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Abstract: Super-resolution systems refer to computer-based systems designed to enhance the quality
of images or video by producing high-resolution renditions from low-resolution counterparts using
computational algorithms and technologies. Various methods and techniques have been used in de-
velopment of super-resolution systems. The development of Convolution Neural Networks (CNNs)
and the Deep Learning (DL) methods have outperformed traditional methods. However, as models
become increasingly deeper with wider receptive fields, the number of parameters significantly in-
creases. While this often results in better performance, it renders these models impractical for real-life
scenarios such as smartphones or other mobile systems. Currently, most proposed methods with
higher perceptual quality demand a substantial amount of time to process a single image, even on
powerful hardware like NVIDIA GPUs. Such computationally expensive models are not cost-effective
for real-world application scenarios. Optimization is needed to reduce the computational costs and
memory requirements to enhance their suitability for less powerful hardware configurations. In
this work, we propose an efficient binary neural network architecture, ResBinESPCN, designed for
image super-resolution. In our design, we improved the energy efficiency of the architecture through
algorithmic and hardware-level optimizations. These optimizations not only enhance computational
efficiency and reduce memory consumption but also achieve effective image super-resolution in
resource-constrained environments. Our experimental validation highlights the effectiveness of this
network structure and includes ablation studies on models with varying data bit widths. Hard-
ware analysis substantiates the efficiency and real-time capabilities of this model. Additionally,
deploying the model on FPGA using FINN demonstrates its low hardware resource usage and low
power consumption.

Keywords: field programmable gate array (FPGA); binary neural network (BNN); deep learning;
hardware architecture; image super-resolution

1. Introduction

Over the past decade, CNN-based methods have demonstrated outstanding perfor-
mance across various tasks. Among these, the restoration of high-resolution (HR) images or
videos from low-resolution (LR) counterparts has garnered significant attention. Referred
to as Single Image Super-Resolution (SISR), this task holds direct applicability in various
domains including satellite imaging [1,2], medical imaging [3,4], surveillance [5,6] and bio-
metric information identification [6–8]. Fundamentally, SISR involves a mapping process
from the LR space to the HR space; however, the LR space is given, and there typically exist
numerous solutions in the HR space. Consequently, identifying the correct solution from
this one-to-many mapping is a challenging task.

Electronics 2024, 13, 266. https://doi.org/10.3390/electronics13020266 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020266
https://doi.org/10.3390/electronics13020266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13020266
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020266?type=check_update&version=1


Electronics 2024, 13, 266 2 of 16

To address this problem, recently many researchers have utilized the efficient data
learning capabilities of CNNs to identify the optimal solution within the mapping from
LR to HR space. Dong et al. [9] were pioneers in introducing deep learning to the realm of
image super-resolution reconstruction. They utilized a three-layer convolutional neural
network to understand the mapping between low-resolution and high-resolution images.
An overview of the SRCNN model structure is shown in Figure 1.
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This marked the onset of the deep learning revolution in the field of super-resolution
reconstruction, and their network model was termed Super-Resolution Convolutional
Neural Network (SRCNN) [9]. SRCNN used an interpolation method to initially upsample
the low-resolution images before restoration through the model.

Before the introduction of the SRCNN method, the traditional methods, such as inter-
polation and reconstruction methods [10,11], were widely used in image super-resolution
applications. By adopting the pioneering CNN-based algorithm SRCNN and comparing it
with traditional methods, several advantages of the CNN-based method can be observed.

Firstly, compared to traditional methods, the CNN-based methods extract a consider-
able number of features from the inputs. The quantity of features, also indicative of the
number of parameters, can be adjusted based on the number of filters used during feature
extraction. Having a substantial number of parameters for feature extraction allows the
model the flexibility to optimize these values, with the aim of closely approximating the
relationship between the reconstructed output and the actual output. This differs from
interpolation-based methods, which rely on neighboring values and compute the value at
a specific point only.

Secondly, the CNN-based method exhibits good generalizability and flexibility. During
each iteration of model training, the loss difference between the reconstructed output and
actual output is computed and fed back into the model network to fine-tune parameter
values. The ultimate goal of parameter fine-tuning is to minimize loss in model predictions.
However, in interpolation and reconstruction methods, the output is calculated based on
a certain parameter, typically fixed for specific scenarios, requiring separate designs for
numerous scenarios.

However, Shi et al. [12] argued that pre-scaling using nearest-neighbor interpolation
inherently affects performance. They believe in learning how to perform upsampling from
the samples themselves. Based on this principle, they introduced ESPCN [12]. This model,
which is based on not performing an upsampling process on the given low-resolution
images before inputting them into the neural network, introduced a sub-pixel convolutional
layer to indirectly achieve the image’s upsampling process. The structure overview is
depicted in Figure 2. This approach significantly reduced the computational load of
SRCNN, enhancing the reconstruction efficiency.
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On the other hand, Kim et al. [13] analyzed the limitations of the SRCNN and pro-
posed the Very Deep Super-Resolution (VDSR) model. They highlighted three limitations
of SRCNN:

1. When the convolutional kernel size remains constant, a model with insufficient depth
leads to a limited receptive field in the generated images. A deeper model inherently
brings about a larger receptive field, allowing the network to utilize more contextual
information, thus capturing a more comprehensive global mapping.

