous discussion
about these issues in the ML community. The fact that these issues are well-known does
not diminish their importance; ongoing dialogue is crucial for developing better prac-
tices, updating policies, and educating newcomers to the field. In this sense, this section
makes these issues accessible or relevant to a broader, perhaps non-specialist audience.
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The implications of bias, fairness, and explainability in ML extend beyond the technical
community to sectors like policy-making, legal affairs, and public perception. Furthermore,
it is important to clarify the epistemological position of ML, what is novel, and what is
derived from other disciplines.

3.1. The Not-so-Novel Contribution of ML

ML mostly employs methods from statistics or even from other scientific areas (for
example, data clustering was proposed initially in anthropology by Boas [28] and then
Murdock [29] to identify cultural patterns and understand the relationships between
different cultural groups). The recent availability of vast amounts of data joined with more
powerful and affordable hardware, allowed researchers to exploit consolidated statistical
methods from a new perspective.

Following this direction, ML embodies a synthesis of historical theoretical foundations
and contemporary advancements. While the field relies on well-established statistical
principles dating back to the late 18th century, its contemporary significance is derived from
the amalgamation of these classical theories with novel methodologies and unprecedented
computational capabilities.

The foundational algorithms, such as linear regression and K-nearest neighbors, un-
derscore the enduring relevance of classical statistical concepts.

As a result, the novelty of ML consists mostly in the adoption of advanced ANNS
formalisms (see Table 3).

Table 3. ML models in chronological order.

Model Year Description

Linear Regression Late 18th century
(method of least squares)

The principles of linear regression, a fundamental statistical
technique, were established in the 18th century.

Principal Component Analysis
(PCA) 1933 (formalized)

The concept of principal component analysis dates back to the
early 20th century, and it was formally introduced by Karl
Pearson in 1933.

Neural Networks (Perceptron) 1940s

Neural network concepts trace back to the 1940s with the
introduction of the perceptron. The resurgence of neural
networks with DL occurred around the 2010s, facilitated by
advances in computing power and data availability.

Naive Bayes 1950s The foundations of the Naive Bayes classifier were laid in the
1950s, and it has since been widely used in classification tasks.

K-Nearest Neighbors (K-NN) 1950s
The K-NN algorithm, while not formalized as it is today, has its
roots in the 1950s. It became more widely used in pattern
recognition and classification in subsequent decades.

K-means Clustering 1950s
K-means is a foundational clustering algorithm developed in the
1950s. It partitions data into k distinct clusters based on the mean
distance to the centroids.

Hierarchical Clustering 1950s
Hierarchical clustering, developed in the 1950s, creates a tree of
clusters by either merging smaller clusters into larger ones or
splitting larger clusters.

k-Medians Clustering 1950
An adaptation of k-means, k-medians clustering uses medians
instead of means, which can provide robustness to outliers in
the dataset.

Perceptron 1957 The first and simplest type of artificial neural network devised by
Frank Rosenblatt.

Hidden Markov Models (HMM) 1960s
Hidden Markov Models were introduced in the 1960s by
Leonard E. Baum and others, primarily for applications in
speech recognition.
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Table 3. Cont.

Model Year Description

Decision Trees 1960s
The concept of decision trees was introduced in the 1960s,
with the development of algorithms like ID3 (Iterative
Dichotomiser 3) by Ross Quinlan.

Backpropagation Network 1970s Popularized in the 1980s, this network employs the
backpropagation algorithm for training, crucial for DL.

Mean Shift 1975 Developed in 1975, Mean Shift is a non-parametric clustering
technique used for locating the maxima of a density function.

Expectation Maximization (EM) 1977
Introduced in 1977, EM is an iterative method used for finding
maximum likelihood estimates in statistical models, particularly
in the presence of latent variables.

Convolutional Neural Network
(CNN) 1980s Pioneered by Yann LeCun, CNNs excel in processing data with a

grid-like topology, such as images.

Recurrent Neural Network (RNN) 1980s Designed to recognize patterns in sequences of data, such as text
or time series.

Support Vector Machines (SVM) 1990s
The formulation of support vector machines for classification and
regression tasks was introduced by Vladimir Vapnik and his
colleagues in the 1990s.

DBSCAN 1996
DBSCAN, introduced in 1996, is a density-based clustering
algorithm that groups points that are closely packed together,
marking outliers in less dense regions.

Long Short-Term Memory (LSTM) 1997
An advanced RNN variant, capable of learning long-term
dependencies, introduced by Sepp Hochreiter and Jürgen
Schmidhuber.

Spectral Clustering 2000s
Spectral clustering, gaining popularity in the 2000s, uses
eigenvalues of a similarity matrix to reduce dimensionality before
clustering in fewer dimensions.

Random Forest 2001 The random forest algorithm was proposed by Leo Breiman in
2001, extending the concept of decision trees.

Gradient Boosting Machines 2001
The concept of gradient boosting, the foundation for algorithms
like AdaBoost and XGBoost, was proposed by Jerome Friedman
in 2001.

Generative Adversarial Network
(GAN) 2014 Proposed by Ian Goodfellow, GANs are used for generating data,

particularly in image generation tasks.

Transformer Networks 2017 Introduced in the paper “Attention Is All You Need”,
transformers revolutionized natural language processing.

The prediction power is one of the key aspects of ML methods. Improving the
prediction accuracy of ML models is a dynamic field where several intertwined strategies
are employed. At the core of enhancing ML models is the focus on data quality and quantity.
High-quality, relevant, and comprehensive datasets form the bedrock upon which effective
models are built. To complement this, feature engineering and selection play a crucial role,
as identifying the most impactful features can significantly influence a model’s predictive
power. The complexity and architecture of the model itself are also crucial. While more
complex models, such as deeper neural networks, can capture intricate patterns in data, it is
a delicate balance to maintain to avoid overfitting. In this context, ensemble methods, which
combine predictions from multiple models, emerge as a powerful approach to achieving
more accurate and robust predictions. Hyperparameter optimization is another key area of
focus. By fine-tuning the model’s hyperparameters through techniques like grid search,
random search, and Bayesian optimization, significant performance improvements can
be realized. This is complemented by advanced algorithms, particularly in DL, that have
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set new standards in various domains like image processing, sequential data analysis,
and natural language processing. Transfer learning, where a model trained on one task
is adapted for another, is especially effective in scenarios where labeled data are limited.
Regularization techniques such as dropout and L1/L2 regularization are also employed to
prevent overfitting, enhancing the model’s generalization capabilities on new data. The
concept of real-time learning and adaptation, where models continually update and adapt
to new data, is gaining traction for its ability to improve predictive accuracy over time.
Finally, adopting cross-disciplinary approaches that incorporate insights and techniques
from fields like statistics, cognitive science, and physics is leading to the development of
innovative and more accurate ML models. See, for example, Zewe (https://news.mit.edu/
2023/improving-machine-learning-models-reliability-0213, visited on 5 January 2024), who
developed a technique for effective uncertainty quantification in machine learning models.
This method, which does not require model retraining or additional data, uses a simpler
companion model (metamodel) to assist the original model in estimating uncertainty. This
approach focuses on both data and model uncertainty, helping in better decision making
and trust in model predictions.

