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Abstract: In hyperspectral remote sensing, achieving high spatial resolution holds paramount im-
portance for an array of applications, such as environmental monitoring, geographic mapping, and
precision agriculture. Nevertheless, conventional hyperspectral images frequently grapple with
the issue of restricted spatial resolution. We apply optimized inversion methods to hyperspectral
image fusion and present an innovative approach for hyperspectral image fusion which combines the
Hue–Intensity–Saturation (HIS) transform, the wavelet transform, and the Trust-Region Conjugate
Gradient technique. This amalgamation not only refines spatial precision but also augments spectral
faithfulness, which is a pivotal aspect for applications like precise object detection and classification.
In the context of our investigation, we conducted a thorough validation of our proposed HIS, Wavelet,
and Trust-Region Conjugate Gradient (TRCG-HW) method for image fusion using a comprehensive
suite of evaluation metrics. These metrics encompassed the Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM), Correlation Coefficient (CC), Spectral Angle Mapper (SAM), and Error
Relative Global Accuracy Score (ERGAS). The findings incontrovertibly establish TRCG-HW as the
preeminent method among those considered. Our study effectively tackles the pressing predicament
of low spatial resolution encountered in hyperspectral imaging. This innovative paradigm harbors
the potential to revolutionize high-resolution hyperspectral data acquisition, propelling the field of
hyperspectral remote sensing forward and efficiently catering to crucial application.

Keywords: hyperspectral image fusion; wavelet transform; HIS transform; Trust-Region
Conjugate Gradient

1. Introduction

Hyperspectral imaging (HSI) stands as a versatile technology amalgamating imag-
ing and spectroscopy to concurrently capture both spatial and spectral facets of targets.
The resulting data are organized into a three-dimensional cube, comprising two spatial
dimensions and a single spectral dimension, collectively forming a hypercube [1]. In the
realm of hyperspectral remote sensing, this capability spans multi-band imaging across
the visible and infrared spectra, enabling analyses at the molecular and even atomic scales.
This surpasses the confines of traditional optical remote sensing, which is reliant solely on
spectral data. Recently, hyperspectral remote sensing has showcased its prowess across
varied domains, such as environmental monitoring [2], fire detection [3], geographical
mapping [4], precision agriculture [5,6], and atmospheric and oceanic observation [7,8].
However, despite its high spectral resolution, hyperspectral imagery grapples with a lim-
ited ability to discern fine object details. This limitation stems from capturing information
only when objects reflect light at specific wavelengths, resulting in subdued discrimina-
tory power, thereby impacting precise boundary and shape depiction. To alleviate the
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challenges posed by low spatial resolutions and limited information detection, fusion
techniques combining hyperspectral images with panchromatic imagery have been ex-
plored. Addressing the issue of hyperspectral image fusion has long been challenging for
researchers. Traditional methods often grapple with balancing the richness of hyperspec-
tral data with enhanced spatial resolution. Many existing approaches either compromise
spatial resolution to preserve spectral data or forfeit crucial spectral information in favor
of enhanced spatial resolution. This enduring trade-off issue poses a significant quandary
in hyperspectral image fusion—how to enhance the spatial resolution while retaining the
depth of hyperspectral data.

In recent times, there has been a notable surge in the exploration of panchromatic–
hyperspectral image fusion techniques. Image fusion methodologies are categorized into
three distinct levels based on their processing stages: pixel level [9], feature level [10,11],
and decision level [12,13]. Pixel-level fusion focuses on the individual pixel points within
two images, offering heightened accuracy and detailed information by directly manipu-
lating the original data. However, pixel-level fusion demands extensive data processing,
surpassing the complexity of the feature and decision levels, and requires meticulous
alignment prior to fusion.

At the pixel level, color space-based methods, principal component analysis (PCA),
and multi-resolution transformation techniques constitute common strategies [14,15]. Color
space-based fusion involves transitioning images from the RGB color model to a sequential
color system, employing methodologies like the HIS transform [16,17] and Brovey trans-
form [18,19]. The HIS transform adeptly segregates spatial and spectral data. However, the
principal component substitution technique’s limitation lies in its operation being confined
solely to pixel-level functionality, making it prone to spectral aliasing. This issue causes the
loss of intricate details in the fused image due to straightforward pixel-wise substitution.
To address this shortcoming, a combined methodology intertwining the differential search
algorithm, adaptive regional segmentation, IHS conversion, and RGB band processing
was proposed [20]. Principal Component Analysis (PCA) is an image fusion technique
that amalgamates multiple images by reducing data dimensions and extracting essential
features [21]. However, its application may lead to information loss and the imposition of
linear assumptions on intricate relationships, thereby constraining its efficacy.