2. Slow convergence during model training.
3. The model is limited to handle only a single scale of image super-resolution.

To address these limitations, three solutions were proposed:

1. The deeper model can gain larger receptive fields to capture broader image contextual
information.

2. The model adopted residual learning with higher learning rates to expedite con-
vergence. However, employing higher learning rates could lead to the problem of
vanishing or exploding gradients; thus, they implemented moderate gradient clipping
to mitigate these gradient issues.

3. The neural network was capable of handling image super-resolution for various scales.

Ultimately, the results indicated that VDSR, with a deeper network compared to
SRCNN, achieved superior performance, faster convergence, and could be applied to
multi-scale super-resolution.

In addition to the three models we discussed above, in recent years, many researchers
have made remarkable progress by improving SR deep learning models from various
perspectives [14–18].

Kim et al. [15] proposed a super-resolution network architecture named Deep Recur-
sive Convolutional Network (DRCN) that deepens the model using a recursive structure.
DRCN enhances the image reconstruction performance by recursively extracting multi-level
feature information across multiple layers. The recursive structure of DRCN shares model
parameters and a common reconstruction layer, thereby controlling the overall number
of model parameters. To address the gradient vanishing and exploding issues caused by
recursion, the author introduced recursive supervision. This method directly involves
each recursive step in the loss function to provide additional supervision. Additionally,
to counterbalance excessive information loss during recursion and merge low-level and
high-level information while preserving the original input data, skip connections were
implemented. Furthermore, the author controlled the depth of recursion by introducing
different weights for learning at various recursion levels at the end, serving as an attention
mechanism. Figure 3 demonstrates the overview structure of DRCN.
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Figure 3. Overview of DRCN [15].

The authors [17] introduced the Deep Recursive Residual Network (DRRN) to achieve
better performance while requiring fewer parameters compared to models like VDSR,
DRCN. To some extent, DRRN can be considered an improved version of DRCN. It retains
the DRCN concept of global skip connections and recursive blocks to enhance model depth
while limiting the number of parameters, incorporating the idea of local skip connections
from ResNet [19]. There are two main differences between DRRN and DRCN: First, not
all convolutional layers share the same weight in DRRN. Instead, DRRN consists of sev-
eral residual units forming recursive blocks where weights are shared within these units.
Second, DRRN liberates itself from the burden of gradient vanishing or exploding by
designing recursive blocks with a multi-path structure, allowing for easier training. Addi-
tionally, it improves performance solely by increasing convolutional depth without adding
parameters. Figure 4 demonstrates the overview recursive blocks structure of DRRN.

Unlike DRCN and DRRN, Zhang et al. [20] summarize and analyze the advantages
and disadvantages of ResNet and DenseNet and combine them to propose a new structure
ResidualDenseNet (RDN). In RDN, each layer is connected to every other layer in a feed-
forward manner. This dense connectivity facilitates the flow of feature maps, enabling
the model to effectively capture and reuse features from various stages of processing.
Furthermore, residual learning facilitates the model’s ability to focus on learning the
differences and details required for super-resolution.
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Basically, even though these models have made remarkable strides in SR, their com-
putational and storage demands are exceedingly complex and burdensome for hardware
systems, making real-time processing unachievable on resource-limited devices. In order
to mitigate the extremely high hardware requirements, the researchers have also produced
outstanding results in model structure [21–23] and model quantization [24–26].

Of the various methods that make CNN lightweight or hardware-friendly, Binary
Neural Networks (BNNs) are considered the most hardware-friendly and are capable
of improving real-time performance. By mapping full-precision data to binary values
{−1, 1} [27], BNNs reduce the number of bits required for storing data, significantly allevi-
ating memory pressure.

Moreover, because of the characteristics of binary values, matrix multiplication can
be replaced by XNOR-popcount operations, thus conserving a substantial amount of
computational resources. Over the past few years, many researchers have demonstrated
the advantages of BNN for implementation on resources-limited hardware and applied
it across various domains with exceptionally high real-time requirements [28–31]. While
BNNs significantly reduce hardware strain, they inevitably introduce some issues for
performance of neural networks, notably information loss resulting from binarization.
Over the past few years, numerous researchers have been committed to resolving this
problem. The majority of these solutions can be categorized into the following research
directions: the structure of neural networks [32–37] and improvements in binarization
rules [32,38–42].

The introduction of the Binary Neural Network (BNN) by Courbariaux et al. [27]
marked a significant milestone in DL, by utilizing binary representations for weight and
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activation, and leading the way for the Binary Neural Network concept. Although binary
neural networks (BNNs) greatly save storage and computational resources through the
binarization of weights and activations, the inevitable loss of a considerable amount of
information due to binarization leads to a sharp decline in performance. Hence, subsequent
research efforts aimed to address information loss arising from binarization. Rastegari
et al. [32] innovatively introduced scaling factors computed via L1-norm during weight
binarization to mitigate quantization errors and improve model performance. They simpli-
fied computation by substituting convolutions with XNOR-bitcount, substantially reducing
matrix computation costs. This pioneering introduction of scaling factors opened avenues
for potential research. XNOR-Net++ [38] further refined this concept by incorporating
learnable scaling factors for distinct vector dimensions, reducing computational complexity
through optimized calculations. However, later observations underscored the issue that
scaling factors inevitably increase hardware demands. Despite IR-Net [40] utilizing a
hardware-friendly integer scaling factor, the method necessitates data normalization before
binarization, inevitably leading to increased computational complexity in the end.

