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Abstract: Redundancies in modern systems, including multiple channels, processes, and storages, are
often exploited to ensure robust operation. Similarly, a Networked Control System (NCS) may utilize
multiple channels to facilitate reliable information transfer in case of channel failure. To enhance
the performance of Linear Quadratic Gaussian (LQG) control in environments with multiple chan-
nels, delays, and packet errors, we propose channel-switching algorithms. Leveraging the encoder
and decoder structure for channel modeling, we derive the decoder estimation error covariance
matrix, characterizing LQG control performance with respect to delay. Based on this insight, we
develop two threshold-based channel-switching algorithms, proven to ensure finite total decoder
estimation error variance under certain conditions. Specific conditions are also identified where
the proposed algorithms offer improved probabilistic stability. Numerical simulations confirm the
superior performance of the proposed algorithms compared to conventional methods across diverse
channel environments. Notably, the proposed algorithms demonstrate near-optimal performance in a
practical operational scenario involving multiple channels, specifically 5G cellular link and Starlink.

Keywords: LQG; networked controlled system; delay; packet error; multi-channels

1. Introduction

With the widespread use of the Internet and the development of wireless networking,
everything is becoming interconnected, including the Internet of Underground Things,
Internet of Battlefield Things, and Internet of Space Things [1]. A system is being extended
with additional measurements from sensors connected through networks. A system may
consist of sub-systems which are physically separated but connected through a network.
While some systems may have a delay due to physical distance or response time to an
input, the underlying network is bound to incur an additional delay. Autonomous vehicles
or smart factories which usually consist of interconnected subsystems can have critical
consequences from dealing with delays in the systems [2].

Traditionally, the study of control of the system with a delay can be divided into
two approaches: Lyapunov–Krasovskii method and Lyapunov–Razumikhin method [3].
While these methods have been instrumental in deriving stability conditions and designing
controllers for diverse system configurations [3,4], their implementation often involves
solving optimization problems, specifically bilinear matrix inequalities (BMI) or linear
matrix inequalities (LMI), which typically entail high computational complexity. A neces-
sary and sufficient condition for the existence of an optimal controller for NCS was shown
to be the existence of the invertible matrices for a system with a constant delay over the
erasure channel [5] and the positive definite condition of the matrices for a system with
random delay and packet drop over forward channel [6]. The majority of research on
a delay-controlled control system has considered a stability condition or the design of a
controller for various conditions.

Two main research directions for controlling a system with multiple channels can be
observed. With the method of modeling discrete delays from continuous-time delays, an
NCS with multiple channels was modeled as an asynchronous dynamical system (ADS)
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through state augmentation [7]. Lyapunov–Krasovskii method was exploited to find a sta-
bility condition of an NCS where measured values of sub-blocks of state information were
transmitted asynchronously over multiple channels [8]. Similarly, the stability condition
of NCS with packet dropout and packet transmission of partitioned states over multiple
channels was given as an LMI condition [9]. The state feedback control for NCS where state
information was transmitted over multiple packets with random delays was designed from
LMI [10]. The reliable operation of an NCS comprising multiple cart-pole systems over a
wireless multi-hop network with 20 nodes was experimentally demonstrated [11]. These
works focus on control over the multi-channels with the asynchronous transmission of
sub-block state information or multi-hop networks, which often result in complex control
methods. The other research direction explores the control of NCS with a forward channel
from the controller to the plant and a feedback channel from the sensor to the controller.
LQG control was developed under the framework of Markovian jump linear systems [12],
and under the separation principle when perfect information on the acknowledgment of
the control input was available [13]. A necessary and sufficient condition for the optimal
control for minimizing the control cost was given as a positive definition condition of a
matrix [14]. A heuristic predictive control [15] and a novel compensator [16] were also
proposed to provide the stabilization of NCS for different channel conditions.

Linear quadratic Gaussian (LQG) control has been extensively studied and found to be
an efficient method for a control system with delays. The LQG control is known to provide
optimal control with decent complexity when perfect state information is not available.
Optimal LQG control for an NCS with acknowledgment information on the transmitted
packet was proved to be the combination of separate optimal state estimation and linear
quadratic regulator (LQR) [17]. An optimal LQG control was proposed as the combination
of a Kalman Filter at the encoder and a switched linear filter at the decoder for an arbitrary
packet drop pattern without assuming a particular statistical assumption [18]. An optimal
LQG control for a system with delay due to erasures in a link between a sensor and a
controller which was modeled as the Markov process was shown to be the combination
of the linear quadratic regulator (LQR) state feedback and the optimal estimator [19]. An
optimal LQR controller for an NCS with the packet dropout of state information and input
delay was shown to be the combination of the state estimator and the controller which were
designed separately [20]. However, an optimal LQG controller without acknowledgment
information was shown to be nonlinear, introducing a dependency on state estimation
and state feedback controller [21]. Later, the optimal control of the LQG in the absence of
the acknowledgment of the packet reception was shown to be linear when the state could
be perfectly recovered from the output [22]. The stability region of the LQG control was
shown to increase with decreasing packet drop probability [23]. A robust LQG control for
a system with a delay was designed to guarantee the specified jitter margin while joint
scheduling and sampling were considered to provide robust LQG performance for a set
of controllers [24]. However, the majority of LQG control studies have been confined to a
single-channel case.