3.2. ML and Scientific Method

The scientific method provides a systematic and rigorous framework for investigating
the natural world. It is a cyclical process that encompasses observation, hypothesis formu-
lation, experimentation, data analysis, and conclusions. The formulated hypotheses are
tentative explanations that attempt to account for the observed phenomena. As a result,
hypotheses are informed by existing knowledge, scientific principles, and logical reasoning.
Well-defined hypotheses are specific, testable, and falsifiable, meaning they can be proven
wrong through experimentation. Experimentation is the crucible of the scientific method.
In particular, it is the process of testing hypotheses against empirical evidence. Experiments
are carefully controlled, isolating variables and minimizing biases to ensure the reliability of
the results. The raw data collected from experiments undergo meticulous analysis and inter-
pretation. Scientists employ statistical techniques, mathematical models, and visualization
tools to extract meaning from the data, identifying trends, patterns, and correlations. Data
analysis provides crucial insights into the validity of the hypotheses. Based on the analysis
of experimental data, it is possible to conclude the validity of the hypotheses. If the data
support the hypotheses, the conclusions provide provisional explanations for the observed
phenomena. However, if the data contradict the hypotheses, the conclusions lead to their
rejection or modification, prompting further investigation. The scientific method is not a
linear process; it is an iterative cycle of observation, hypothesis formulation, experimenta-
tion, data analysis, and conclusion formation. As new evidence emerges, existing theories
are refined, and new hypotheses are formulated, leading to a continuous advancement
of scientific knowledge. The essence of the scientific method lies in its objectivity, rigor,
and self-correcting nature. It is a process that embraces doubt, skepticism, and critical
thinking, ensuring that scientific knowledge is not based on dogma or personal beliefs but
on empirical evidence and logical reasoning.

It can be argued that ML can be considered an extension of the scientific method,
particularly in its use of data-driven hypothesis testing and iterative refinement. ML
algorithms are trained on vast amounts of data, from which they extract patterns and
make predictions. This process resembles the scientific method’s emphasis on observation,
hypothesis formulation, and experimentation. Additionally, ML models are continuously
evaluated and refined based on their performance on new data, mirroring the scientific
method’s iterative nature. As new data become available, ML models can be updated to
improve their accuracy and generalizability. AI and ML are being increasingly integrated
into scientific discovery [30], helping scientists generate hypotheses, design experiments,
and collect data. It highlights instances where AI has significantly advanced fields like pure
mathematics and molecular biology, demonstrating the predictive power and the ability
to guide human intuition in complex scientific challenges. Boge et al. [31] review the role

https://news.mit.edu/2023/improving-machine-learning-models-reliability-0213
https://news.mit.edu/2023/improving-machine-learning-models-reliability-0213
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of ML as an optimization tool executed by digital computers and how its increasing use
signifies a shift from traditional scientific aims of explanation towards pattern recognition
and prediction. It explores the implications of this shift for scientific explanation and the
potential future directions of ML in scientific research. Finally, Buchholz et al. [32] discuss
some of the insights into the use of ML models as a method for science outside of traditional
success areas. It opens up a debate on how ML coordinates with other scientific methods,
transitioning from explanatory to predictive models, and how it applies in various scientific
domains like AlphaFold in protein folding prediction.

Opponents of this view argue that ML represents a distinct approach to knowledge
discovery, departing from the traditional scientific method in several ways. While ML
excels at pattern recognition and prediction, it cannot often provide causal explanations for
the observed patterns. The “black box” nature of many ML models makes it challenging
to understand the underlying mechanisms driving their predictions. Furthermore, ML
algorithms are often trained on data that may contain biases or inaccuracies, which can lead
to biased or erroneous predictions. These biases can be difficult to detect and eliminate,
particularly in complex models. Table 4 summarizes some of the most important similarities
between the scientific method and ML.

Table 4. A comparison between scientific method and ML aspects.

Aspect Scientific Method ML

Goal Understand the natural world and uncover its underlying
principles

Make predictions or classifications based on patterns
observed in data

Approach Data-driven, but with a strong emphasis on theoretical
understanding and causal explanations

Data-driven, with a focus on empirical patterns and
correlations

Methods Observation, experimentation, hypothesis testing,
mathematical modeling, and rigorous analysis

Statistical analysis, data mining, ML algorithms,
and pattern recognition

Evaluation Predictive accuracy, replicability, falsifiability,
and explanatory power

Predictive accuracy, generalizability, interpretability,
and robustness

Explanation Strives to provide causal explanations for observed
phenomena

May not always be able to provide causal explanations,
but can provide insights into correlations and patterns

Iteration
Iterative process of observation, hypothesis testing,
and refinement, driven by theoretical understanding and
empirical evidence

Iterative process of training, evaluation,
and refinement, driven by data availability and
performance optimization

Limitations Limited by the scope of human understanding and the
ability to design and execute meaningful experiments

Limited by the quality and quantity of data,
the inherent biases in data, and the complexity of
real-world problems

Strengths Provides a robust framework for uncovering causal
relationships and understanding the natural world

Enables efficient and accurate predictions in complex
domains, including applications in healthcare, finance,
and technology

Relevance
Essential for understanding the fundamental principles
that govern the universe and making informed decisions
about the world around us

Plays a crucial role in solving real-world problems and
driving innovation in various fields

Whether a branch of science that cannot causally explain a fact but can predict facts can
still be considered science depends on the specific definition of science being used. A narrow
definition of science might require that all scientific explanations be causal, meaning
that they must explain the underlying mechanisms that cause the observed phenomena.
Under this definition, a branch of science that cannot provide causal explanations would
not be considered true science. However, a broader definition of science might allow for
non-causal explanations, as long as they are still based on empirical evidence and rigorous
methodology. Under this definition, a branch of science that can predict facts, even if it
cannot explain them causally, could still be considered science. For example, meteorology
can predict the weather with a high degree of accuracy, but it cannot fully explain the



Electronics 2024, 13, 416 15 of 30

complex mechanisms that drive weather patterns. However, meteorology is still considered
a science because its predictions are based on empirical evidence and rigorous methodology.

3.3. An Overview about Induction

Within epistemology, induction stands as a mode of reasoning that delves into the
realm of generalities, extracting overarching principles or patterns from a constellation of
specific observations or instances. This inductive approach navigates from the particular
to the universal, seeking to discern broader truths from empirical evidence. However,
as observed by the philosopher David Hume, the very foundation of induction harbors in-
herent logical complexities. Consider the plight of an individual who has only encountered
white swans throughout their existence. Induction would compel them to posit a universal
conclusion: all swans are white. This inference, distilled from repeated encounters with
white swans, is then extrapolated to encompass the entirety of swans, both observed and
unobserved. However, the validity of this conclusion rests upon the premise that future
instances will mirror past observations. Philosophically, this challenge manifests as the
“problem of induction”, as articulated by Hume. The mere observation of white swans does
not conclusively guarantee that all swans, including those yet to grace our presence, will
share the same hue. The inductive process hinges upon the assumption that the future
mirrors the past, a notion that introduces an element of uncertainty.