In recent years, researchers have not only discovered that scaling factors can reduce
information loss but also found that well-designed model architecture can effectively
mitigate information loss compared to alternative models. Liu et al. [33] enhance the
information of feature map by a full-precision shortcut. Research by Bethge, J et al. [36]
confirmed the effectiveness of full-precision shortcuts and highlighted that binarizing
shortcuts leads to irreversible information loss. Afterward, the Binarized Ghost Module
(BGM) [34] and IE-Net [37] enhanced the model’s ability to capture information from inputs
through multi-branch convolution blocks to varying degrees.

However, while existing works significantly enhance the performance of BNNs, such
as the introduction of scaling factors, improving activation functions and multi-branch
convolution, most improvements tend to increase the computational and storage burdens
on the hardware. Therefore, for scenarios with limited hardware resources, the introduction
of improvements might result in a trade-off that outweighs the benefits. As mentioned
above, with the advancement of Super-Resolution (SR) and binarization techniques and
optimizations in algorithmic complexity and memory requirements, barriers between SR
algorithms and constraints related to hardware limitations in real-time applications are
gradually diminishing.

The authors [43] proposed a specialized BNN architecture tailored for super-resolution.
This approach only binarized the convolutional filters within the residual blocks and em-
ployed trainable weights for each binarized filter. In experiments, their proposed binariza-
tion strategy reduces the model size of SRResNet [44] by 80% and increases the inference
speed by a factor of five. This work underscores the potential of employing BNNs for super-
resolution tasks as an efficient alternative to traditional neural network architectures. Xin
et al. [45] designed a Bit-Accumulation Mechanism (BAM) that approximates full-precision
convolutions through value accumulation schemes, gradually refining the quantization
precision along the direction of model inference. They also proposed an efficient model
architecture called Binary Super-Resolution Network (BSRN) based on BAM to reduce
computational complexity and parameters. In their experiments, they implemented their
BAM into VDSR and SRResNet to prove effectiveness of their method and also have a
comparison with BSRN.

The authors [26] introduced a novel approach called Binary Super-Resolution (BSR)
using Mixed Binary Representation (MBR) to achieve higher pixel-level accuracy. This study
introduces an innovative framework that combines binary and non-binary representations
within the super-resolution architecture to enhance the quality of generated high-resolution
images. By employing a mixed-precision approach, selectively using binary and non-binary
representations in different parts of the network, the proposed method aims to preserve
more detailed information, thus enhancing the fidelity of the images.

With regard to hardware, it is noteworthy that FPGAs stand out due to their excep-
tional parallel computing capabilities and high programmability. It is based on these
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considerations that we propose ResBinESPCN, two super-resolution networks designed
for deployment on FPGA.

2. Binary Neural Network for Super-Resolution

For resource-constrained devices, models should not have an excessive number of
parameters or overly complex computation demands, as this could burden the hardware
significantly. However, as discussed above, most CNN-based methods nowadays un-
avoidably strain the hardware while enhancing performance. To provide a more intuitive
understanding of the impact of various CNN-based methods on hardware consumption,
we conducted a preliminary computation complexity and model size analysis on SRCNN,
ESPCN, DRRN, and RDN, as shown in Table 1.

Table 1. Hardware cost analysis with scaling factor 3.

Model Input
Shape

BOPs/MAC
(×109)

Total Number of Bits
for Layer Parameters

(×105)

Estimated Total Size
(MB)

SRCNN Bicubic
(1, 1, 255, 255) 590.42 18.30 50.95

ESPCN LR
(1, 1, 85, 85) 167.38 7.23 6.19

DRRN Bicubic
(1, 1, 255, 255) 51,271 236 3397.83

RDN LR
(1, 1, 85, 85) 160,590 713.46 670.5

Table 1 reveals that ESPCN manages to sustain a relatively compact model size and
lightweight computational requirements, while demonstrating impressive model perfor-
mance. This underscores ESPCN suitability as an excellent framework for our network
architecture design.

Furthermore, limited-resource devices also often struggle to accommodate full-precision
DNNs. Hence, quantization of parameters and activations becomes inevitable within
DNNs. BNNs are widely regarded as the most hardware-friendly networks, offering
advantages for improving real-time performance. Through (1), BNNs have the capability to
convert full-precision weights and activation values into binary values {−1, 1}, significantly
reducing the hardware burden [27].

sign(x) =

{
−1, i f x ≤ 0
1, i f x > 0

(1)

And as we discussed above the multiplication in BNNs can be replaced by XNOR-
popcount operation. The operation can be expressed as

X ∗ W ≈ sign(X)⊛ sign(W) = Xb ⊛Wb (2)

where W and X denote inputs and weights of convolutional layer respectively. ∗ denotes
the convolution operation. ⊛ presents the XNOR-Popcount operation. A key consideration
is that, despite the advantages in storage and computational speed presented by BNNs, it is
essential to acknowledge the inevitable decline in model performance due to the inadequate
information representation of binary values. This issue can be alleviated through well-
designed network structures. However, determining whether an architecture can enhance
the performance of the neural networks requires extensive experiments. Fortunately,
Bethge, J et al. [36] have summarized several BNNs structural design guidelines to assist
researchers in devising suitable BNN architectures quickly [36]. In summary, the guidelines
for designing BNN structures specific to SR can be summarized as follows:
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1. The fundamental principle of the design of BNN structures should prioritize the
utmost preservation of information.