Numerous contemporary devices provide users with a plethora of network access
options, exemplified by the seamless transition between 4G and 5G networks or 5G and
Wi-Fi networks on smartphones. However, existing research, to the best of the author’s
knowledge, predominantly assumes the simultaneous availability of information from
multiple channels, even considering potential data loss due to packet errors [7–16]. It is
important to note that the majority of control systems and devices traditionally accom-
modate only a single connection at any given time. To bridge this gap and ensure robust
performance in real-world system environments, we introduce novel channel-switching
algorithms tailored for NCS that support multiple channels, accommodating a delay and
packet drops. The foundation of these algorithms lies in the well-established LQG con-
trol framework. Leveraging the inherent structure of the encoder and decoder within
the NCS, we derive a decoder error covariance matrix specifically designed for control
systems supporting multiple channels. Our contributions not only involve confirming the
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practical stability embedded in the proposed channel-switching algorithms but also entail
identifying the specific scenarios in which these algorithms outperform alternatives. The
numerical simulations affirm the soundness of the developed theory and the effectiveness
of the proposed algorithms. In essence, the paramount contribution of this work lies in
formulating channel-switching algorithms that exhibit both low complexity and efficacy in
providing better probabilistic stability. Specifically, the primary contribution is the develop-
ment of channel-switching algorithms characterized by low complexity of O(1) without
requiring simultaneous delay information from both channels.

This paper is organized as follows. In Section 2, a closed-loop system model with
an encoder and decoder is given, while LQG control is briefly presented. The design of
an encoder and decoder for a control system with delay and packet error is presented
in Section 3. In Section 4, we introduce two channel-switching algorithms based on the
characteristics of the total error covariance. Based on the characteristics of the total error
covariance two channel switching algorithms are proposed. The specific conditions on
which the proposed algorithm provides better probabilistic stability are provided. Numeri-
cal simulations are provided to verify the developed theory and assess the characteristics
of the proposed channel-switching algorithms in Section 5. Some concluding remarks are
made in Section 6.

2. A System Model and Problem Formulation

We consider a control system where sensor measurements are encoded and transmitted
over two channels alternatively. Only one channel will be active at a time while the other
channel is ready. To provide robust operation, the system may support heterogeneous
communication protocols. For example, information may be transmitted over Wi-Fi while
the 5G network is ready, and vice versa. A corresponding closed-loop system model is
shown in Figure 1. The state equation for the given system can be given as

xk+1 = Axk + Buk + vk, (1)

yk = Cxk + wk, (2)

where the xk ∈ Rn is a state vector, yk ∈ Rp is a measurement vector, uk ∈ Rm is a
control signal. It is assumed that process noise vk and measurement noise wk are normally
distributed with zero mean and covariance matrices, Cv and Cw, respectively. In Figure 1,
encoding and decoding are considered from the perspective of communication. The
measurement signal is transformed to generate the encoded signal xenc,k. The encoded
signal will be transmitted through the channel i which has delay di,k. If channel i experiences
an excessive delay, it switches the transmission to channel 1 − i which has delay d1−i,k. The
delay di,k can be decomposed into the transmission delay di,t,k and delay due to consecutive
packet errors, di,p,k. It is assumed that these two different types of delay are independent.
The decoder generates the decoded signal x̃k, serving as the final estimate of the state xk.
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Figure 1. A system model where z−d represents a channel with a delay d.
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To determine the control signal, we consider an LQG control. A cost function of the
LQG control with a finite time horizon H can be given as

J(u) = Ex0,wk ,vk

{
xT

H+1GH+1xH+1 + ΣH
k=0xT

k Qxk + uT
k Ruk

}
(3)

where xT
k is a transpose of the vector xk, GH+1 is the weight matrix for the terminal state,

and Q and R are nonnegative definite weight matrices for running states and controls,
respectively. To derive optimal control, a conventional value function associated with
dynamic programming can be defined as follows.

Vk(xk) = min
ui ,k≤i≤T

Exk ,wk ,vk

{
xT

T+1GT+1xT+1 + ΣT
i=kxT

i Qxi + uT
i Rui

}
(4)

Equation (4) can be easily further derived as the following recursion

Vk(xk) = min
uk

Exk ,wk ,vk

{
xT

k Qxk + uT
k Ruk + Vk+1(xk+1)

}
(5)

Equation (5) can be rearranged as

Vk(xk) = min
uk

E
{

uT
k Ruk + (Axk + Buk)

TGk+1(Axk + Buk)
}
+ Zk (6)

where Zk= E
{

xT
k Qxk + uT

k Ruk
}

. Since Vk(xk) is a quadratic function of uk, the optimal
control signal u∗

k can be easily calculated as

u∗
k = (R + BTGk+1B)

−1
BTGk+1 Axk (7)

After inserting (7) into (6), Vk(xk) can be represented as a quadratic form of
Vk(xk) = xk

TGkxk from which the Riccati equation can be given as

Gk = ATGk+1B
(

R + BTGk+1B
)−1

BTGk+1 A + Q + ATGk+1 A (8)

While the optimal control in (7) is expressed as a linear transform of xk, perfect
state information may not be available due to packet error or delay. Thus, the estima-
tion of the state will be required in consideration of the communication structure in the
control system.

3. Design of Encoder and Decoder for a Delayed Channel with a Packet Error

To design an optimal controller, we adopt the encoder and decoder model, which is
frequently used in the development of LQR and LQG controllers [18,25]. The Kalman filter
is utilized as the encoding method, which has been demonstrated to be optimal for LQG
control across a packet-dropping link [18]. The state estimation x̂k at time k with Kalman
filter can be given as

x̂k = Ax̂k−1 + Buk−1 + Lk

(
yk − Cx̂k|k−1

)
(9)

where x̂k|k−1 is the prediction of the state at time k with information available up to k − 1.
Since the encoder simply takes the Kalman filter, the encoder equation can be given as

xenc,k = Axenc,k−1 + Buk + Lk

(
yk − Cx̂k|k−1

)
(10)

The decoder can be designed with a predictive form as follows.

x̃k+1 = Adk+1 xenc,k+1−dk+1
+

dk+1

∑
i=1

Ai−1Buk+1−i (11)
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where dk+1 is a packet delay at time k + 1, and ak is a variable for packet arrival at
time k, which has 1 for successful packet arrival, otherwise 0.