Numerous researchers have delved into multi-resolution image fusion techniques.
Toet introduced contrast pyramids in Gaussian pyramid-based fusion [22], while Burt
and Kolczynski derived gradient pyramids from Gaussian pyramids [23,24]. However,
the pyramid transformation lacks translational invariance, potentially leading to spuri-
ous Gibbs artifacts in the fused images [25]. Chipman proposed fusion using orthogonal
wavelets [26], Li presented a digital filter for consistency verification [27], and Liu utilized
a controlled pyramid algorithm [28]. Other methods involve Li Zhenhua’s pyramid frame
transform [29] and Matsopoulos’ application of morphological pyramids in medical image
fusion [30]. While these advanced methods demonstrate progress, they seem to overlook
comprehensive spatial consistency, possibly resulting in color and brightness distortions
in the fused outcomes. To address this, proposed solutions include guided filters [31]
and bilateral filters [32], which effectively tackle spatial consistency concerns and reduce
edge artifacts [33]. However, conventional bilateral filters exhibit limitations in effective
image smoothing. To overcome this, Chen, B.H. introduced an innovative two-pass bilat-
eral filtering approach for edge-preserving image smoothing, demonstrating exceptional
performance [34,35]. Additionally, in the realm of multi-modal image fusion research,
Goyal et al. focused on structure awareness and metric analysis, while Dogra and Kumar
emphasized the use of guided filtering and multidirectional shearlet transform in medical
image fusion [36,37].

The progress in Gaussian pyramid-based methods has not resolved the challenge of
losing high-frequency detail during operations. To address this, a technique based on a
Laplacian Pyramid direction filter bank was proposed to enhance fusion outcomes [38,39].
These advancements significantly impacted medical image processing, particularly in Lapla-
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cian Pyramid-based techniques. Methods employing Laplacian Pyramids and adaptive
sparse representation were explored [40,41], notably improving lung cancer diagnosis
through CT image fusion and the integration of multimodal medical images. More-
over, in reference [42], fusion methodologies underwent a revolution by combining a
Laplacian Pyramid with deep learning, surpassing conventional techniques in image
fusion capabilities.

Traditional multi-scale pyramid image fusion methods have undergone significant
advancements and applications in the domain of deep learning. The work conducted by Ji,
Peng, and Xu exemplifies the practical implementation of deep learning models in conjunc-
tion with multi-scale pyramid image enhancement techniques for real-time underwater
river crab detection [43]. Notably, there has been a burgeoning interest in leveraging intelli-
gent algorithms like Convolutional Neural Networks (CNNs) and Generative Adversarial
Networks (GANs) [44,45]. These methodologies have exhibited adeptness in effectively
fusing image information, thereby elevating image quality and augmenting features [46].
Specifically, the adoption of deep learning algorithms rooted in neural network theory
has gained substantial prominence in the field of image fusion. Multifocal Image Fusion
(MFIF) is capable of generating omnifocal images tailored to visual requirements, and
ongoing research endeavors aim to mitigate the defocus spreading effects (DSEs) typically
observed around focus/defocus boundaries. In response to DSE challenges, an innovative
Generative Adversarial Network, termed MFIF-GAN, was introduced for the specific task
of MFIF [47].

The application of the wavelet transform holds a paramount position among multi-
resolution image fusion techniques [48]. Revered for its exceptional time–frequency con-
straints, the wavelet transform facilitates thorough multi-scale image analysis [49]. This
influential method adeptly captures both spatial and frequency domain characteristics,
offering a comprehensive and intuitive depiction of images. Its capability encompasses
the analysis of elements varying in sizes and resolutions within a single image, ensuring
a detailed representation. Advanced versions of the wavelet transform, such as the vari-
ational binary wavelet transform [50], multi-binary wavelet transform [51], and boosted
structure wavelet transform [52], have expanded its potential, opening new avenues for
further advancements in image fusion. However, there exists an exigent need for ongoing
research to address computational redundancy within the wavelet transform and to devise
innovative strategies to enhance computational efficiency. This endeavor is critical for
ensuring spectral consistency in hyperspectral images, mitigating spectral aliasing, and pre-
serving intricate high-frequency intensity components, which are often lost in the original
HIS transform algorithm.

In this context, our research presents an innovative methodology for hyperspectral im-
age fusion, integrating the HIS transform, wavelet transform, and Trust-Region Conjugate
Gradient techniques. This pioneering approach is designed to enhance spatial resolution
while preserving the abundance of spectral information. Our study is dedicated to resolv-
ing key questions regarding the preservation of spectral nuances in hyperspectral image
fusion. We firmly anticipate that our contributions will propel advancements in the field,
providing more detailed and accurate images tailored for practical applications.

The main contributions of this work are summarized as follows:

(1) We present the Trust-Region Conjugate Gradient (TRCG) method, an optimization
technique for enhancing image fusion accuracy and efficiency, exploring its principles,
mathematics, and practical applications.

(2) To approach the true value more accurately, our approach employed a two-tiered
strategy, with the inner layer guided by the truncated conjugate gradient (TCG) for
local optimization and the outer layer using the trust region algorithm (TRA) for
global convergence.