2. As much as possible, bottleneck structures should be avoided. Bottleneck structures,
characterized by reducing channel numbers and then increasing them, may result in
irreversible information loss within BNNs.

3. The downsampling layer should keep full precision to avoid mass loss of information
by decreased number of channels.

4. The shortcut structure can preserve information significantly.

Following the aforementioned guidelines, and based on ESPCN, we propose the
end-to-end model ResBinESPCN, the overview of whose model structure is illustrated in
Figure 5.
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In our design, aiming to maximize information preservation while minimizing hard-
ware computational burden, we quantized the input layer and downsampling layers
into W8A2. Here, W8 represents Int8 data type for weights, while A2 represents ternary
data types for activations. The quantified input layer and downsampling layers can be
expressed as:

Y = (QInt8(W) ∗ QT(x)) = WInt8 ∗ XT (3)

where QInt8 and QT denotes the 8-bit integer data type and ternary data type quantizer.
In addition, leveraging both design guidelines and the experimental outcomes from

VDSR, we added additional shortcut connections into the model to mitigate the information
loss caused by binarization.

3. FPGA Implementation

As discussed above, the high parallelism offered by FPGA platforms presents an
attractive option for accelerating the SR algorithmic process. Before going into the details
of FPGA deployment, it is essential to understand some of the hardware resources of the
FPGA platform, including the LUT, FF and BRAM.

Lookup Tables (LUTs) are fundamental components of Configurable Logic Blocks
(CLBs) within FPGAs. These tables store information similar to truth tables and are
programmable, enabling them to implement any combinational logic function with a
specific number of inputs.

BRAM (Block RAM) refers to dedicated memory blocks available within FPGAs used
to store a significant volume of data. Its memory capacity is relatively larger compared
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to distributed RAM within CLBs. In FPGA-based designs, BRAM is typically employed
for tasks such as data buffering, coefficient storage, caching, and other memory-intensive
operations. They offer faster access speeds compared to external memory, making them
highly suitable for applications requiring rapid data access.

Flip-Flops (FF) are basic memory elements used to store a single bit of data. FF are used
for sequential logic and to store state information in digital circuits, playing an essential
role in constructing complex digital circuits.

However, in terms of development, FPGA circuit programming demands a substantial
amount of specialized knowledge, which might not be readily available. For instance,
programmers need to be familiar with Hardware Description Languages (HDL) or Verilog.
The lack of experienced programmers can lead to challenges in reliably adopting FPGA
and underutilizing its computational capabilities. To streamline the entire design process,
in our approach, we deployed ResBinESPCN using FINN [46,47].

FINN, which was developed by Xilinx, supports various Xilinx FPGA boards and
is specifically designed for Quantized Neural Networks (QNNs). Its primary function is
to generate custom dataflow architectures for each neural network. Additionally, Xilinx
has developed the quantization-aware training toolkit Brevitas, based on PyTorch, for
FINN. FINN achieves automatic conversion from computational flow that is represented
by ONNX models to hardware designs, breaking down barriers between software and
hardware design. To achieve high flexibility, Xilinx also provides the finn-hlslib library
which offers highly customizable HLS templates for data types such as inputs, weights,
and outputs.

Additionally, FINN has undergone extensive optimization for Quantized Neural
Networks (QNNs), including different dataflow architectures and specially designed com-
putational units. Their proposed computational unit, the Matrix-Vector-Threshold Unit
(MVTU), cleverly converts all multiplications and function mappings in the neural net-
works into more hardware-friendly additions and thresholding through skillful structural
design. The datapath of MVTU is shown in Figure 6.
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Figure 6. Matrix-Vector-Threshold Unit (MVTU) [46].

Due to the nature of parallel computing, the higher levels of parallelism also produce
higher resource costs. Therefore, FINN can control the level of parallelism for each layer in
the neural network through adjusting the number of Processing Elements (PEs) and Single
Instruction Multiple Data (SIMD) units to adapt to different levels of FPGA platforms.

4. Results

In our experiments, we used the Z7P hardware experimental platform. Z7P is a
development board that uses Xilinx components from the same series as ZCU104 (xczu7ev-
ffvc1156-2-i). The detailed hardware resources are shown in Table 2.
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Table 2. Hardware Resources.

Z7P
(XCZU7EV-2FFVC1156-MPSoC)

System Logic Units 504 K
DSPs 1728
LUTs 230.4 K

LUTRAM 101.76 K
FF 460.8 K

Block Ram (BRAM) 312

In terms of model training, to ensure fairness in the ablation experiments, all models
are trained on a publicly available benchmark dataset, the Timofte dataset [48], consisting
of 91 images for training purposes. For testing, the Set5 [49] and Set14 [50] datasets, which
provide 5 and 14 images, respectively, were used. Additionally, the Berkeley segmentation
dataset, comprising 100 images, was used for model evaluation. For parameter initializa-
tion, we use Kaiming initialization [51] to initialize the parameters of convolution layers.