To assess the proposed encoding and decoding scheme, we need to analyze the
characteristics of several errors. We start with the decoding error edec,k, which is defined as

edec,k = x̂k − x̃k (12)

When the packet is received successfully, the decoded state is in predictive form
using xenc,k+1−dk+1

. Thus, x̂k+1 needs to be in the same form to find a more manageable
form. It can be easily derived as

x̂k+1 = Adk+1 x̂k+1−dk+1
+

dk+1

∑
i=1

Ai−1Buk+1−i +
dk+1−1

∑
i=0

AiLk+1−iey,k+1−i (13)

With (13), edec,k+1 can be arranged as

edec,k+1 =
dk+1−1

∑
i=0

AiLk+1−iey,k+1−i (14)

where ey,k = yk − Cx̂k|k−1.
It is noted that (14) can be considered as a generalization of the result in [18] where

the term in (14) is 0 when the delay is 0. Whether the packet is received successfully or
not, edec,k+1 depends on ey,k+1 since encoding is simply Kalman filtering. This model is
applied to the system described in Figure 1 since the channel is transparent to the encoder
and decoder while dk has dependency on the active channel.

4. Channel Switching Algorithms

To maintain a control system operating on a network reliably, it is important to
effectively manage the channels. While various channel management schemes exist, we
focus on channel switching which allows the system to receive information from a single
channel at a time for simplicity. Thus, the channel environment we consider throughout
this paper is fundamentally different from one in many existing literature in the sense
that they have developed efficient exploitation of the delayed information from multiple
channels with the assumption that multiple channels are always active.

After decoding at the decoder, the control signal can be determined from LQR
control as

uk = Fk x̃k, (15)

where Fk = (R + BTGk+1B)−1BTGk+1 A. By inserting (15) into (1), (1) can be arranged as

xk+1 = (A + BFk)xk + nk, (16)

where nk = −BFk(xk − x̃k) + vk, which we call effective noise since it includes the process
noise and errors due to estimation error.

The effective noise can be considered as an equivalent process noise. Thus, the power
of the effective noise has a direct effect on the quality of control. In this perspective, we can
define α stability for practical consideration as follows.

Definition 1 (α stability). Let Cn,k denote the covariance matrix of the effective noise nk in the
state equation in (16) at time k. α stability is achieved, if maxktr(Cn,k) ≤ α where tr() is the trace
of the matrix in the bracket.



Electronics 2024, 13, 308 6 of 18

In other words, the control system achieves α stability when the variance of the
effective noise is lower than the specified threshold α. To find a switching criterion to
satisfy the α stability, we first define state estimation error eest,k

eest,k = xk − x̃k, (17)

Since the time instance of the encoded signal is k − dk with the successful reception of
the packet at time k, the predictive form of the state vector at time k + 1 using xk+1−dk+1

can
be easily derived as

xk+1 = Adk+1 xk+1−dk+1
+ ∑dk+1

i=1 Ai−1Buk+1−i + ∑dk+1−1
i=0 Aivk−i, (18)

With (17) and (18), eest,k+1 can be calculated as

eest,k+1 = Adk+1 eK,k+1−dk+1
+ ∑dk+1−1

i=0 Aivk−i, (19)

where eK,k = xk − x̂k|k which is the estimation error of the Kalman filter. Some interest-
ing observations can be made from the comparison between (14) and (19). The process
noise vk influences eest,k+1 while it does not influence edec,k+1 since the decoding error
depends on the channel and the method of decoding. When the information packet is
successfully received, both equations are not in a recursive form due to the resetting effect
of the newly arrived packet.

Let the covariance matrix of eest,k be denoted by Cest,k. When ak+1 = 1, Cest,k+1 has the
following relation from (19).

Cest,k+1 = Adk+1 CK,k+1−dk+1
(Adk+1)

T
+ ∑dk+1−1

i=0 AiCv(Ai)
T

, (20)

where CK,k is the covariance of the state estimation error using the Kalman filter at time k.
Finally, since Cn,k = BFkCest,k+1Fk

T BT + Cv from (16), Cn,k can be expressed as

Cn,k = BFk(Adk CK,k−dk
(Adk )T + ∑dk−1

i=0 AiCv(Ai)
T
)Fk

T BT + Cv, (21)

From (20) and (21), several interesting observations can be made. When A is unstable,
the error covariance increases with the dk. Cn,k has a bounded value as long as dk has
the finite maximum value due to the effect of resetting with the successful arrival of the
packet. Even though A may be stable, outdated information with delay dk increases the
error covariance.

With (21), the delay condition to guarantee the α stability can be given as follows.

Theorem 1. Let k∗ be argmaxktr(BFk A(Cv + ∑dk
i=1 AiCest,k0(k)(Ai)

T
)AT Fk

T BT + Cv).

If tr(BFk∗ A(Cv + ∑
dk∗
i=1 AiCest,k0(k∗)(Ai)

T
)AT Fk∗

T BT + Cv) < α where k0(k) is the most re-
cent time when decoding was successful at time k, then the α stability is guaranteed for the system
described in Figure 1 with the condition that at least one information packet is received successfully
at time k ∈ {i|tr(Cn,i) ≤ α}.