Mathematical induction functions as a foundational element within the realm of
mathematical proofs, facilitating the meticulous establishment of universally applicable
assertions through finite observations. The crux of mathematical induction is encapsulated
in its dual-phased structure, consisting of a base case and the inductive step. The former
is a fundamental stage that necessitates the verification of the proposition’s validity for
the smallest element within the designated set. For instance, to substantiate the claim
that each even number can be represented as the sum of two consecutive integers, one
must validate this assertion for the smallest even number, namely 2. The inductive step
entails demonstrating that the proposition remains valid for any natural number after the
base case. To extrapolate the aforementioned even number proposition, it is imperative
to illustrate that if any even number, denoted as ‘n’, can be expressed as the sum of two
consecutive integers, then its successor, represented as ‘n + 2’, can similarly be articulated
in the same fashion. Philosophical scrutiny of mathematical induction unveils its inherent
strengths and limitations. On the one hand, it furnishes a rigorous framework for deriving
universal truths from finite observations, a task that would prove insurmountable through
deductive reasoning alone. The capacity to generalize from specific instances constitutes a
pivotal aspect of mathematical exploration and discovery.

Within the domain of inductive reasoning, it is of paramount importance to recognize
a fundamental epistemological principle: the conclusion derived from an inductive argu-
ment does not possess an inherent necessity for truth, even when the premises themselves
are demonstrably accurate. Unlike deductive reasoning, where the truth of premises un-
equivocally guarantees the truth of the conclusion, inductive reasoning does not provide
such absolute assurance. This epistemological uncertainty arises from the very nature of
inductive inference, which hinges on the generalization from specific instances to formulate
a broader statement. The extrapolation of a universal claim based on observed particulars
inherently introduces an element of probabilistic reasoning rather than logical necessity.
As such, the veracity of the conclusion remains contingent upon the assumption that future
instances will align with past observations—an assumption that is inherently susceptible
to doubt. Philosophically, this characteristic of inductive reasoning highlights the distinc-
tion between justification and truth. While inductive arguments can provide a plausible
justification for a conclusion based on available evidence, the conclusion’s truth cannot be
definitively guaranteed, as it is predicated on the unverifiable assumption that the future
will conform to past patterns.

Moreover, induction is not objective. The conclusions of inductive arguments are
based on subjective judgments about the weight of evidence. Consider a scenario where
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a person has sampled a few restaurants in a new city and, based on their subjective
experiences, concludes that all the restaurants in that city must offer exceptional cuisine.
The individual’s judgment about the quality of the sampled restaurants forms the basis of
an inductive inference that extends to all other restaurants in the city.

In this case, the conclusion drawn—namely, that all restaurants in the city provide
exceptional cuisine—is heavily dependent on subjective judgments. The individual’s
assessment of “exceptional” is inherently subjective, influenced by personal tastes, prefer-
ences, and experiences. The weight assigned to the limited sample of restaurants may not
accurately represent the diversity or variation in culinary quality across the entire city.

The subjectivity in evaluating the evidence becomes evident when considering that
another person with different tastes or experiences might visit a different set of restau-
rants and reach a contrasting conclusion about the overall quality of the city’s dining
establishments. This example highlights how inductive reasoning, especially when based
on subjective assessments, can lead to conclusions that lack objectivity and may not be
universally applicable.

Induction serves as a foundational concept in the field of ML, particularly in its
early stages, as it underpins the process of learning patterns and making predictions from
data. ML algorithms rely on induction to generalize from observed examples and make
predictions or decisions about unseen instances. This approach is particularly valuable
when dealing with complex and unstructured data where explicit programming may be
challenging. One notable example of an ML algorithm based on induction is the decision
tree algorithm. Decision trees recursively partition the data based on features, creating
a tree-like structure where each node represents a decision based on a specific feature.
The algorithm learns these decision rules from labeled training data, making it capable of
predicting the class or outcome of new, unseen instances. Another example is the K-nearest
neighbors (K-NN) algorithm, which makes predictions based on the majority class of the
K-nearest data points in the feature space. In this case, the algorithm induces patterns
from the relationships between data points, allowing it to classify new instances based on
their proximity to existing examples. Furthermore, support vector machines (SVMs) are
a class of algorithms that learn decision boundaries by maximizing the margin between
different classes in the feature space. SVMs, in their essence, rely on the inductive process
of generalizing from training data to classify new data points.

In the context of strict ML, which primarily involves learning patterns from data to
make predictions or decisions, the concept of induction remains a fundamental aspect.
Inductive reasoning, or generalizing from specific examples to make predictions about new
instances, is inherent in the learning process of ML models. ML models are designed to
recognize patterns and relationships within data, and this recognition typically involves
the inductive inference that observed patterns will generalize to unseen instances. The ex-
amples provided earlier, such as decision trees, K-nearest neighbors, and support vector
machines, all rely on inductive reasoning to make predictions. It is important to note that
the nature of ML is such that models learn from data, and this learning process inherently
involves generalization. The very essence of ML is to capture underlying patterns in the
data to make predictions on new, unseen instances. If an ML model did not employ some
form of induction or generalization, it would struggle to make meaningful predictions on
new data.

3.4. The Explanation Issue

Although some models such as polynomial regression and decision trees are consid-
ered “white box” because they are transparent and it is possible to determine the weight of
predictors variable in predicting a target variable, some other formalisms, such as ANNs
and random forests, are regarded as “black box”. Both explanation and interpretation play
a crucial role in regarding the problem of providing causal explanations in ML models.
Explanation refers to the process of clarifying or providing a comprehensible account of
how a particular decision or outcome was reached by an AI model. It involves breaking



Electronics 2024, 13, 416 17 of 30

down complex model predictions or decisions into understandable terms for users or
stakeholders. The primary purpose of explanation in Explainable AI (XAI) is to enhance
transparency, trust, and accountability. Providing clear explanations helps users, espe-
cially those without a deep understanding of ML, to grasp why a model made a specific
prediction or decision. On the other hand, interpretation, in the context of XAI, involves
understanding and making sense of the internal workings of an ML model. It delves into
uncovering the features, variables, or patterns that contribute significantly to the model’s
predictions. Interpretation goes beyond the surface-level explanation by exploring the
internal mechanisms of the AI model. It helps data scientists and researchers gain insights
into how the model is processing information and which features are influential in its
decision making. Both explanation and interpretation contribute to the overarching goal
of XAI, which is to make AI systems more transparent, understandable, and accountable.
While explanation targets end-users and stakeholders, interpretation is often a concern
for data scientists and researchers seeking to improve the robustness and reliability of ML
models. The benefits of XAI are numerous: (i) increased trust and transparency, as it can
help to increase trust in AI systems by making them more transparent and understandable
to humans; (ii) improved decision making, as it can help humans make better decisions by
providing them with insights into how AI systems work; (iii) reduced bias, as XAI can help
to reduce bias in AI systems by making it easier to identify and correct biases in the data
and the algorithms; and finally, (iv) increased safety XAI can help to increase the safety of
AI systems by making it easier to identify and mitigate risks.