To demonstrate the performance improvement brought about by shortcuts and to
showcase the performance differences between downsampling layers with different pre-
cision, three models were trained for comparison purposes. These models include: BinE-
SPCN, which is without shortcut structures and with activation of downsampling layers
using binary precision; ResBinESPCN-A1, which has an added shortcut structure based
on BinESPCN; and ResBinESPCN-A2, which uses the downsampling layer with ternary
precision. We also trained the original ESPCN on the same dataset as our baseline model.
Table 3 presents the performance comparison.

Table 3. The mean PSNR of various methods evaluated on different datasets.

Dataset Scale Bicubic ESPCN BinESPCN ResBinESPCN-
A1

ResBinESPCN-
A2

VDSR
BAM

SRResNet
BAM BSRN

Set5
3

30.46 32.29 25.20 27.30 29.82 32.52 33.33 -
Set14 27.59 28.90 24.28 25.60 27.33 29.17 29.63 -

BSDS100 27.26 28.16 24.37 25.53 27.03 - - -

Set5
4

28.48 28.80 23.80 26.00 28.11 30.31 31.24 31.35
Set14 25.92 26.16 22.69 24.46 25.78 27.46 27.97 28.04

BSDS100 26.02 26.21 22.99 24.73 25.87 - - -

Compared to ESPCN, the BinESPCN model suffers from severe overall information
loss due to the absence of a shortcut structure, resulting in a sharp decline in model
performance. However, with the introduction of the shortcut structure in ResBinESPCN,
the model performance presents a certain degree of improvement. This enhancement is
attributed to the fact that the shortcut structure assists the model with binary data type in
preserving a greater amount of information. A preliminary hardware resource consumption
analysis is given in Table 4, with the aim of visualizing the difference in computational and
memory resources after quantization.

BOPs/MACs means total bit operations (BOPs) normalized to Multiply-Accumulate
operations (MACs). This would represent the total number of bit-level operations executed
for all MAC operations within a neural network layer, a network, or an entire model.
It is obtained by summing up the BOPS for each MAC operation across the network or
layer. A lower BOPS per MAC (BOPs/MAC) value indicates that fewer bit-level operations
are required to perform a single MAC operation. This implies greater computational ef-
ficiency, as fewer operations are needed to achieve the same computation. In hardware
implementations, a lower total number of BOPS normalized to MACs translates to reduced
computational complexity and potentially lower resource requirements. This is advanta-
geous for deploying neural network models on resource-constrained devices or specialized
hardware accelerators. Furthermore, Lower BOPS per MAC values or fewer total BOPS
normalized to MACs often correlate with faster processing times. Fewer bit-level opera-
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tions mean quicker computations, resulting in faster inference or training speeds for neural
network models.

Table 4. Hardware cost on FPGA with scaling factor 3.

Model Parameters MACs
(×109)

BOPs/MACs
(×109)

Total Number of Bits for
Layer Outputs

(×105)

Total Number of Bits for
Layer Parameters

(×105)

ESPCN 23 K 0.163 167.38 242.76 7.23
VDSR_BAM 668 K 616.9 - - -

SRResNet BAM 1547 K 127.9 - - -
BSRN 1216 K 85 - - -

BinESPCN 349 K 1.2433 3.50 464.71 3.01
ResBinESPCN-A1 349 K 1.2435 3.53 464.71 3.01
ResBinESPCN-A2 349 K 1.2435 36.38 464.71 3.01

Based on Tables 3 and 4, the introduction of the shortcut structure did not impose a sub-
stantial computational burden on the hardware. Simultaneously, it contributed to a certain
improvement in the model performance. Moreover, the introduction of downsampling with
ternary data type further improved the model performance. However, the utilization of
ternary data types added complexity to the model’s computations. Nonetheless, compared
to the baseline model, ResBinESPCN-A2 reduced the number of BOPs/MAC by approx-
imately ten times. Additionally, concerning memory efficiency, our model showcased
significant progress through reducing memory consumption by nearly two times. Com-
pared to VDSR, SRResNet with BAM, and BSRN, the drawbacks of a lightweight model
structure are evident in terms of underperformance. Nonetheless, our model performs well
in terms of reducing the number of parameters and hardware resource consumption, mak-
ing it still potentially useful for practical applications in resource-constrained environments.
This trade-off also means that our approach is perhaps slightly less effective in handling
complex image details. Overall, our approach finds a balance between performance and
computational efficiency, providing a viable solution for specific application scenarios.

To visualize the model performance, Figures 7–9 display three different HR images.
We also zoomed in on the images to facilitate the observation of changes in image details.
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Figure 9. Visual quality comparisons of HR image of 76,053 from BSDS100 with an upscaling factor
of 3.

FINN offers the flexibility to control the parallelism of computations by adjusting the
quantity of PEs and SIMD, leading to a myriad of potential configurations. To streamline
the experimental process, we broadly categorized the parallelism into three levels: low,
medium, and high. Low denotes the minimal level of parallelism within the constraints
provided by FINN, while high signifies the maximum. Medium stands as an intermediate
point between low and high parallelism levels. Table 5 and Figure 10 present the FPGA
hardware costs for deploying ResBinESPCN-A2. From the results, it can be seen that the
computational resources and energy consumption of the hardware increase as the degree
of parallelism increases.
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Table 5. Hardware cost on FPGA.