Proof of Theorem 1. From the definition, k0(k) + dk = k. With the condition that at
least a single information packet is received successfully at time k ∈ {i|tr(Cn,i) ≤ α}, the
covariance of the estimation error can be easily calculated from (20) as

Cest,k = Cv + ∑dk
i=1 AiCest,k0(k)(Ai)

T
, (22)

Since Cn,k = BFk A(Cv + ∑dk
i=1 AiCest,k0(k)(Ai)

T
)AT Fk

T BT +Cv which is taken from (21)
and (22), and if tr(Cn,k) ≤ α, ∀k, then α stability is achieved by definition, which proves
the proposition. □
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It is noted that this proposition is generic since it does not assume a particular channel-
switching algorithm. Similarly, the asymptotic condition for α stability can be posed
as follows.

Theorem 2. With the asymptotic condition, If tr(BFA(Cv +∑d∗
i=1 AiCK(Ai)

T
)ATFTBT +Cv) < α

where d∗ = maxi,kdi,k F = limk→∞Fk, and CK = limk→∞CK,k, then the α stability is guaranteed
for the system described in Figure 1.

Proof of Theorem 2. Since Cest,k0(k) = E
{

eest,k0(k)e
T
est,k0(k)

}
is the estimation covariance

at time k0(k) without delay, this corresponds to CK,k0(k). Since CK,k0(k) asymptotically

converges to CK, Cn,k can be given by tr(BFA(Cv + ∑d∗
i=1 AiCK(Ai)

T
)AT FT BT + Cv) < α.

Due to the non-negative definiteness of the covariance matrix, Cn,k monotonically increases
with dk. Thus, Cn,k has the maximum value at a time when it has a maximum delay at the
asymptotic region, which proves the theorem. □

Theorem 2 implies that the maximum delay determines the α stability in the asymptotic
region. From the Theorem 2, the maximum delay to guarantee the α stability in the
asymptotic region can be given as follows.

Proposition 1. Let D = {d|tr(BFA(Cv + ∑d
i=1 AiCK(Ai)

T
)AT FT BT + Cv) < α}. When

dk ≤ dcr,α, ∀k, k → ∞ where dcr,α = maxd∈Dd, then the system described in Figure 1 achieves
the α stability.

Proof of Proposition 1. It can be trivially proved by following the procedures for the proofs
in Theorems 1 and 2. □

From Proposition 1, it is expected that the channel switching can guarantee the α stabil-
ity as long as appropriate channel switching is applied for some specific channel conditions
by limiting the maximum delay to dcr,α. Exploiting this observation, a conventional global
threshold switching (GTS) algorithm can be given as follows.

sk+1 = 1 − sk, i f dk ≥ dT,g, (23)

where sk is the active channel indicator at time k, and dT,g = dcr,α − β. β is a nonnegative
integer parameter, which has an effect on the performance and the switching characteristics.
It is noted that switching is determined with the same threshold. Thus, this algorithm can
be applicable without exploiting statistical knowledge of the channels.

While the GTS algorithm can be configured without the knowledge of the channel
statistics, it may stay at a worse channel for a long time. To overcome this drawback,
depending on the knowledge of channel statistics, two algorithms are proposed. The
first algorithm aims to exploit information on the maximum transmission delay. With the
assumption that the maximum transmission delays at both channels are available, it can
be advantageous to use the channel with a smaller maximum transmission delay. In this
context, the local threshold switching (LTS) algorithm can be described as

sk+1 = 1 − sk i f dk ≥ dT,l,sk
, (24)

where dT,l,i = dcr,α − β − γI(dmax,t, i > dmax,t, 1−i), γ is a non-negative integer parameter,
and I(·) is an indicator function, the value of which is 1 when the condition inside the
bracket is true, otherwise it is 0. It is expected that setting the dT,l,i as smaller for a channel
with a larger maximum transmission delay can result in using the channel with a smaller
maximum transmission delay more often.

The LTS algorithm is built on the underlying assumption that the two channels have
a similar degree of packet error rate (PER). Thus, it may not provide good performance
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when the channel with a larger transmission delay has a low PER, and the other channel
with a smaller transmission delay has a high PER. To address this limitation and leverage
both the maximum transmission delay and PER for channel switching, an alternative algo-
rithm, known as the advanced local threshold switching (ALTS) algorithm, is introduced
as follows.

sk+1 = 1 − sk i f dk ≥ dT,al,sk
, (25)

where dT,al,i = dcr,α − β − γI(dmax,t, i > dmax,t, 1−i)− δI(PERi > PER1−i), δ is a nonnega-
tive integer, and PERi is PER at channel i. This algorithm simply considers one additional
channel statistics, which is the PER. It reduces the threshold for switching to the channel
with a lower PER so that the preference for the channel with a low PER can be formed
when the maximum transmission delays are comparable.

Regardless of the types of the proposed algorithm, the channel condition to guarantee
the α stability can be given as follows.

Proposition 2. On the condition of max(dmax,t, 0 + dmax,p,0, dmax,d,1 + dmax,p,1) < dcr,α where
dmax,p, i is the maximum consecutive packet error on channel i, all the proposed threshold switching
algorithms guarantee the α stability.

Proof of Proposition 2. From the condition dk < dcr,α , ∀k, dmax,t, i + dmax,p,i < dcr,α needs
to be satisfied for ∀i ∈ {0, 1} which proves the proposition. □

While Proposition 2 provides the channel condition to guarantee the α stability for all
switching algorithms, depending on the value of α and the channel characteristics, α stability
may never be achieved. To tackle this issue, we define a µ(α) probabilistic stability as a tool
for characterizing the proposed switching algorithms further.