3.5. Understanding the Explanation Issue: A Practical Example

The following example aims to clarify the fundamental issue of balancing explainabil-
ity with accuracy, i.e., evaluating the importance of an accurate model against the value of
a model that explains the motivation behind the obtained results.

The following example takes in account the MNIST (Modified National Institute
of Standards and Technology) database (github.com/cvdfoundation/mnist (accessed on
28 November 2023)). It is a collection of 70,000 images consisting of handwritten digits.
Each entry of the dataset is a 28 × 28-pixel picture depicting a digit between 0 and 9.
Figure 8 reports an example of the content of the dataset. Each image has a label associated,
indicating the contained digit. In particular, X includes the input images, and Y holds
the associated labels. For example, the first image x0 contains the handwritten digit 5,
and therefore the value of its paired label y0 is equal to 5.

Figure 8. Grayscale example of the content of the MNIST dataset.

The objective is to be able to recognize the content of the image to textually reproduce
it. The required classification task—leading to the creation of couples (input image, output
label)—can be accomplished in multiple ways, encompassing both white-box and black-box
models. For comparison, a white-box clustering algorithm (k-means) and a black-box ANN
(specifically a CNN) have been selected.

Figure 9 shows the functioning of both k-means (on the left) and CNN (on the right)
in the considered application.

github.com/cvdfoundation/mnist
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Figure 9. Schemas of the functioning of k-means (on the left) and CNN (on the right).

K-means algorithm is a partitioning clustering algorithm, commonly employed for
grouping data points into distinct clusters based on their similarities. It exhibits clear and
explicit rules to assign data points to clusters. Specifically, it provides intelligible insights
into the clustering process, fostering a comprehensible and interpretable representation
of its decision-making mechanisms. Moreover, the algorithm iteratively refines cluster
assignments by minimizing the sum of squared distances between data points and the
centroid of their respective clusters.

A CNN is a complex structure made of multiple layers and numerous parameters. Its
architecture is characterized by a hierarchical arrangement of layers (including convolu-
tional layers, pooling layers, and fully connected layers), each serving a distinct purpose
(e.g., detecting patterns, pooling downsamples, dimensionality reduction, computational
complexity reduction, . . . ). Fully connected layers integrate high-level features from the
preceding layers, allowing the model to make predictions based on the learned represen-
tations. The relationships and patterns learned by CNNs are often not easily discernible
or explainable in human terms. This lack of transparency poses challenges in under-
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standing the rationale behind the network’s predictions, limiting the interpretability and
trustworthiness of the model in certain contexts.

After inputting the dataset for training both models, the subsequent testing phase
followed. The outcome is depicted in the graph illustrated in Figure 10. Clearly, the CNN
exhibited superior performance in terms of accuracy, achieving high scores in both training
and testing (approaching a value of 1, the highest attainable). In contrast, K-means demon-
strated only half the accuracy of CNN, indicating its comparatively lower efficacy in image
classification. From an accuracy standpoint, CNN emerges as the preferable choice. How-
ever, it is worth noting that K-means provides complete transparency in its decision-making
process, offering insights into how conclusions are derived, a feature not shared by CNN.
As a result, the usage of a CNN enables accurate predictive power, although understanding
the reason for specific predictions can be complex or even impossible.

Figure 10. Graph showing the obtained accuracy over training epochs for both models in training
and validation phases.

3.6. Explanation Supported by Ancillary Models

Integrating explanation frameworks with black box models in ML, such as deep neu-
ral networks, is a crucial step towards enhancing their interpretability, and one effective
method to achieve this is by using decision trees. This integration primarily employs
model-agnostic methods like LIME [33] or SHAP [34], which are designed to create simple,
interpretable models that locally approximate the predictions of a complex model. The pro-
cess involves using decision trees to mimic the decision boundary of the black box model
for specific instances, thus providing a clear explanation for individual predictions. Apart
from local approximations, there is also a focus on global approximations. This involves
the development of simpler models like decision trees to understand the overall behavior
of the complex model, a technique known as model distillation. The key challenge here
lies in balancing the decision tree’s simplicity to ensure interpretability while retaining
enough complexity to accurately reflect the black box model’s behavior. Feature importance
analysis is another critical aspect, especially in ensemble methods like random forests. De-
cision trees can help in identifying which features the complex model deems important for
making predictions. However, it is important to interpret these results cautiously, as feature
importance does not necessarily imply causation. Rule extraction is another approach
where decision rules are created to approximate the decision-making process of the black
box model. The complexity of these rules can vary, and there is often a trade-off between
the simplicity of the rules for interpretability and their complexity in capturing the nuances
of the model’s behavior. Ethical and practical considerations also play a significant role in
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this context. Ensuring transparency and trust in AI systems, especially in sensitive areas
like healthcare or finance, is paramount. Moreover, with increasing regulatory demands for
explainable AI decisions, these techniques are becoming essential not just from a usability
standpoint but also for compliance purposes.

In [35], the authors focus on a model-agnostic framework designed for providing
explanations for vision models, evaluating various state-of-the-art methods for explaining
both vision transformers (ViTs) and CNNs. Hassija et al. [36] provide a comprehensive
look at different methods used in explainable AI, focusing on how to interpret black-box
models across various domains, while Tan et al. [37] review global additive explanations for
non-additive models, focusing on the challenges and considerations involved in explaining
black-box models. In conclusion, it is possible to say that the use of decision trees to pair
explanation frameworks with black box models represents an important stride towards
responsible AI. This approach not only enhances the transparency of these models but also
strikes a balance between their predictive accuracy and the ability to provide understand-
able insights into their decision-making processes. This balance is key to the responsible
deployment of AI across various sectors.

3.7. Explainable AI in Oncology Studies

Traditionally, ML models in oncology have focused on predictive analytics, such as
identifying the likelihood of a tumor being malignant based on imaging data. However,
causal inference allows these models to go beyond mere correlations and delve into the
underlying causes. For instance, models might discern why certain tumors respond dif-
ferently to treatments, considering genetic or environmental factors. One of the most
significant impacts of causal inference in ML is the advancement of personalized medicine.
By understanding the causal mechanisms behind a patient’s response to treatment, ML
can aid in developing tailored therapies for individual patients, potentially increasing
treatment effectiveness and reducing side effects. Causal models also play a crucial role in
understanding disease progression. They can analyze longitudinal patient data to iden-
tify factors leading to the advancement of the disease, thus aiding in early intervention
strategies. In drug development, causal inference can be a game-changer. It can identify
potential new therapies or drug targets by understanding the causal pathways of cancer
cells, leading to the development of more effective drugs. Moreover, causal inference can
help in reducing biases in traditional ML models, which sometimes replicate biases present
in the training data. By identifying and correcting these biases, the models become more
accurate and fair. The transition from predictive to explanatory models in ML is pivotal
for oncology. Explanatory models provide insights into why certain treatments work or
why some patients have better outcomes, thus enhancing the decision-making process for
clinicians. Causal inference models’ ability to integrate diverse data sources, including
genetic, environmental, and lifestyle factors, offers a more comprehensive understanding
of cancer. This integration is crucial not only for treatment but also for healthcare policy
and planning, ensuring effective resource allocation.