Board Model Parallelism LUT
(Utilization) LUTRAM FF BRAM BUFG Power

(W)

Z7P ResBinESPCN-A2

Low 21,685
(9.41%)

4752
(4.67%)

24,653
(5.35%)

14
(4.49%)

2
(0.37%) 3.545

Medium 44,255
(19.21%)

7372
(7.24%)

45,144
(9.8%)

87
(27.88%)

9
(1.65%) 4.207

High 64,015
(27.78%)

12,736
(12.52%)

70,154
(15.55%)

58
(18.59%)

11
(2.02%) 4.452
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5. Conclusions

This paper proposed an end-to-end super-resolution deep learning model named Res-
BinESPCN, based on Binary Neural Networks (BNNs). The model accelerates computations
and reduces memory consumption by data binarization and by using low bit-width data
types. Moreover, the introduction of the shortcut structure has also brought about a notable
improvement in reconstruction quality. ResBinESPCN exhibits strong model performance
while maintaining high-speed execution and a relatively smaller model size. With regard
to the hardware, deploying deep learning models on FPGA using FINN has streamlined
the complex deployment process. Additionally, FINN’s flexibility in controlling parallelism
allows for different levels of parallel computation based on the computational and storage
resources of various hardware platforms, which is beneficial for large-scale system deploy-
ments such as heterogeneous IoT sensor networks and distributed computing systems.
Additionally, closed-circuit television (CCTV) is a critical component of today’s security
systems for monitoring various locations. Our method can be effortlessly integrated into
wireless multimedia sensors such as RGB cameras, without significant hardware costs. In
the field of biometric information recognition, our model also demonstrates promise. It
significantly enhances details in shape and structural textures, potentially boosting recogni-
tion capabilities in related applications by effectively preserving the global structure. Take,
for example, the images shown in Figure 7. In the aforementioned applications, owing to



Electronics 2024, 13, 266 14 of 16

its lightweight design, our model can be deployed at the edge, achieving the task of image
super-resolution locally. This enables the effective protection of user data privacy while
ensuring relatively rapid responsiveness.

6. Future Work

Although BNNs significantly reduce hardware burdens, the information loss incurred
by binarization is often intolerable. This implies that, while introducing methods like
scaling factors, specially designed activation functions, or multi-branch convolutions in the
proposed model, may lead to some performance improvements, most existing approaches
aimed at mitigating information loss due to binarization are not inherently hardware-
friendly. However, in environments where hardware conditions are relatively lenient
and stringent model performance is required, sacrificing some hardware resources to
enhance model performance, such as introducing scaling factors or increasing depth of
model, might be acceptable. In future work, we believe it is crucial to focus on a co-design
approach involving both software and hardware to devise an efficient method that is
hardware-friendly and capable of extracting input information effectively.

Author Contributions: Conceptualization, K.P.S., Y.S. and L.M.A.; methodology, Y.S. and K.P.S.;
resources, K.P.S.; data curation, Y.S., K.P.S. and L.M.A.; writing—original draft preparation, K.P.S.,
Y.S., L.M.A. and J.S.; writing—review and editing, K.P.S., Y.S. and L.M.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used in this study are publicly available in references [45,48–50].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Heltin Genitha, C.; Vani, K. Super Resolution Mapping of Satellite Images Using Hopfield Neural Networks. In Proceedings of

the Recent Advances in Space Technology Services and Climate Change 2010 (RSTS & CC-2010), Chennai, India, 13–15 November
2010; pp. 114–118.

2. Zhang, H.; Yang, Z.; Zhang, L.; Shen, H. Super-Resolution Reconstruction for Multi-Angle Remote Sensing Images Considering
Resolution Differences. Remote Sens. 2014, 6, 637–657. [CrossRef]

3. Umehara, K.; Ota, J.; Ishida, T. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution
in Chest CT. J. Digit. Imaging 2018, 31, 441–450. [CrossRef] [PubMed]

4. You, C.; Li, G.; Zhang, Y.; Zhang, X.; Shan, H.; Ju, S.; Zhao, Z.; Zhang, Z.; Cong, W.; Vannier, M.W.; et al. CT Super-Resolution
GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble(GAN-CIRCLE). IEEE Trans. Med. Imaging 2020, 39,
188–203. [CrossRef] [PubMed]

5. Shamsolmoali, P.; Zareapoor, M.; Jain, D.K.; Jain, V.K.; Yang, J. Deep Convolution Network for Surveillance Records Super-
Resolution. Multimed. Tools Appl. 2019, 78, 23815–23829. [CrossRef]

6. Rasti, P.; Uiboupin, T.; Escalera, S.; Anbarjafari, G. Convolutional Neural Network Super Resolution for Face Recognition in
Surveillance Monitoring. In Proceedings of the 9th International Conference on Articulated Motion and Deformable Objects,
Palma de Mallorca, Spain, 13–15 July 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 175–184.

7. Shen, Z.; Xu, Y.; Lu, G. CNN-Based High-Resolution Fingerprint Image Enhancement for Pore Detection and Matching. In
Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019;
pp. 426–432.

8. Ribeiro, E.; Uhl, A.; Alonso-Fernandez, F.; Farrugia, R.A. Exploring Deep Learning Image Super-Resolution for Iris Recognition.
In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos Island, Greece, 28 August–2 September
2017; pp. 2176–2180.

9. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal.
Mach. Intell. 2015, 38, 295–307. [CrossRef] [PubMed]

10. Tong, C.S.; Leung, K.T. Super-Resolution Reconstruction Based on Linear Interpolation of Wavelet Coefficients. Multidim. Syst.
Signal Process. 2007, 18, 153–171. [CrossRef]

11. Liu, J.; Gan, Z.; Zhu, X. Directional Bicubic Interpolation—A New Method of Image Super-Resolution; Atlantis Press: Amsterdam,
The Netherlands, 2013; pp. 463–470.

12. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

https://doi.org/10.3390/rs6010637
https://doi.org/10.1007/s10278-017-0033-z
https://www.ncbi.nlm.nih.gov/pubmed/29047035
https://doi.org/10.1109/TMI.2019.2922960
https://www.ncbi.nlm.nih.gov/pubmed/31217097
https://doi.org/10.1007/s11042-018-5915-7
https://doi.org/10.1109/TPAMI.2015.2439281
https://www.ncbi.nlm.nih.gov/pubmed/26761735
https://doi.org/10.1007/s11045-007-0023-2


Electronics 2024, 13, 266 15 of 16

13. Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

14. Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In Proceedings of the 14th
European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016.

15. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-Recursive Convolutional Network for Image Super-Resolution. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016.

16. Mao, X.-J.; Shen, C.; Yang, Y.-B. Image Restoration Using Convolutional Auto-Encoders with Symmetric Skip Connections. arXiv
2016, arXiv:1606.08921.

17. Tai, Y.; Yang, J.; Liu, X. Image Super-Resolution via Deep Recursive Residual Network. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2790–2798.

18. Tong, T.; Li, G.; Liu, X.; Gao, Q. Image Super-Resolution Using Dense Skip Connections. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4809–4817.

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2015.

20. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481.

21. Hui, Z.; Wang, X.; Gao, X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

22. Ahn, N.; Kang, B.; Sohn, K.-A. Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network. In
Proceedings of the 2018 European Conference on Computer Vision, Munich, Germany, 8–14 September 2018.

23. Song, D.; Xu, C.; Jia, X.; Chen, Y.; Xu, C.; Wang, Y. Efficient Residual Dense Block Search for Image Super-Resolution. In
Proceedings of the AAAI Conference on Artificial Intelligence, Hilton, HI, USA, 27 January–1 February 2019.

24. Li, H.; Yan, C.; Lin, S.; Zheng, X.; Li, Y.; Zhang, B.; Yang, F.; Ji, R. PAMS: Quantized Super-Resolution via Parameterized Max
Scale. In Proceedings of the 16th European Conference on Computer Vision–ECCV 2020, Glasgow, UK, 23–28 August 2020.

25. Jiang, X.; Wang, N.; Xin, J.; Li, K.; Yang, X.; Gao, X. Training Binary Neural Network without Batch Normalization for Image
Super-Resolution. Proc. AAAI Conf. Artif. Intell. 2021, 35, 1700–1707. [CrossRef]

26. Jiang, X.; Wang, N.; Xin, J.; Li, K.; Yang, X.; Li, J.; Gao, X. Toward Pixel-Level Precision for Binary Super-Resolution With Mixed
Binary Representation. IEEE Trans. Neural Netw. Learning Syst. 2022, 1–13. [CrossRef] [PubMed]

27. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks: Training Deep Neural Networks
with Weights and Activations Constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

28. Qin, H.; Cai, Z.; Zhang, M.; Ding, Y.; Zhao, H.; Yi, S.; Liu, X.; Su, H. BiPointNet: Binary Neural Network for Point Clouds. arXiv
2021, arXiv:2010.05501.

29. Kung, J.; Zhang, D.; van der Wal, G.; Chai, S.; Mukhopadhyay, S. Efficient Object Detection Using Embedded Binarized Neural
Networks. J. Signal Process. Syst. 2018, 90, 877–890. [CrossRef]

30. Ngadiuba, J.; Loncar, V.; Pierini, M.; Summers, S.; Guglielmo, G.D.; Duarte, J.; Harris, P.; Rankin, D.; Jindariani, S.; Liu, M.; et al.
Compressing Deep Neural Networks on FPGAs to Binary and Ternary Precision with Hls4ml. Mach. Learn. Sci. Technol. 2020, 2,
015001. [CrossRef]

31. Fasfous, N.; Vemparala, M.-R.; Frickenstein, A.; Frickenstein, L.; Badawy, M.; Stechele, W. BinaryCoP: Binary Neural Network-
Based COVID-19 Face-Mask Wear and Positioning Predictor on Edge Devices. In Proceedings of the 2021 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), Portland, OR, USA, 17–21 June 2021; pp. 108–115.

32. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: ImageNet Classification Using Binary Convolutional Neu-
ral Networks. In Proceedings of the 2016 European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14
October 2016.

33. Liu, Z.; Wu, B.; Luo, W.; Yang, X.; Liu, W.; Cheng, K.-T. Bi-Real Net: Enhancing the Performance of 1-Bit CNNs with Improved
Representational Capability and Advanced Training Algorithm. In Proceedings of the 2018 European Conference on Computer
Vision, Munich, Germany, 8–14 September 2018; pp. 722–737.