(3) We conducted extensive experiments on widely used datasets, consistently achieving
satisfactory performance compared with the latest hyperspectral image
fusion methods.
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2. Materials and Methods

In this section, we aim to elaborate on the experimental setup of our hyperspectral
imaging system and elucidate the methodologies adopted for hyperspectral image fusion.
We provide an extensive explanation of the core principles and practical applications
of crucial techniques, notably the Hue–Intensity–Saturation (HIS) transform, wavelet
transform, and the Trust-Region Conjugate Gradient method. Additionally, we delve into
the empirical data, the nuances of our experimental design, and the relevant evaluation
metrics employed in our scholarly exploration.

2.1. Experimental Design of Hyperspectral Imaging System

We provide an overview of the hyperspectral imaging system employed in our study
and detail our designed experimental procedure. Our experimental design is tailored to ac-
quire high-quality hyperspectral image data, which serve as the foundation for subsequent
processing and analysis.

2.1.1. Hyperspectral Imaging System

In the domain of contemporary hyperspectral imaging (HSI), the acquisition and
processing of high-quality data hold paramount significance. This study delves into an
innovative experimental design tailored to augment both data quality and subsequent
fusion processes.

Figure 1 presents a comprehensive portrayal of our HSI system, structured into three
distinct modules: a narrow-band light generator, an imaging section, and a control system.
This schematic delineates the design and operational principles governing these modules.
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matic performance. 

Figure 1. Schematic diagram of our hyperspectral imaging system. A xenon source with a
paraboloidal reflector provides stable illumination. Light is shaped by optical elements and cast in
parallel onto optical grating. Grating diffraction causes dispersion and a chromatic band of light is
shown at the focal plane of the lens. Optical fiber transmits selected light into the imaging section for
illumination. Images of tissue are collected by a CMOS camera. A computer synchronizes the CMOS
camera and grating rotation, and stores data as a form of hypercube.
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The narrow-band light generator incorporates a Xenon source (55 W, 6000 K) to
produce a broad spectrum of light. This source interfaces with several optical elements,
including lenses and a reflective ruled diffraction grating (1800 lines/mm, angular dis-
persion rate 1.8 mrad/nm), inducing chromatic dispersion. An imaging lens (Φ = 38 mm,
f = 200 mm) converges parallel rays. The optical components, including lenses and a
small-aperture light stop (Φ = 1 mm), shape the light rays, ensuring parallel incidence onto
the grating. The grating diffracts the light, focusing it at the imaging lens’s focal plane, gen-
erating a chromatic band known as the first-order diffraction spectrum. A small aperture at
the focal point transmits narrow-band light at a specific wavelength. The grating’s rotation,
managed by a rotating platform, adjusts emitted light wavelengths by varying the incident
light angle. The lighting section and the narrow-band light generator connect solely via an
optical fiber (Φ = 4 mm).

The selected narrow-band light illuminates tissue samples using a complementary
metal oxide semiconductor (CMOS) camera featuring a 1280 × 1024 array and 5.2 µm
square pixels and operating at 15 frames per second. The control system, comprising
computer hardware and software, commands two modules: the MCS-51 microcontroller
and an electromotor, controlling the rotation platform to adjust the narrow-band light’s
center wavelength. The CMOS camera captures images at various wavelengths. The control
system synchronizes wavelength switching and image acquisition, storing raw data as
a hypercube.

This modular design offers potential integration into modern consumer imaging
products. For this study, the HSI system was installed on a stereomicroscope XTZ-E,
boasting magnification ranging from 7× to 45× (Shanghai Optical Instrument Factory,
Shanghai, China).

2.1.2. Experimental Procedure

Our approach involved meticulous data collection using cutting-edge hyperspec-
tral imaging systems, followed by an extensive preprocessing stage. This preprocessing
included crucial tasks such as noise reduction, radiometric correction, and meticulous
image registration.

The spectroscopic measurement of monochromatic light generated by an active
monochromatic hyperspectral imaging system holds paramount importance in ensur-
ing the precision and efficacy of the imaging device. This meticulous process, especially
concerning the RGB spectral bands, is vividly depicted in Figure 2.

The top row exhibits the spectral power density curve, while the second and
third rows showcase the CIE 1931 and CIE 1964 chromaticity diagrams, respectively. De-
tailed measurements, facilitated by the UPRtek MK350S spectrometer(UPRtek,
New Taipei City, China), were conducted to ensure precise wavelength control and
spectral fidelity.

Analysis of the spectral power density curve, CIE 1931 chromaticity diagram, and
CIE 1964 chromaticity diagram allows us to evaluate the monochromatic performance
of the spectrometer. The spectral power density curve illustrates the relative intensity
of light across various wavelengths, displaying narrow and sharp peaks that denote the
spectrometer’s exceptional monochromaticity. It effectively segregates light of different
wavelengths. The CIE 1931 and CIE 1964 chromaticity diagrams indicate the positions
of light at different wavelengths within the color space. The accurate representation of
chromaticity coordinates in these diagrams confirms the spectrometer’s commendable
monochromatic performance.