The recent literature witnesses significant examples in this direction, i.e., Lagemann
et al. [38] explore a neural model that combines convolutional and graph neural net-
works. The work aims to understand causal relationships in high-dimensional biomedical
problems, a critical area in oncology research. The study emphasizes the challenges and
methodologies in learning causal relationships under limited data conditions, which is
often the case in biological and medical research. ML can be employed [39] in classifying
and predicting treatment responses in cancers of unknown primary origin. Specifically, the
authors highlight the significant progress made in using genomic data and AI to improve
diagnostics and treatment plans for such cancers. Featured in Synthese, [40], Buijsman’s
work delves into the broader aspect of causal explanations derived from ML models. While
not exclusively focused on oncology, it offers valuable insights into how causal inference in
ML can contribute to scientific understanding, which is essential in the context of complex
diseases like cancer. Finally, Chu et al. [41] examine the progress made in the field of causal
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effect estimation. It discusses the challenges faced in this domain and the potential future
direction, which is highly relevant to understanding treatment effects and patient outcomes
in oncology.

It has to be noticed that the integration of causal inference in ML is not just a technical
improvement; it is a paradigm shift in oncology. It opens up possibilities for more effective,
personalized, and informed cancer treatment and research, challenging the previous belief
that ML is not suited for this field.

3.8. Bias and Data Fairness Issues

Data fairness in ML refers to the equitable treatment of different groups in the data
used to train ML models [42]. It focuses on ensuring that the data used to train the model
is representative and does not favor or disadvantage any particular group. An example
of a data fairness issue can be described as a dataset used to train a hiring model con-
taining predominantly male candidates, the model may not perform well when assessing
female candidates. Achieving data fairness involves balancing and representing different
groups adequately.

Given the context, the study likely explores methodologies and frameworks for identi-
fying and mitigating biases in journalistic content. This is essential for promoting impar-
tiality and fairness in news reporting, which is crucial for maintaining trust and credibility
in media outlets. The application of data science and analytics techniques in this area
represents an intersection of ML, media studies, and ethics.

Bias can affect the dataset used to train an ML model [43]. Biases in data can manifest in
different forms, including (i) selection bias when certain groups may be underrepresented
or excluded from the dataset, (ii) labeling bias, when errors or biases in the labeling
process occur, (iii) societal bias, reflecting historical or societal prejudices against certain
demographic groups; and finally, (iv) sample bias, when the dataset may not accurately
represent the broader population. For example, a facial recognition system that performs
poorly on certain ethnicities due to underrepresentation in the training data demonstrates
bias. Another example is an employment algorithm that favors candidates from certain
educational backgrounds, leading to discrimination against others. Bias in ML can be
present at various stages of the development and deployment process. It often originates
from biased data used to train models. If the training data contain historical biases or
reflects societal inequalities, the model may learn and perpetuate these biases. Additionally,
bias can be introduced through the choice of features, algorithm design, and even the
labeling process of the training data. Bias can propagate through feedback loops, as biased
predictions may reinforce and exacerbate existing inequalities. Bias in data is a pervasive
issue, as datasets often mirror the biases and inequalities present in society. Historical
and societal biases can be ingrained in various domains, including criminal justice (see,
for example, the case of COMPAS [44], employment [45], healthcare [46], and finance [47].
Biased data can result from historical discrimination, cultural stereotypes, or systemic
inequalities, leading to under-representation or misrepresentation of certain groups. Table 5
summarises the main types of bias.

Table 5. Bias classification.

Bias Description

Selection Bias Certain groups may be underrepresented or excluded from the dataset.
Labeling Bias Errors or biases in the labeling process can introduce inaccuracies.
Societal Bias Reflects historical or societal prejudices against certain demographic groups.
Sample Bias The dataset may not accurately represent the broader population.

Bias in ML can significantly erode trust. When users perceive that a system produces
unfair or biased outcomes, it undermines confidence in the technology. Lack of trust can
lead to resistance to adopting AI solutions, particularly in critical areas such as healthcare,
finance, and criminal justice. The problem is indeed serious. Unchecked bias can perpetuate



Electronics 2024, 13, 416 22 of 30

and exacerbate societal inequalities, leading to discriminatory outcomes. Moreover, biased
AI systems may result in real-world harm, affecting individuals’ lives and reinforcing
systemic disparities. If not effectively addressed, the lack of fairness and transparency in
AI systems could potentially lead to public skepticism, regulatory scrutiny, and a decline
in public and institutional trust. While it might not trigger a new AI winter, it could
impede the responsible and widespread adoption of AI technologies. Therefore, efforts to
mitigate bias, ensure fairness, and enhance transparency in ML are critical for its sustainable
and ethical development. Raza et al. [48] focuses on the critical issue of bias detection
and fairness in news articles. This research is particularly relevant in the era of digital
media, where news content can have a significant influence on public opinion and societal
perspectives. In [49], the same authors propose, in a different work, a comprehensive AI
framework that blends software engineering principles with fairness in ML, particularly for
healthcare applications. The framework is designed to improve modularity, maintainability,
and scalability. It begins with the identification of key actors and their roles, emphasizing
the importance of understanding users to provide direction for the framework. This is
followed by an analysis of requirements, where the problems in healthcare that need
addressing are identified, along with specific fairness requirements, keeping in mind the
ethical, legal, and social implications. Data collection is a critical step, focusing on gathering
diverse and representative data samples while ensuring data privacy and security. In data
pre-processing, best practices are employed to clean and normalize the data, and fairness
pre-processing techniques are implemented to minimize biases. Feature selection and
engineering involve identifying relevant features and using domain knowledge to create
meaningful features that contribute to fairness. The model selection and training phase
considers software engineering principles and employs in-processing fairness techniques
during model training. The model’s performance is then evaluated using both standard and
fairness-specific metrics, followed by hyperparameter tuning and applying post-processing
fairness techniques to refine predictions. Finally, the model is deployed and continuously
monitored in a production environment, adhering to software engineering best practices.
Regular evaluation of the model on new data is important to ensure its fairness and
generalizability over time. User feedback is also crucial in validating the framework
approach, highlighting the role of empirical science in software engineering.