Definition 2 (µ(α) probabilistic stability). We define µ(α) as probabilistic stability that α stability
is achieved with the probability of µ(α) where µ(α) = Pr(tr(Cn,k) ≤ α).

With µ(α) probabilistic stability, the proposed switching algorithms can be compared
consistently in the following way.

Theorem 3. Let the probabilistic stability of the GTS algorithm and the LTS algorithm be de-
noted by µg and µl respectively. It is assumed that dk,i ∼ U[0, dmax,i] for ∀i ∈ {0, 1}. When
Prl(j) < Prg(j) where j = argmax(dmax,0, dmax,1) and Prθ(j) is the probability that the active
channel is j with the algorithm denoted by θ, µg < µl .

Proof of Theorem 3. By definition, µg = Pr( tr(Cn,k) ≤ α
∣∣0)Prg(0) + Pr( tr(Cn,k) ≤ α

∣∣1)Prg(1)
where Prg(i) denotes the probability that the channel i is an active channel with the
global threshold switching algorithm. Pr( tr(Cn,0) ≤ α|0 ) can be equivalently expressed
as Pr(dk,0 ≤ dα) where dα = max{d | tr(BFA(Cv + ∑d

i=1 AiCK(Ai)
T
)AT FT BT + Cv) < α.

Thus, we can express µg as

µg = Pr(dk,0 ≤ dα)Prg(0)+Pr(dk,1 ≤ dα)Prg(1), (26)

We consider dmax,0 > dmax,1. Due to the symmetricity, the same argument can be
applied to the opposite case. We can express Prg(0) and Prg(1) as follows.

Prg(0) = Pr(dk,0 ≤ dT,g)Prg(0) + Pr(dk,1 > dT,g)Prg(1), (27)

Prg(1) = Pr(dk,1 ≤ dT,g)Prg(1) + Pr(dk,0 > dT,g)Prg(0) (28)
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From (27) and (28), Prg(i) can be easily derived as

Prg(i) =
Pr(dk,1−i > dT,g)

Pr(dk,1−i > dT,g) + Pr(dk,i > dT,g)
, (29)

Similarly, Prl(i) and µl can be derived as

Prl(i) =
Pr(dk,1−i > dT,l.1−i)

Pr(dk,1−i > dT,l.1−i) + Pr(dk,i > dT,l,i)
, (30)

µl = Pr(dk,0 ≤ dα)Prl(0) + Pr(dk,1 ≤ dα)Prl(1), (31)

µl − µg can be arranged as

µl − µg = (Pk,0, α − Pk,1, α)(Prl(0)− Prg(0)), (32)

where Pk,i, α = Pr(dk,i ≤ dα). Since dT,l,1 = dT,g and dT,l,0 < dT,g, Prl(0) < Prg(0) which is
evident from (29) and (30). Since Pk,0, α < Pk,1, α due to dmax,0 > dmax,1, µl > µg follows. □

From Theorem 3, we can identify channel conditions favoring one algorithm over the
other in terms of probabilistic stability.

Proposition 3. When dk,0 ∼ U[0, dmax,t,0] and dk,1 ∼ U[0, dmax,t,1] and there is no packet error
in both channels, the LTS algorithm provides better probability stability than the GTS algorithm.

Proof of Proposition 3. This proposition directly follows from Theorem 3. □

Proposition 4. When packet error occurs with a constant packet error rate and there is no
transmission delay at both channels, the ALTS algorithm provides better probability stability than
the LTS algorithm does.

Proof of Proposition 4. Since it is assumed that there is no transmission delay, dk,i follows
the geometric distribution with parameter 1− PERi. We consider the case PER0 > PER1 the
opposite case will be proven with the same argument. When PER0 > PER1,
Pr(dk,0 ≤ dα) < Pr(dk,1 ≤ dα). Thus, to satisfy µl < µal , the condition of Pral(0) < Prl(0)
needs to be satisfied. Since dk,i follows the geometric distribution, Pral(0) and Prl(0) can
be expressed as follows.

Prl(0) =
∑∞

j=dT,l,1+1 (1 − PER1)PERj
1

∑∞
j=dT,l,0+1 (1 − PER0)PERj

0 + ∑∞
j=dT,l,1+1 (1 − PER1)PERj

1

, (33)

Pral(0) =
∑∞

j=dT,l,1+1 (1 − PER1)PERj
1

∑∞
j=dT,l,0−δ+1 (1 − PER0)PERj

0 + ∑∞
j=dT,l,1+1 (1 − PER1)PERj

1

, (34)

It is evident that as long as δ is a positive integer and β and γ are set to the same value for
both thresholds, Pral(0) < Prl(0). Since Pr(dk,0 ≤ dα) < Pr(dk,1 ≤ dα) and Pral(0) < Prl(0),
µl < µal . □

Proposition 5. When packet error occurs with a constant packet error rate and both channels have
the same fixed transmission delay or uniform random delay with the same maximum delay, the LTS
algorithm provides better probabilistic stability than the GTS algorithm.
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Proof of Proposition 5. When both channels have the same fixed transmission delay,
following the similar arguments made in the Proof of proposition 4, it can be trivially
proved. dk,i can be expressed as

dk,i = dk,t,i + dk,p,i, (35)

where dk,t,i and dk,p,i are transmission delay and delay due to consecutive packet error in
channel i at time k. When both channels have uniform random transmission delay with the
same maximum transmission delay, the probability of the delay at channel i can be given as

Pr(dk,i = q) = ∑y Pr(dk,t,i = q − y, dk,p,i = y), (36)

By exploiting the independence between dk,t,i and dk,p,i from the assumption, it can be
expressed as

Pr(dk,i = q) = ∑y Pr(dk,p,i = y)I(dmin,t,i ≤ q − y ≤ dmax,t,i), (37)