The spectrometer’s monochromatic performance is pivotal for its functionality, as
it directly influences its capacity to precisely resolve and measure light of diverse wave-
lengths. Enhanced monochromaticity significantly improves the spectrometer’s accuracy
in color measurement, spectral analysis, and other applications by allowing it to precisely
differentiate and measure light wavelengths. This feature not only delivers high-resolution
monochromatic imaging but also demonstrates exceptional wavelength stability and the
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capability to precisely select spectral bands. Our meticulous spectroscopic measurement
and spectral analysis of monochromatic light, generated by the active monochromatic
hyperspectral imaging system, not only yield top-tier data but also unleash the instru-
ment’s full potential. This comprehensive approach not only enriches our understanding
of spectral characteristics but also furnishes reliable spectral support across diverse do-
mains, ultimately propelling advancements in research and the seamless integration of this
technology into practical applications.
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To exhibit the effectiveness of our preprocessing procedure, Figure 3 showcases prepro-
cessed images captured using an RGB camera. These images encompass various lighting
conditions, including (a) red lighting, (b) green lighting, (c) blue lighting, and (d) syn-
thesized color hyperspectral images. Additionally, (e) grayscale images captured under
full-spectrum illumination are included for comprehensive evaluation. These images un-
equivocally demonstrate the success of our preprocessing method in elevating the overall
quality and consistency of hyperspectral data. The application of these methods signifi-
cantly enhances our hyperspectral data, ensuring a robust and accurate foundation for the
subsequent fusion process.
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2.2. HIS Transformation

Section 2.2 delves into the HIS color model and its role in hyperspectral image fusion.
The exploration commences with an introduction to the HIS color model (Section 2.2.1),
followed by an elucidation of its application in hyperspectral image fusion (Section 2.2.2).
These sections aim to offer comprehensive insight into the utilization of the HIS color model
to augment image quality and information fusion.

2.2.1. HIS Color Model

HSI means intensity, saturation, and hue. Based on the RGB color system, the RGB
color image can be decomposed into R, G, and B channels. The R, G, and B can be
transformed into the H, I, and S by mathematical transformation, which completes the HIS
transformation of RGB color images. The majority of images we encounter in our daily
lives are colored images, although images are fundamentally two-dimensional data with
pixels typically represented as m × n. Such images are referred to as grayscale images,
commonly recognized as black and white images. However, the representation of colored
images necessitates an understanding of colorimetry. The CIE 1931 RGB color space is the
most prevalent standard, wherein the combination of the three primary colors R (red), G
(green), and B (blue) is determined by their respective tristimulus values to create a colored
image. Consequently, RGB color images can be decomposed into three separate images,
corresponding to the R, G, and B channels.

While the RGB color space is employed for color mixing and computation, the per-
ception of an object’s color in daily life requires a color perception system, known as a
color order system. The Munsell color system, an example of a color order system, defines
three parameters—brightness, hue, and chroma (saturation)—to characterize color. When
observing objects, the “Munsell Color Chart” can be used for comparison, enabling the
confirmation of an object’s color. Analogously to the Munsell color system, Munsell intro-
duced the HIS color model, which comprises I (intensity/luminance), S (saturation), and H
(hue). Based on the RGB color space, RGB color images can be decomposed into their R,
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G, and B channels, and mathematical transformations can be applied to convert the R, G,
and B channel components into H, I, and S channel components. This process constitutes
the HIS transformation of an RGB color image. In the context of the HIS transformation,
intensity I conveys spatial information, while H and S represent spectral information,
thereby achieving the separation of spectral and spatial information.

2.2.2. Hyperspectral Image Fusion Based on HIS Transform

In the process of fusing panchromatic and hyperspectral images based on the HIS
transform, we began by performing the HIS transform on RGB color hyperspectral images.
In Appendix A, we present the equations characterizing the linear RGB to HIS transforma-
tion. Following this transformation, the full-color grayscale image was preprocessed and
introduced as a new component referred to as ‘I’ (intensity) within the color sequence sys-
tem. This ‘I’ component was then fused with the ‘H’ (hue) and ‘S’ (saturation) components
of the hyperspectral image. Subsequently, the HIS transformation was reversed, returning
the data to the RGB color space and yielding the final RGB color fusion image.

2.3. Wavelet Transform (WT)

The wavelet transform represents a method capable of concurrently considering both
the spatial and frequency domain attributes of an image. By decomposing the image into
various frequency components across multiple scales, it enables a multi-scale analysis of
the image. In terms of image fusion, the wavelet transform contributes to enhancing the
spatial precision of the image. It achieves this by analyzing and integrating image details at
different scales, thereby facilitating multi-scale processing of image details.

In Section 2.3, we delve into wavelet transform and its crucial application in image fu-
sion. Firstly, we introduce wavelet transform and its mathematical principles (Section 2.3.1),
elucidating its underlying concepts and mathematical foundations. Subsequently, we
provide a detailed discussion on the application of wavelet transform in image processing
(Section 2.3.2), encompassing specific transformation methods and processes. Finally, we
explore the role of wavelet transform in image fusion (Section 2.3.3), offering an in-depth
analysis of its pivotal contribution to the fusion process.