3.9. Science and Pseudo Science

Science and pseudoscience are distinguished by their methodologies, principles,
and the reliability of their claims. Precision in defining each concept is crucial for un-
derstanding their distinct characteristics. Science is a systematic and empirical endeavor
aimed at acquiring knowledge about the natural world through observation, experimen-
tation, and the formulation of testable hypotheses. It relies on a rigorous methodological
approach, often referred to as the scientific method, which involves (i) Collecting data
and observing natural phenomena; (ii) proposing a testable and falsifiable explanation for
the observed phenomena; (iii) conducting controlled experiments to test the hypothesis;
(iv) analyzing the results to draw conclusions; (v) subjecting findings to scrutiny and vali-
dation by the scientific community. The key characteristics of scientific endeavors include
empirical evidence, falsifiability, repeatability, and a commitment to revising theories based
on new evidence. Scientific knowledge is provisional, and subject to refinement as our
understanding evolves. In contrast, pseudoscience, on the other hand, refers to activities,
beliefs, or claims that are presented as scientific but lack the rigorous methodology and em-
pirical basis of genuine scientific inquiry. Characteristics of pseudoscience include (i) lack
of empirical evidence or reliance on anecdotal evidence rather than systematic observation;
(ii) unfalsifiability, as pseudoscientific theories are often constructed in a way that makes
them immune to falsification or disproof; (iii) pseudoscientific ideas typically lack scrutiny
and validation by the broader scientific community through peer-reviewed processes;
(iv) reliance on anecdotes, since pseudoscience often relies on personal testimonials or
stories rather than systematic data collection; (v) persistence of belief despite contradictory
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evidence and a lack of adaptability to new information. Examples of pseudoscience include
astrology, homeopathy, and various paranormal claims. It is important to note that the
term “pseudoscience” does not necessarily imply intentional deception; individuals may
sincerely believe in pseudoscientific ideas due to cognitive biases or a lack of understanding
of scientific principles.

While a biased ML model may produce outputs that reflect or even amplify existing
biases (such as racism and sexism), it would be an oversimplification to categorize such
a model as pseudoscience. Biases in ML models can be identified and mitigated through
careful analysis, reevaluation of data, and improvements to algorithms. They are contex-
tual and can be traced back to the data and processes involved. Although ML is not a
traditional natural science in the sense of physics or chemistry, it shares commonalities with
scientific inquiry. It involves hypothesis testing, experimentation, and validation processes,
although the emphasis is often on predictive accuracy rather than causal explanations.

3.10. RL, IL, and Human Learning

RL and human learning based on punishment and compensation share similarities
in their fundamental principles of learning from feedback through a system of rewards
and penalties.

RL algorithms operate on a feedback loop where an agent receives feedback in the
form of rewards or penalties based on its actions. The algorithm learns to optimize its
behavior to maximize cumulative rewards over time. Humans often learn through a similar
feedback mechanism. Positive experiences or outcomes are akin to rewards, encouraging
the repetition of certain behaviors, while negative experiences or consequences act as pun-
ishments, discouraging undesirable actions. On the other hand, RL involves the challenge
of assigning credit to past actions that contribute to current outcomes. The algorithm must
understand which actions led to rewards or penalties, even if they occurred temporally
distant from the outcome. Similarly, humans often need to attribute consequences, whether
positive or negative, to specific actions taken in the past. This understanding informs
future decision making to repeat successful actions or avoid those associated with negative
outcomes. Rather interestingly, RL models often need to generalize knowledge gained in
one context to perform well in new, unseen situations, opposite to humans exhibiting a
capacity for generalization, applying lessons learned from one domain to make informed
decisions in novel or related situations.

A similar parallelism could be established between IL and human learning. Mirror
neurons represent specialized neuronal entities manifesting a distinctive property. Their
activation occurs not only during the execution of a particular action by an individual
but also upon witnessing a comparable action being performed by another individual.
This distinctive dual-response characteristic implies a pivotal role of mirror neurons in the
comprehension and interpretation of the actions of others, thereby facilitating empathic
resonance with their emotional states and intentions. The identification of mirror neurons
within the macaque premotor cortex (PMC) by Rizzolatti et al. [50,51] in the early 1990s
revolutionized the landscape of our comprehension regarding the neural substrates of social
cognition. Subsequent investigations have substantiated the presence of mirror neurons
across diverse cerebral regions, including the inferior frontal gyrus (IFG), supplementary
motor area (SMA), and insula. The activation of mirror neurons during the observation
of actions is posited to emanate from a phenomenon termed “motor resonance”. This
mechanism entails the simulation of observed actions within the human motor system,
mirroring the neural activity analogous to that which would be engendered if we were
executing the observed action. This simulation process engenders an understanding of
the intention and objective underlying the observed action, thereby facilitating empathetic
responses and social interactions. Mirror neurons have been implicated in an expansive
array of social cognitive processes, encompassing different research fields. The role of
mirror neurons supports different interpretations [52]. For example, they empower the
comprehension of the significance and purpose of observed actions, affording the ability to
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anticipate the likely outcomes of such actions. Likewise, they facilitate the acquisition of
novel skills and behaviors through observational learning, enabling individuals to emulate
and adopt actions demonstrated by others. Mirror neurons substantially contribute to
the empathetic experience by facilitating the shared emotional resonance with others,
fostering an enhanced understanding of their emotions and perspectives. Furthermore,
they could play a role in the theory of mind, the capacity to attribute mental states to oneself
and others, thereby enabling an understanding of the beliefs, intentions, and desires of
fellow individuals.

Indeed, there are notable parallels between IL in the ML field and imitation learning
in cognitive science, despite the different domains and mechanisms involved (see [53]).
Both fields leverage the concept of learning from observed behavior, albeit with distinct
methodologies and objectives. Firstly, IL involves training a model by observing demon-
strations of a task performed by an expert. The model learns to imitate the expert’s actions
and behavior. Similarly, individuals observe and mimic the actions of others as part of
the social learning process. Secondly, the transfer of knowledge applies to both realms. IL
allows knowledge transfer from a knowledgeable agent (demonstrator) to a learning agent,
enabling the latter to acquire skills without explicitly programmed rules. On the other hand,
imitation in cognitive development allows individuals to transfer knowledge and acquire
new skills by observing and replicating the behaviors of others in their social environment.
Thirdly, IL often involves implicit learning, where the learning algorithm extracts patterns
and strategies from observed demonstrations without explicit instruction. At the same time,
children—for example—engage in implicit imitation learning as they observe and replicate
actions in their environment without explicit teaching. However, there are other similarities.
For example, IL models can adapt to variations in the environment and generalize their
learned behaviors to new, unseen situations, as opposed to individuals, who can adapt
learned behaviors to different contexts and generalize skills acquired through imitation
to various situations. IL is also crucial in the development of socially intelligent agents,
allowing them to interact effectively with humans and other agents and respond well
against challenges in ambiguous or complex environments where the mapping between
actions and outcomes is not straightforward.