From the assumption of the uniform distribution of the transmission delay, it can be
further arranged as

Pr(dk,i = q) = c ∑q−dmin,t,i
max(0,q−dmax,t,i)

Pr(dk,p,i = y), (38)

where c = 1/(dmax,t,i − dmin,t,i + 1). Since this probability does not depend on the threshold,
but on the PER, we again consider PER0 > PER1 as in the Proof of the proposition 4.
When PER0 > PER1, Pr(dk,0 ≤ dα) < Pr(dk,1 ≤ dα) from the fact that Pr(dk,i = q) depends
on the distribution of the delay from the consecutive packet errors. Thus, to satisfy µg ≤ µl ,
the condition of Prl(0) < Prg(0) needs to be satisfied. From the Proof the Theorem
1, Prl(0) < Prg(0). Thus, µl > µg. □

Proposition 6. When packet error occurs with a constant packet error rate and there is a fixed same
transmission delay or uniform random delay with the same maximum delay at both channels, the
ALTS algorithm provides better probabilistic stability than the LTS algorithm.

Proof of Proposition 6. Following the same procedure as in the Proof for the proposition
5, it can be shown that when PER0 > PER1, Pr(dk,0 ≤ dα) < Pr(dk,1 ≤ dα). Thus, to
satisfy µl ≤ µal , the condition of Pral(0) < Prl(0) needs to be satisfied.

Pral(0) =
Pr(dk,1 > dT,l,1)

Pr(dk,0 > dT,l,0 − δ) + Pr(dk,1 > dT,l,1)
, (39)

It is evident from the above equation that as long as δ > 0 and β and γ are set the
same value for both thresholds, Pral(0) < Prl(0). Thus, µal > µl . □

Although the ALTS algorithm demonstrated superior performance in specific channel
conditions, it is crucial to identify generic conditions under which one algorithm outper-
forms the other.

Lemma 1. With (Pk,0, α − Pk,1, α)(Prl(0)− Prg(0)) ≥ 0, µg ≤ µl .

Proof of Lemma 1. Based on the Proof of Theorem 3, and to satisfy µl ≥ µg,

Pk,0, α (Prl(0)− Prg(0))+Pk,1, α(Prl(1)− Prg(1)) ≥ 0, (40)

Equation (40) can be arranged as

(Pk,0, α − Pk,1, α)(Prl(0)− Prg(0)) ≥ 0, (41)
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which proves the lemma. □

Several important observations can be drawn from this lemma. To satisfy the in-
equality, both terms need to have value with the same sign, that is, when Pk,0, α > Pk,1, α,
Prl(0) > Prg(0). This implies that the switching algorithm must set a threshold to favor
the channel where a smaller delay occurs with a higher probability. The LTS algorithm
accomplishes this by reducing the threshold for the channel with a probabilistically larger
delay. However, since the penalty decision is made based on the maximum transmission
delay only, the LTS algorithm may fail to provide better performance than the GTS algo-
rithm for some channel conditions due to the limited knowledge of the channel. The GTS
algorithm can be considered as a special case of the LTS algorithm. Thus, if γ is determined
with information on the statistical characteristic of the channels such that Prl(0) > Prg(0),
the LTS algorithm can perform better than the GTS algorithm.

Similarly, we provide a condition in which the ALTS algorithm performs better than
the LTS algorithm.

Lemma 2. With (Pk,0, α − Pk,1, α)(Pral(0)− Prl(0)) ≥ 0, µl ≤ µal .

Proof of Lemma 2. It can be proved by following the same procedure for the Proof of the
Lemma 1. □

The condition for Lemma 2 requires that the switching algorithm needs to set a
threshold such that it can stay longer at a channel where a smaller delay occurs with a
higher probability. The ALTS algorithm is required to set three parameters properly with
the information on the maximum transmission delay and the packet error rate. The LTS
algorithm can be considered as a special case of the ALTS switching algorithm. Thus,
if γ and δ are determined such that Prl(0) > Prg(0), the ALTS algorithm will perform
better than the LTS algorithm by choosing δ properly while setting the β and γ the same as
those of the LTS algorithm.

5. Simulation Results

In this section, we assess the performance of the proposed channel-switching algo-
rithms through numerical simulation. To this end, the system model for an inverted
pendulum was adopted [26,27]. Corresponding matrices are as follows.

A =


0 1 0 0
0 0 −1 0
0 0 0 1
0 0 10

3 0

, B =


0

0.1
0

− 1
30

, C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


This system is an unstable one. The maximum eigenvalue of the system matrix is

1.8257. Cw and Cv are set as I and I, respectively. The finite horizon H was set as 1000
and 100 different realizations were generated. The probabilistic stability was calculated by
counting the occurrence of the case that the sum cost is less than the target sum cost and
dividing it by 100,000. It is also assumed that transmission delay is uniformly distributed
with the maximum delay being specified for each channel, and a packet error with a given
packet error rate occurs independently at each time instance.