2.3.1. Wavelets’ Mathematical Principles

The mathematical representation of the Continuous Wavelet Transform (CWT) in-
volves convolving a function, often referred to as the mother wavelet ψ(t), with the signal
f (t) across varying scales and translations. The CWT of a signal f (t) with respect to a
mother wavelet ψ(t) at a scale a and translation τ is given by

WT(a, τ) =
1√
a

∞∫
−∞

f (t) ∗ ψ(
t − τ

a
)dt, (1)

where WT(a, τ) represents the Continuous Wavelet Transform of f (t) at scale a and
translation τ, ψ(t) denotes the mother wavelet, a is the scale variable that can control the
scaling of the wavelet basis, τ is the translation quantity that controls the translation of the
wavelet basis, and a and τ correspond to the frequency inverse and time, respectively.

The considerable computational intricacy of Continuous Wavelet Transform (CWT)
and its constrained implementation in discrete systems have restricted its broad utility
in practical engineering and data processing. To surmount these constraints and furnish
more effective analytical tools, the Discrete Wavelet Transform (DWT) was introduced and
extensively embraced. DWT, a discrete counterpart of CWT, represents a technique for
disassembling a signal into various components of diverse scales and frequencies. However,
it employs an alternative approach to achieve this disassembly. While the conventional
CWT entails convolving the signal with continuous wavelets, DWT utilizes sampling
and filter bank methodologies, rendering it more suitable, particularly in the domain of
image processing.
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The operation of DWT on a discrete signal f (x) involves signal decomposition using a
low-pass filter φj0,k(x) and a high-pass filter ψj,k(x), followed by downsampling. In a single-
level DWT, the signal f (x) can be decomposed into approximation coefficients Wφ(j0, k)
(representing low-frequency components) and detail coefficients Wψ(j, k) (representing
high-frequency components): Wφ(j0, k) = 1√

M ∑
x

f (x)φj0,k(x)

Wψ(j, k) = 1√
M ∑

x
f (x)ψj,k(x)

, (2)

where 1√
M

is the normalization factor, usually j0 = 0; M = 2J ; x = 0, 1, 2, . . . , M − 1;

j = 0, 1, 2, . . . , J − 1; k = 0, 1, 2, . . . , 2j − 1; Wφ(j0, k) denotes the approximation coefficients;
Wψ(j, k) represents the detail coefficients (representing high-frequency components); and
φj0,k(x) and ψj,k(x) are, respectively, the low-pass and high-pass filters.

2.3.2. Wavelet Transform of Image

When dealing with two-dimensional data such as images, the extension of one-
dimensional DWT to a two-dimensional domain becomes imperative. This extension
is known as the Two-Dimensional Discrete Wavelet Transform (2D DWT). 2D DWT of size
M × N image function f(x,y) is as follows:

Wφ(j0, m, n) = 1√
MN

M−1
∑

x=0

N−1
∑

y=0
f (x, y)φj0,m,n(x, y)

Wi
ψ(j, m, n) = 1√

MN

M−1
∑

x=0

N−1
∑

y=0
f (x, y)ψi

j,m,n(x, y)
, (3)

where the superscript i denotes H (horizontal direction), V (vertical direction), D (diag-
onal direction). The index j0 signifies any starting scale. The approximation coefficient
Wφ(j0, m, n) defines the approximation value of f (x, y) at scale j0. The detail coefficient
Wi

ψ(j, m, n) adds horizontal, vertical, and diagonal details for j ≥ j0. Approximation coef-
ficients Wφ(j0, m, n) represent the low-frequency information of the image, capturing its
overall characteristics. Horizontal detail coefficients WH

ψ (j, m, n) encompass high-frequency
information in the horizontal direction of the image. Vertical detail coefficients WV

ψ (j, m, n)
encompass high-frequency information in the vertical direction of the image. Diagonal
detail coefficients WD

ψ (j, m, n) contain high-frequency information in the diagonal direc-
tion of the image. It is often set that j0 = 0; N = M = 2J ; j = 0, 1, 2, . . . , J − 1; and
m, n = 0, 1, 2, . . . , 2j − 1. φj0,m,n(x, y) and ψj,m,n(x, y) are, respectively, the low-pass and
high-pass filters.

In our preceding discussion regarding the 2D DWT, we presented significant variables,
including the original image, denoted as f (x, y), accompanied by its corresponding ap-
proximation coefficients Wφ(j0, m, n) and detail coefficients WH

ψ (j, m, n), WV
ψ (j, m, n), and

WD
ψ (j, m, n). Now, transitioning to the process of reconstructing the original image from

these coefficients, we delve into the utilization of the Two-Dimensional Inverse Discrete
Wavelet Transform (2D IDWT). This inverse transformation method harmonizes and com-
bines Wφ(j0, m, n), WH

ψ (j, m, n), WV
ψ (j, m, n), and WD

ψ (j, m, n) coefficients acquired from the
2D DWT to effectively regenerate the original two-dimensional image f (x, y):

f (x, y) = 1√
MN ∑

m
∑
n

Wφ(j0, m, n)φj0,m,n(x, y)

+ 1√
MN ∑

i=H,V,D

+∞
∑

j=j0
∑
m

∑
n

Wi
ψ(j, m, n)ψi

j,m,n(x, y).
(4)

The Two-Dimensional Discrete Wavelet Transform (2D DWT) can be implemented
using filtering and subsampling techniques. Initially, the 1D DWT is applied to each row of



Electronics 2024, 13, 252 10 of 24

the image. Subsequently, the obtained results undergo another one-dimensional DWT in
the column direction. In practical implementation, especially in computer programming,
there might be a preference for filtering columns first and then rows, as this aligns better
with the computational handling of image data. This approach can enhance efficiency or
fulfill hardware requirements.