34. Sun, R.; Zou, W.; Zhan, Y. “Ghost” and Attention in Binary Neural Network. IEEE Access 2022, 10, 60550–60557. [CrossRef]
35. Liu, C.; Ding, W.; Chen, P.; Zhuang, B.; Wang, Y.; Zhao, Y.; Zhang, B.; Han, Y. RB-Net: Training Highly Accurate and Efficient

Binary Neural Networks With Reshaped Point-Wise Convolution and Balanced Activation. IEEE Trans. Circuits Syst. Video Technol.
2022, 32, 6414–6424. [CrossRef]

36. Bethge, J.; Yang, H.; Bornstein, M.; Meinel, C. BinaryDenseNet: Developing an Architecture for Binary Neural Networks. In
Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea,
27–28 October 2019; pp. 1951–1960.

37. Ding, R.; Liu, H.; Zhou, X. IE-Net: Information-Enhanced Binary Neural Networks for Accurate Classification. Electronics 2022,
11, 937. [CrossRef]

38. Bulat, A.; Tzimiropoulos, G. XNOR-Net++: Improved Binary Neural Networks. arXiv 2019, arXiv:1909.13863.
39. Liu, Z.; Shen, Z.; Savvides, M.; Cheng, K.-T. ReActNet: Towards Precise Binary Neural Network with Generalized Activation

Functions. In Proceedings of the 16th European Conference on Computer Vision–ECCV 2020, Glasgow, UK, 23–28 August 2020;
Springer International Publishing: Cham, Switzerland, 2020; pp. 143–159.

https://doi.org/10.1609/aaai.v35i2.16263
https://doi.org/10.1109/TNNLS.2022.3201528
https://www.ncbi.nlm.nih.gov/pubmed/36070271
https://doi.org/10.1007/s11265-017-1255-5
https://doi.org/10.1088/2632-2153/aba042
https://doi.org/10.1109/ACCESS.2022.3181192
https://doi.org/10.1109/TCSVT.2022.3166803
https://doi.org/10.3390/electronics11060937


Electronics 2024, 13, 266 16 of 16

40. Qin, H.; Gong, R.; Liu, X.; Shen, M.; Wei, Z.; Yu, F.; Song, J. Forward and Backward Information Retention for Accurate Binary
Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 13–19 June 2020; pp. 2247–2256.

41. Tu, Z.; Chen, X.; Ren, P.; Wang, Y. AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets. In Proceedings of
the 17th European Conference on Computer Vision–ECCV 2022, Tel Aviv, Israel, 23–27 October 2022; Springer International
Publishing: Cham, Switzerland, 2022.

42. Zhang, J.; Su, Z.; Feng, Y.; Lu, X.; Pietikäinen, M.; Liu, L. Dynamic Binary Neural Network by Learning Channel-Wise Thresholds.
In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Singapore, 22–27 May 2022; pp. 1885–1889.

43. Ma, Y.; Xiong, H.; Hu, Z.; Ma, L. Efficient Super Resolution Using Binarized Neural Network. In Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June
2019; pp. 694–703.

44. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-
Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

45. Xin, J.; Wang, N.; Jiang, X.; Li, J.; Huang, H.; Gao, X. Binarized Neural Network for Single Image Super Resolution. In Proceedings
of the 16th European Conference on Computer Vision–ECCV 2020, Glasgow, UK, 23–28 August 2020; Springer International
Publishing: Cham, Switzerland, 2020; Volume 12349, pp. 91–107, ISBN 978-3-030-58547-1.

46. Umuroglu, Y.; Fraser, N.J.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. FINN: A Framework for Fast, Scalable
Binarized Neural Network Inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, USA, 22–24 February 2017; pp. 65–74.

47. Blott, M.; Preusser, T.; Fraser, N.; Gambardella, G.; O’Brien, K.; Umuroglu, Y. FINN-R: An End-to-End Deep-Learning Framework
for Fast Exploration of Quantized Neural Networks. ACM Trans. Reconfigurable Technol. Syst. 2018, 11, 1–23. [CrossRef]

48. Timofte, R.; De Smet, V.; Van Gool, L. A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution. In Proceedings
of the 12th Asian Conference on Computer Vision—ACCV 2014, Singapore, 1–5 November 2014; Springer International Publishing:
Cham, Switzerland, 2015; pp. 111–126.

49. Bevilacqua, M.; Roumy, A.; Guillemot, C.; Morel, M.A. Low-Complexity Single-Image Super-Resolution Based on Nonnegative
Neighbor Embedding. In Proceedings of the 2012 British Machine Vision Conference, Surrey, UK, 3–7 September 2012; British
Machine Vision Association: Surrey, UK, 2012; pp. 135.1–135.10.

50. Zeyde, R.; Elad, M.; Protter, M. On Single Image Scale-Up Using Sparse-Representations. In Proceedings of the 7th International
Conference on Curves and Surfaces, Avigbion, France, 24–30 June 2010; Springer: Berlin/Heidelberg, Germany, 2012; pp. 711–730.

51. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proceedings of the International Conference on Computer Vision, Las Condes, Chile, 11–18 December 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3242897

	Introduction 
	Binary Neural Network for Super-Resolution 
	FPGA Implementation 
	Results 
	Conclusions 
	Future Work 
	References