Several experiments have been executed to verify the validity of the analysis and the
basic characteristics of the proposed algorithms. The comparison of the probabilistic stabil-
ity between GTL and LTS is shown in Figure 2, where dcr,α is set to 4. PER0 and PER1 were
set to 0 to assess the effect of the delay on performance without being interfered by ad-
ditional system conditions. When both channels have the same transmission delay, GTS
and LTS exhibit similar performance, irrespective of the maximum transmission delay.
When max(dmax,t,0, dmax,t,1) is less than equal to dcr,α, both µg and µl are 1. However, as
max(dmax,t,0, dmax,t,1) increases beyond dcr,α, µg and µl decrease inversely proportional to
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max(dmax,t,0, dmax,t,1). It is also observed that they have the same value as expected since the
channels, 0 and 1 have the same maximum delay. However, when dmax,t,1 = 2dmax,t,0, some
interesting observations can be made. LTS reduces the instability cases by 14.3%, 9.24%,
3.38%, 1.81%, 1.04%, and 0.80% for dmax,t,0 ranging from 3 to 8, respectively. The benefit
of LTS is found to decrease as dmax,t,0 increases. This is unavoidable since the instability
region increases as dmax,t,0 increases, which decreases the ratio of instability region between
GTS and LTS. This figure also shows the effect of γ. As γ increases, it provides better
performance as the large γ enforces the control system to operate on channel 0 more often.
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Figure 2. The probabilistic stability of the GTS, and LTS, where PER0 = PER1 = 0.0 and dcr,α = 4.

Figure 3 shows the average tr(Cn,k) for the same setting as in Figure 2. This result
verifies that the analysis results based on (21) tightly match with the sample averages.
While the distinction may not be easily noticeable in the figure, LTS provides a lower
variance of the effective noise than GTS for the asymmetric channel while they have almost
identical values for the symmetric channel. It is also observed that the performance gain
by setting γ larger is significant. More specifically, while the performance gains of the LTS
over GTS are 12.7%, 8.63%, 6.49%, 4.81%, 4.77%, and 4.29% for dmax,t,1 ranging from 3 to 8,
respectively, when γ = 1, they are 28.6%, 23.1%, 17.8%, 16.1%, 12.5%, and 11.8% when γ = 3.
This result is in line with the result for probabilistic stability.
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The effect of parameters for the proposed algorithms on the performance with
PER0 = PER1 = 0.0 is shown in Figure 4. Default values for β, γ, and δ were set to 1
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unless the algorithm was evaluated for different parameter values. The plot on top shows
the effect of β. It is observed that the performance degrades more as β increases. A large β in-
creases the probability of switching to a worse channel. That is, when the β is greater than
or equal to 4, the probability of switching to a worse channel becomes non-zero since the
threshold for switching becomes 10 or lower. It is also observed that for the same parameter,
the performance of the proposed algorithm depends on the maximum transmission delay.
This dependence is primarily attributed to the intrinsic nature of the problem rather than
the proposed algorithm itself since the larger maximum delay increases the occurrence of
a delay larger than dcr,α. As expected, LTS and ALTS have the same performance since
PER is the same, which sets δ as 0. The plot at the bottom shows that as γ increases, the
performance of the LTS and ALTS improves. A large γ lowers the threshold for switching
from a bad channel to a good channel, which creates an implicit preference for a good
channel. Figure 5 show the experiment results with different PER, PER0 = PER1 = 0.2.
The same trend with each parameter can be observed. The only noticeable difference is that
the probabilistic stability is found to degrade a little bit due to the packet error. It is also
interesting to note that when dcr,α is high, the performance depends more on the maximum
delay rather than the PER.
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The ALTS algorithm was proposed to improve the performance when there is asym-
metricity in the packet error rates over two channels. However, asymmetry in the packet
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error rate can be further classified into synchronous cases so that a channel with a larger
maximum transmission delay has a larger PER, and asynchronous cases so that a channel
with a larger maximum transmission delay has a smaller PER. The performance of the pro-
posed algorithms was assessed for the synchronous case in Figure 6, where PER0 = 0.2 and
PER1 = 0.4. It is observed that the performance trends for GTS and LST are pretty much
similar to those observed in the preceding experiments. However, ALTS is found to perform
poorly in comparison with GTS and LTS. In addition, the performance of ALTS degrades
further with increasing δ. It is because δ creates an implicit preference for a channel with
a larger maximum delay in the given system configuration while the delay has a more
significant effect on performance than PER. This result brings attention to a need for the
remedy on ALTS such that it can perform robustly to many different system configurations.
When ALTS is applied to the synchronous case, the expected performance improvement
with increasing δ can be observed in Figure 7.
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One heuristic modification has been made to make ALTS operate robustly for many
different system environments. A pseudo-global maximum delay, dmax,g,i can be defined
such that it can represent the maximum effective channel delay in consideration of PER.

dmax,g,i = dmax,t,i + dmax,a,i/2, (42)

where dmax,a,i = PERi/(1 − PERi)
2. dmax,a,i is the average delay due to the packet error

which is easily calculated from geometric distribution. The dividing factor 2 is introduced



Electronics 2024, 13, 308 15 of 18

heuristically to limit the effect of the dmax,a,i in determining dmax,g,i. Exploiting the new
measure, the threshold for the ALTS can be modified into

dT,al,i = dcr,α − β − γI(dmax,t, i > dmax,t, 1−i)− δI(dmax,g,i > dmax,g,1−i)I(PERi > PER1−i), (43)

(dmax,g,i > dmax,g,1−i) in (43) was added to ensure that δ can be applied when the cur-
rent channel environment corresponds to the synchronous case. To assess the robust
performance of ALTS over different system environments, numerical experiments were
executed over various maximum transmission delays and various packet error rates
in Figures 8 and 9. Since dmax,t,0 = 2dmax,t,1 in Figure 8, the asymmetric case occurs
when PER0 is smaller than PER1. In this case, δ will be effectively set as 0 due to
the δI