4. Related Work

This section embraces different perspectives on the methodological aspects of ML. It
is articulated in three subsections, reviewing (i) the perspective of ML as agnostic science,
(ii) the urge for the validation of the scientific method employed by ML, and finally (iii) the
successful contributions to ML as a science within other disciplines. A dedicated subsection
reviews the originality of the present contribution concerning the scientific literature.

4.1. ML as Agnostic Science

The problem of interpretability has become more and more urgent in the realm of ML,
although a clear definition of the term is far from clear. For example, Krishnan [54] claims
that interpretation within the context of ML systems refers to the elucidation or presentation
of information in comprehensible terms. In the field, interpretability is formally defined
as the capacity to explicate or present information in a manner understandable to human
comprehension. Within a rigorous framework, model transparency is characterized by
the feasibility for an individual to contemplate the entirety of the model simultaneously,
as proposed by Lipton et al. [55], with a specific emphasis on the all-encompassing nature of
this transparency. A secondary aspect of transparency involves the accessibility of intuitive
explanations for each component of the model, including inputs, parameters, and calcula-
tions. In the representation referred to as “transparent”, the states of a system are portrayed
in a manner amenable to explicit scrutiny, analysis, interpretation, and understanding by
humans. Moreover, transitions between these states are delineated by rules possessing
analogous interpretative properties.
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Napoletani et al. [56] reconsider the role of computational mathematics has changed
in light of new disciplines, such as genomics, big data techniques, and data science. The au-
thors introduce four methodologies to clarify the approach to ML, i.e., (i) the microarray
paradigm, (ii) the pre-eminence of historical phenomena, (iii) the conceptualization of de-
velopmental processes, and finally, (iv) the principle of forcing. Concerning the microarray
paradigm, researchers believe that a high volume of data about a phenomenon, opportunely
queried, can provide meaningful insight into the phenomenon itself. The authors remark
that in the microarray paradigm, solutions are derived through an automated process
of fitting data to models devoid of any inherent structural comprehension beyond the
immediate resolution of the problem. In this sense, they formulate the theory of “agnostic
science”. The pre-eminence of historical phenomena is supported by the concept of fitness
landscape (a metaphorical representation of the relationship between the genetic makeup
of organisms and their ability to survive and reproduce in a specific environment), allow-
ing the authors to infer that the timeframe for transitioning from one local optimization
process to another in the development of such phenomena is considerably longer than
the time required for the optimization processes themselves. According to the authors,
the conceptualization of developmental processes can be understood by considering the
theory of evolution, epitomizing how a qualitative framework can engender quantitative
understanding. Despite its non-mathematical nature and lack of quantitative predictions,
the theory’s inherent logical structure and conceptual framework have served as a corner-
stone of biological inquiry, fostering the development of specific mathematical models since
its inception. Finally, the principle of forcing consists of the notion that various distinct tech-
niques, which have been developed to apply advanced mathematical concepts to empirical
problems, can be unified under a shared methodological perspective. This perspective
revolves around the idea of systematically applying mathematical ideas and methods to
the data. As a result, according to Napolitani et al., the concept of historical phenomena
and the principle of forcing appear relevant primarily within the context of extensive data
sets, thus exhibiting a profound reliance on the microarray paradigm. The articulation of
historical phenomena inherently redirects focus from the states of phenomena towards
the developmental processes that give rise to them. The motif inspired by the principle
of forcing is delved into by Napolitani et al. [57]. The authors contend that numerous
optimization methods can be construed as exemplifying the concept of forcing. This occurs
even in instances where detailed and credible models of a phenomenon are absent or fail
to substantiate the application of said technique. Specifically, the implication of forcing is
demonstrated in particle swarm optimization methods and the optimization-based mod-
eling of image processing problems. From these observations, a principle applicable to
general data analysis methods is extrapolated, termed ’Brandt’s principle.’ This principle
posits that an algorithm achieving a steady state in its output has effectively resolved a
problem or necessitates replacement. Finally, it is posited that biological systems, and phe-
nomena adhering to general morphogenetic principles, represent a natural context for the
application of this principle.

The theory of data analysis as “agnostic science” is further explored by Napole-
tani et al. [58,59] posits that data science constitutes a cohesive and innovative approach to
empirical challenges that, in its broadest sense, does not contribute to the comprehension
of phenomena. Within the novel mathematization inherent in data science, mathematical
techniques are not chosen based on their relevance to a particular problem; rather, they are
employed through a process of ’forcing.’ This involves the application of mathematical
methods to a specific problem solely based on their capacity to reorganize data for sub-
sequent analysis and the inherent richness of their mathematical structure. Specifically,
we contend that a comprehensive understanding of DL neural networks emerges within
the framework of forcing optimization methods. Lastly, we delve into the broader inquiry
concerning the suitability of data science methodologies in problem solving. Our argument
emphasizes that this inquiry should not be construed as a quest for a correlation between
phenomena and specific solutions generated by data science methods. Instead, the focus



Electronics 2024, 13, 416 26 of 30

is on elucidating the internal structure of data science methods through precise forms
of understanding.

4.2. Discussions around the Validity of a Scientific Method in ML

The methodological approaches in ML research can be reviewed more precisely. For ex-
ample, ref. [60] highlights a gap between current ML practices and the traditional scientific
method, particularly in the areas of hypothesis formulation and statistical testing. The au-
thors suggest that ML research often lacks the systematic rigor found in other scientific
disciplines. They advocate for incorporating empirical science methodologies into ML,
including controlled, reproducible, and verifiable experimental designs. This, they argue,
would not only improve the foundational science of DL but also enhance the quality and
reliability of applied ML research. From a different angle, Krenn et al. [61] explore how
artificial intelligence (AI) can contribute to scientific understanding. It presents a philoso-
phy of science framework to evaluate AI’s role in scientific understanding and identifies
three dimensions where AI can contribute: as a computational microscope, as a resource
of inspiration, and as an agent of understanding. Each dimension is examined through
various examples, highlighting AI’s potential to reveal new scientific insights, inspire novel
ideas, and potentially develop new scientific understanding autonomously. The article
emphasizes the distinction between scientific discovery and understanding, underscoring
AI’s role in advancing scientific knowledge.

Van Calster et al. [62] discuss how the calibration of predictive algorithms in clinical
decision making is critical. Inaccurate calibrations can lead to false expectations and
misguided decisions, emphasizing the need for predictive models that are well-calibrated
for the specific population and setting. The heterogeneity of patient populations and
changing healthcare dynamics necessitate continuous monitoring and updating of models.
The overarching goal is to enhance the efficacy of predictive analytics in shared decision
making and patient counseling.