Figure 4 depicts this process. The image f (x, y) serves as the input to Wφ(j + 1, m, n),
undergoing convolution with hψ(−n) and hφ(−n) along the columns separately, followed
by subsampling. The high-pass components depict the image’s vertical directional details,
while the low-pass approximate components portray low-frequency vertical information.
This process yields two sub-images, each exhibiting a halving of their resolution by a
factor of 2. Subsequently, the resulting two sub-images are then subjected to filtering and
subsampling along the rows, generating four quarter-sized images denoted as Wφ(j, m, n),
WH

ψ (j, m, n), WV
ψ (j, m, n), and WD

ψ (j, m, n). Approximation coefficients Wφ(j, m, n) encap-
sulate the overall image characteristics, while detail coefficients WH

ψ (j, m, n), WV
ψ (j, m, n),

and WD
ψ (j, m, n) represent detailed information in the horizontal, vertical, and diagonal

directions, respectively.
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Figure 4. The 2D DWT filter establishes approximation coefficients Wφ(j, m, n) and detail coef-
ficients WH

ψ (j, m, n), WV
ψ (j, m, n), and WD

ψ (j, m, n) at scale ‘j’ with the approximation coefficients
Wφ(j + 1, m, n) at scale ‘j + 1′. Each arrow in the diagram indicates a halving of the image’s resolution
by a factor of 2.

Figure 5 illustrates the image f (x, y) serving as the input for Wφ(j + 1, m, n) at scale
‘j + 1′. Through a 2D DWT process, it generates the approximation coefficients Wφ(j, m, n)
and detail coefficients WH

ψ (j, m, n), WV
ψ (j, m, n), and WD

ψ (j, m, n) at scale ‘j’. Subsequently,
Wφ(j, m, n) is utilized as input for another 2D DWT, yielding the approximation coefficients
Wφ(j − 1, m, n) and detail coefficients WH

ψ (j − 1, m, n), WV
ψ (j − 1, m, n), and WD

ψ (j − 1, m, n)
at scale ‘j − 1′.
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2.3.3. Application of Wavelets in Image Fusion

The prior discourse delineated the fundamental principles of wavelet transforms in
image processing, elucidating their role in feature extraction and analysis. Concerning
image fusion, wavelet transforms amalgamate multiple images or diverse image features
to generate a composite image enriched with comprehensive information. Leveraging
the multi-scale nature of wavelet transforms aids in capturing intricate details at varying
scales, better preserving vital features that might be challenging to depict entirely within
individual images.

In practical application, initiating the process involves a 2D DWT performed on each
original image. Post decomposition of each image based on designated wavelet types
and decomposition levels, fusion processing is carried out on the different decomposition
layers. Distinct fusion operators can be applied to the various frequency components in
each decomposition layer, culminating in a fused wavelet pyramid. Ultimately, the fused
wavelet pyramid undergoes reconstruction via the 2D IDWT to yield the fused image.

The wavelet transform decomposes images into frequency components at different
scales, encompassing both low-frequency information (related to the overall structure
and general features of the image) and high-frequency information (related to the finer
details and texture of the image). By integrating information from various frequencies,
particularly the high-frequency details, it is possible to retain the subtle features of the
image. This fusion process can employ methods such as weighting, thresholding, or other
suitable approaches to amalgamate details from different scales and orientations, thereby
maintaining or enhancing spatial precision during image fusion.

Moreover, wavelet transforms aid in identifying essential image features, such as
edges, textures, and more. Prioritizing the preservation of these crucial features during
fusion notably enhances spatial accuracy within the image. Reasonable utilization of high-
frequency information during image merging effectively amplifies image details. This can
be achieved through the selection of specific segments of high-frequency components or em-
ploying a fusion strategy focused on detail enhancement, thus contributing to heightened
spatial precision during the image fusion process.

2.4. HIS, Wavelet, and Trust-Region Conjugate Gradient (TRCG-HW)

The TRCG-HW image fusion methodology represents a comprehensive approach
aimed at achieving superior performance in multispectral image fusion. This method
seamlessly integrates the HIS (Hue, Intensity, Saturation) transformation, wavelet trans-
formation, and trust region algorithms to optimize the image fusion process. The HIS
transformation plays a pivotal role in preserving spectral information, while the wavelet
transformation significantly enhances spatial accuracy. The incorporation of trust region
algorithms orchestrates and optimizes the entire process cohesively. The primary objective
is to procure high-quality fused images while excelling across various performance metrics.