(
dmax,g,i > dmax,g,1−i) . Thus, LTS and ALTS will provide the same performance

as observed in Figure 8. However, when PER1 is smaller than PER0, the application of δ in
ALTS is found to improve LTS. Similarly, the asymmetric case occurs when dmax,t,0 = 10 and
dmax,t,1 = 20, since PER0 > PER1. Even though the performances of LTS and ALTS are
hardly discernible in the symmetric case due to the resolution of the plot, ALTS provides
the reduction of 9.2%, 14.8%, 13.7%, 12.8%, 9.81%, 7.58%, 4.49%, and 2.49% in terms of the
number of occurrences of an unstable state. The experiment results in Figures 8 and 9 verify
that with a simple modification, ALTS improves performance over LTS for the symmetric
case while its performance is the same as that of the LTS in the asymmetric case.
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Finally, we evaluated the proposed algorithms under more realistic operating condi-
tions, incorporating channel parameters derived from the existing literature. Two channels
were assumed to be 5G cellular link and Starlink. The end-to-end latency of 5G-enabled
internet was measured to be 24 msec on average, with a maximum of 29 msec [28]. Based
on this information, the 5G channel was approximated to have a uniform distribution from
20 msec to 30 msec with a PER of 10−5, a commonly used target PER in 5G systems. The
measured PER for Starlink ranges from 0.45% to 1.96%, while its latency is around 50 msec
in the median, with the first quantile at 40 msec and the third quantile at 60 msec [29].
Utilizing this information, the Starlink channel was approximated to have a uniform dis-
tribution between 30 msec and 70 msec, with a PER of 0.01. For comparison with an
optimal approach that exploits information from both channels, the method for optimal
sensor scheduling in [30] was adapted, allowing the selection of the channel with the lower
variance of the effective noise at each time step. We refer to this algorithm as the Oracle
algorithm. It is important to note that the Oracle algorithm exploits instantaneous delay
information from both channels, while the proposed algorithms use the instantaneous
delay information from the currently active channel only.

Figure 10 depicts the performance of the proposed algorithms for this more realistic
operational case under two different scenarios. The parameters for the proposed algorithm
were heuristically chosen as β = 5, γ = 0.75dcr,α, and δ = 5. The finite horizon H was set
at 1000, and 1000 different realizations were generated to evaluate performance. The first
scenario assumes normal operating conditions for both channels, while the second scenario
characterizes the poor channel condition of the 5G channel with a PER of 0.2. The proposed
algorithms are shown to provide comparable performance to the Oracle algorithm for a
wide range of dcr,α values for both scenarios. When dcr,α is small, there can be frequent
switching between the 5G channel and Starlink channel for proposed algorithms, while the
Oracle algorithm selects the best channel instantaneously, resulting in a noticeable differ-
ence. However, when dcr,α is greater than 30, as long as the proposed algorithm switches to
the 5G channel with smaller delays, it is likely to stay there unless long consecutive packet
errors occur. Thus, the probabilistic stability of the proposed algorithm becomes almost
the same as that of the Oracle method for large dcr,α. Since discerning performance with a
larger dcr,α in Figure 10 is challenging, Table 1 is introduced, presenting the count of cases
where the delay is larger than dcr,α. While the Oracle algorithm avoids encountering an
unstable state for larger dcr,α, the proposed algorithms may experience occasional instances
of instability. It occurs before it stays at the 5G channel with a shorter delay. It is also
observed that LTS and ALTS have fewer occurrences due to the additional parameters,
which accelerate switching to a better channel than GTS. These results demonstrate that
the proposed algorithms provide better performance than the conventional method while
achieving near-optimal performance in some cases.

Table 1. The number of times that the delay is greater than dcr in Figure 10.

Channel Conditions dcr GTS LTS ALTS Oracle

dt,0~U [30, 70]
dt,1~U [20, 30]
PER0 = 10−2

PER1 = 10−5

40 828 718 711 0
45 798 617 609 0
50 767 477 473 0
55 687 349 346 0
60 605 259 258 0

dt,0~U [30, 70]
dt,1~U [20, 30]
PER0 = 10−2

PER1 = 0.2

40 1279 1087 1087 0
45 1211 887 887 0
50 1123 651 651 0
55 1056 490 490 0
60 871 338 338 0
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Figure 10. The probabilistic stability of the GTS, LTS, ALTS, and Oracle, where β = 5, γ = 0.75dcr,α,
δ = 5, and PER0 = 0.01.

6. Conclusions

In this paper, we introduced two channel switching algorithms to enhance the ro-
bustness of networked control systems facing delays and packet errors. Leveraging the
framework of the LQG controller and an encoder–decoder structure for channel model-
ing, we derived a crucial decoder error covariance matrix, pivotal for informed channel
switches to maintain α stability. Addressing practical challenges, we further introduced
probabilistic stability. Specific conditions wherein the proposed algorithm excels in terms
of probabilistic stability have been identified. Simulation results not only confirmed the
superior performance of the proposed switching algorithms but also demonstrated their
potential to achieve near-optimal performance despite utilizing limited information.

While our proposed algorithm is well-suited for multiple channels with a delay, it
assumes accurate delay information. However, uncertainties in delayed information can
arise due to processing time or delay from the physical structure. Moreover, while syn-
chronous channels were implicitly assumed throughout this paper, the proposed algorithm
may not be trivially applied to asynchronous channels. Due to the lack of strict timing in
asynchronous channels, there can be variations in the timing of data arrivals. This unpre-
dictability poses a challenge for algorithms that rely on precise timing information. Even
though those delays can be estimated, the estimate may not be accurate. To address the
delay uncertainty, a robust channel-switching algorithm needs to be further investigated.
One may consider exploiting deep reinforcement learning, which can perform robustly with
uncertainty and actively respond to the variation in channel environments. The scheduling
issue also needs to be studied when multiple devices need to be controlled over a network
where a scheduling policy has an impact on the delay of each channel.
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