Varoquax et al. [63] provide a comprehensive set of guidelines for effectively im-
plementing and evaluating ML in the area of medical imaging. This work stresses the
critical need for data integrity, emphasizing the separation of test data right from the
outset to avoid data leakage. The document also underscores the necessity of having a
clearly defined methodology for choosing model hyperparameters, while avoiding the
use of test data in this process. The authors further advise on the importance of having a
sufficiently large test dataset to ensure statistical significance, recommending hundreds or
ideally thousands of samples, with performance metrics supported by confidence intervals.
This paper advocates for the use of diverse data sets that accurately reflect patient and
disease heterogeneity across multiple institutions, incorporating a wide range of demo-
graphics and disease states. The authors call for strong baseline comparisons that include
not only state-of-the-art ML techniques but also traditional clinical methods. They also
highlight the need for a critical discussion on the variability of results, considering random
elements and data sources. Moreover, it is suggested to employ a variety of quantitative
metrics to capture different aspects of the clinical problem, linking them to pertinent clinical
performance indicators, and making informed decisions about trade-offs between false
detections and misses. Additionally, it is recommended to include qualitative insights and
involve groups most impacted by the application in the design of evaluation metrics.

Bouthillier et al. [64] review the balance between empirical and exploratory research
in the field of ML, particularly in DL. The authors highlight the importance of empirical
research in building a robust knowledge base and ensuring steady scientific progress.
Conversely, exploratory research is valued for its role in expanding the research horizon
with new findings. However, it is important to pay attention to overly focusing on ei-
ther approach, as it can lead to non-robust foundations or hinder progress by limiting
exploration. Recent critiques in DL methodology are mentioned, emphasizing the need to
understand the balance between these two research methods. The authors use the example
of batch-norm in DL to illustrate the importance of both exploratory and empirical research,
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suggesting that a better synergy between the two can lead to more efficient and rational
development in the field.

4.3. ML as a Science

Thiyagalingam et al. [65] support the view that ML can be regarded as a science by
emphasizing the importance of benchmarking in the field. It discusses the challenges and
approaches in developing benchmarks for scientific ML, highlighting how these bench-
marks are essential for evaluating and improving ML algorithms in scientific applications.
The paper underscores the need for systematic, reproducible, and verifiable methods to
assess ML techniques, which are key principles in scientific research. This approach to
benchmarking in ML aligns with the scientific method, suggesting rigorous testing, evalua-
tion, and improvement of algorithms based on empirical data and controlled experiments.
In [66], Researchers are encouraged to explore the use of AI applications in mathematics
education, focusing on providing personalized guidance to students and examining the
effects of AI-based learning methods. An innovative approach involves using educational
data mining (EDM) to explore factors that influence student outcomes and the relationship
between student behaviors and performance. Implementing AI in advanced mathematics
courses, such as geometry, topology, and applied mathematics, as well as in interdisci-
plinary programs like STEM, could be highly beneficial. There is also a need to understand
how AI can assist underrepresented groups in math education, including teachers and high
school students. Beyond quantitative analysis, qualitative research methods are important
for gathering student feedback on AI-assisted learning and delving into their perceptions.
Developing adaptive learning environments in mathematics through collaboration be-
tween education, educational technology, and computer science experts is another key
area. Incorporating modern AI technologies like DL, which offer tools like image and
voice recognition, can provide unique benefits, such as aiding visually impaired students.
The incorporation of AI in mathematics education underscores its scientific nature. This
approach involves systematic research and experimentation, fundamental to the scientific
method. Educational data mining (EDM) emphasizes AI’s role in data analysis, a key scien-
tific process. AI’s interdisciplinary application in advanced mathematics and STEM courses
highlights its integration with other scientific fields, illustrating its scientific versatility.
The development of adaptive learning environments through collaboration among experts
across multiple disciplines showcases AI as both a beneficiary and contributor to scientific
knowledge. The use of advanced technologies like DL and image recognition in education
reflects ongoing scientific innovation within AI. Furthermore, employing both qualitative
and quantitative research methods in studying AI’s impact demonstrates a commitment
to scientific rigor. Finally, AI’s capacity to address complex educational challenges, like
cognitive load and learning anxiety, exemplifies its role in scientific problem solving. Col-
lectively, these aspects demonstrate that AI is deeply rooted in scientific principles and
methodologies, confirming its status as a robust scientific discipline.

Douglas et al. [67] discusses the application of ML in theoretical science, illustrating
how ML methods, including those relying on synthetic data, are being used in fields like
mathematics and theoretical physics. This integration of ML into traditional scientific
domains demonstrates its scientific credibility and its potential to advance various fields of
study. Ourmazd et al. [68] explores the impact of ML in the scientific domain. It presents
various examples where ML has been applied to understand complex phenomena, such as
analyzing noisy data and studying the conformational landscape of viruses. This illustrates
how ML is not just a tool but a scientific approach that contributes to deeper understanding
and discovery in science.

4.4. Contributions of This Work

This work presents, concerning the existing literature, a critical review of the foun-
dations of ML, focusing on its reliance on inductive reasoning and questioning the field’s
capacity for genuine learning. The article uniquely critiques the traditional acceptance of
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inductive reasoning in ML, highlighting philosophical concerns about the reliability and va-
lidity of conclusions drawn from specific instances to general rules. This stance aligns with
philosophical discussions about the ‘problem of induction’, challenging the fundamental
premise that high accuracy in pattern recognition equates to true learning. Additionally,
this article delves into the nuanced differentiation between the old and new aspects of
ML. It provides a critical historical analysis, distinguishing the statistical underpinnings of
methods like supervised learning from more recent developments like convolutional neural
networks (CNNs), long short-term memory networks (LSTMs), and large language models
(LLMs). This approach contributes to a deeper understanding of ML’s evolution, shedding
light on how contemporary advancements either build upon or diverge from traditional
methods. Furthermore, this work’s exploration of what constitutes novelty in ML tech-
niques contributes to the ongoing debate about the nature of innovation in the field. It offers
a grounded perspective that scrutinizes whether recent developments in ML represent
genuine breakthroughs or are merely incremental advancements or adaptations of existing
techniques from other disciplines. Overall, this article adopts a critical and philosophical
lens, less commonly seen in mainstream ML literature, which often emphasizes technologi-
cal and algorithmic progress. This perspective is valuable as it encourages researchers and
practitioners to critically assess ML’s capabilities and development trajectory.

5. Conclusions

Diversely from AI, which suffered repeated winters (i.e., periods where the credibility
of the discipline dramatically decreased to the point of suspending research funds), ML
is here to stay. However, different challenges make its path not always linear. Firstly, its
foundational epistemological approach—induction—is not entirely correct in producing
valid inferences. Secondly, some ML models suffer from the lack of causal explanation
mechanisms, making it difficult to assess their scientific status and affecting the trust of
specialized users (such as oncologists or market traders). Thirdly, issues such as bias and
data fairness greatly affect ML models, undermining the cultural and social perception of
ML and, at large, of AI. However, these faults can be mitigated by methods and techniques
proposed by the scientific literature. For example, explanation frameworks can be paired
with “black models”, using decision trees or polynomial regressors. Similarly, the presence
of bias can be detected and mitigated by pre-processing, in-processing and post-processing
algorithms. More interestingly, techniques such as RL and IL seem to suggest a stronger
similarity in the way ML models and humans learn, possibly implying a more robust
theoretical foundation of AI in general.
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