The trust region methodology functions as an optimization strategy that intricately
balances local and global models by confining a specific space around an iteration point to
simulate the objective function. In contrast, the conjugate gradient approach is a dedicated
optimization methodology focused on minimizing the objective function by reducing
residuals during step size and direction adjustments. In the realm of image fusion, these
methodologies wield significant influence, refining the fusion algorithm profoundly. The
trust-region technique adeptly oversees the optimization process at each stage, ensuring
a gradual refinement of fusion outcomes within a localized model. On the other hand,
the conjugate gradient technique operates as an iterative process, pinpointing the most
optimal direction at each step, enabling rapid convergence towards a globally optimal
solution. These methodologies collaborate seamlessly to orchestrate and refine the entire
image fusion process, striving to preserve image characteristics while attaining exceptional
quality in the resultant fused image.
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2.4.1. Mathematical Principles of TRCG

In this subsection, we delve into the mathematical foundations that underpin the
TRCG method. We delve into key notions such as conjugate gradients, trust regions, and
the rational fusion of these concepts to forge a pathway to efficient optimization. Consider
an unconstrained nonlinear optimization problem:

min f (x). (5)

Using the trust region method to solve (5), we first give the current trust region trial
step size ∆c (conventionally called the trust region radius) and then solve the quadratic
subproblem of an approximation of problem (5):

minψ(xc + ξ) = f (xc) + (g(xc), ξ) +
1
2
(Hcξ, ξ), (6)

where xc represents the reference point; ξ denotes a small increment or offset. f (xc)
represents a function of xc, g(xc) might denote the gradient, and Hc represents the Hessian
matrix at xc. (g(xc), ξ) represents the inner product between the vector g(xc) and ξ. (Hcξ, ξ)
denotes the quadratic form of the matrix Hc applied to the vector ξ.

s.t.∥ξ∥ ≤ ∆c, (7)

where ∆c is trust region trial step. It describes the extent to which we can trust the quadratic
approximation model.

Next, we consider using the trust region method to solve discrete operator equations:

κ f = h, (8)

where κ ∈ Rm2×n2
is a PSP matrix, f ∈ Rn2

is the input to be sought, and h ∈ Rm2
is the

measured output.
First, we form the following unconstrained least squares problem:

minM[ f ] =
1
2
∥κ f − h∥2. (9)

The gradient and Hessian matrix of the functional M[f] can be explicitly calculated as
grad(Ml f )) = κ ∗ κ f − κ ∗ h, Hess(M[ f ]) = κ ∗ κ.

To solve with the trust region algorithm (TRA) (9), one needs to solve the following
trust region subproblems (TRSs):

min ϕ(s) = (∇M[ f ], s) +
1
2
(Hess(M[ f ])s, s), (10)

s.t. ∥s∥ < ∆, (11)

In each step of the trust region iteration, the solutions of subproblems (TRSs) (10) and
(11) do not have to be too precise, which can be achieved by using the truncated conjugate
gradient (TCG) method. The point list generated by solving (10) is as follows:

sk+1 = sk + αkdk, (12)

dk+1 = −gk + βkdk, (13)

gk = ∇ϕ(sk) = Hess(M[ f ])sk +∇M[ f ], αk = −gT
k dk/dT

k Hess(M[ f ])dk, βk = ∥gk+1∥2/∥gk∥2, (14)
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where gk refers to the gradient vector at iteration step k, gk+1 refers to the gradient vector at
iteration step k + 1, ∥gk∥ denotes the Euclidean norm of vector gk, and ∥gk+1∥ denotes the
Euclidean norm of vector gk+1. The initial value is

s0 = 0, d0 = −g0 = −∇M[ f ]. (15)

If the current iteration sk + αkdk is in the trust domain, we accept it and transfer it to
the next trust domain iterative process; if dT

k Hess(M[ f ])dk ≤ 0 or sk + αkdk runs outside
the trust domain, we take the longest value in the trust domain step dk and terminate the
iterative process.

2.4.2. Methodology

The method described in Figure 6 begins by applying the HIS transformation to the
RGB color hyperspectral image (HSI). Simultaneously, the panchromatic (PAN) image
undergoes preprocessing and is incorporated into the color sequence system as an “I”
(intensity) component. Next, the wavelet transformation is applied to the “I” components
from both the panchromatic image and the hyperspectral image for improved fusion.
Through the optimization of wavelet coefficients using TRCG, a new “I” component is
obtained. This new “I” component is merged with the “H” (hue) and “S” (saturation)
components of the hyperspectral image. Eventually, by reversing the HIS transformation,
the data are restored to the RGB color space, producing the final RGB color fusion image.
Several meticulously designed steps are employed in merging multispectral images to
achieve superior performance. These steps involve defining evaluation metrics and an
objective function, performing the optimization process using TRCG, and conducting
evaluation and adjustment stages.
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Prior to optimization, evaluation metrics and an objective function are defined. The
evaluation metrics encompass various aspects of the image, including structural similarity,
signal-to-noise ratio, spectral information, rate of change, and correlation. These evaluation
metrics are integrated into an objective function that comprehensively evaluates the quality
of the fused image. For normalization, Min–Max standardization was utilized to scale each
metric within a range of 0 to 1. Metrics such as SSIM, PSNR, and SAM, with higher values
indicating better performance, were used directly after normalization. However, ERGAS
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and CC values were computed by subtracting their normalized scores from 1, aiming for
lower values to signify superior performance.

The objective function is represented as follows:

Objective Function = w1 × SSIM + w2 × P SNR + w3 × SAM + w4 × ERGAS + w5 × CC, (16)

where w1, w2, w3, w4, and w5 symbolize the respective weights attributed to individual
evaluation metrics. These weights were assigned to determine the relative significance
of each metric within the objective function. Assuming equal impact from all metrics,
assigning uniform weights of 0.2 to the normalized SSIM, SAM, ERGAS, CC, and PSNR
values facilitated the formation of a unified objective function. This method ensures an
equivalent contribution from each metric to the overall objective function. It is crucial to
mention that altering these weights might be more suitable if particular metrics significantly
influence the objective function in varying degrees of enhancement or degradation. In
such instances, adjusting the weights based on the specific influence of each metric on the
objective function could be more appropriate. The holistic assessment offers a compre-
hensive evaluation of image quality, minimizing potential biases inherent in individual
metrics. Integrating objective functions not only saves time and energy but also reduces the
potential misguidance of a single indicator, enhancing the reliability of decision making.

The TRCG method employs a two-tier strategy, comprising an inner layer and an
outer layer, to ensure efficient and accurate image fusion. The inner layer utilizes truncated
conjugate gradient (TCG) techniques, which concentrate on localized optimization within
specific regions. By computing gradient information and preserving the most significant
components, TCG refines the fusion process on a local scale. It achieves this through
iterative updates of wavelet coefficients, thereby enhancing fusion quality within these
localized areas. On the other hand, the outer layer operates using the trust region algorithm
(TRA) to oversee global convergence. TRA calculates the gradient of the objective function
and supervises the entire optimization process, ensuring effective convergence across
the image. It collaborates with the inner layer and dynamically adjusts the trust region
radius and step size to strike a balance between efficiency and accuracy throughout the
fusion process. By integrating these two layers—local optimization via TCG and global
convergence management through TRA—the TRCG method aims to achieve a synergy
that balances efficiency and accuracy, ultimately enhancing the overall quality of the
fused image.

3. Experiments and Results

In the experimental section, we conducted a series of experiments to evaluate the
effectiveness of our TRCG-HW-based image fusion method. Additionally, we compared our
TRCG-HW method against three state-of-the-art image fusion methods, including Principal
Component Analysis (PCA), Hue–Intensity–Saturation (HIS), and wavelet transform (WT).
The settings for each method were fine-tuned to produce optimal results based on reference
recommendations. The order 4 Daubechies wavelet was selected for our hyperspectral
image fusion study for its adeptness in preserving spectral details while efficiently capturing
spatial intricacies across diverse scales. Its harmonious balance between the frequency
and spatial domains proved highly beneficial in handling hyperspectral data, ensuring the
conservation of vital spectral information during fusion.

3.1. Data Collection and Preparation

Experimental Dataset: We utilized hyperspectral images captured by the hyperspec-
tral imaging system described in Section 2.1 for our fusion experiments. The collected
high-spectral image data underwent cropping, registration, and normalization processes.
Following these procedures, both the panchromatic and hyperspectral images were stan-
dardized to dimensions of 512 × 512 pixels. These images encompassed 31 spectral bands,
with each band covering a 10 nm wavelength interval spanning the visible spectrum from
400 to 700 nm.
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Publicly Available IKONOS-2 Remote Sensing Image Dataset: IKONOS-2, a high-
resolution commercial satellite designed for Earth remote sensing and operated by the U.S.
aerospace company DigitalGlobe, served as a vital data source. This dataset stands out due
to its exceptional spatial resolutions, with a remarkable 1 m resolution for panchromatic im-
agery and a 4 m resolution for multispectral imagery. The IKONOS-2 satellite incorporates
multiple spectral bands, typically encompassing blue, green, red, and near-infrared bands
for multispectral imagery, in addition to a panchromatic band. IKONOS’s multispectral
images (MSs) consist of four bands, with band settings including a panchromatic band
spanning from 450 to 900 nm, a blue band ranging from 450 to 530 nm, a green band from
520 to 610 nm, and a red band from 640 to 720 nm. These bands cater to a wide array of
Earth observation tasks. For our research, we meticulously selected 200 patches of IKONOS
images from this dataset. During the preprocessing phase, we took great care to eliminate
spectral bands that were impacted by water vapor absorption, ensuring the quality and
accuracy of the data. These datasets provide a wealth of valuable information and diversity,
rendering them suitable for a wide range of Earth observation tasks. The IKONOS-2 dataset
is publicly accessible and can be downloaded from http://earthexplorer.usgs.gov (accessed
on 1 November 2023).

3.2. Evaluation Metrics

We utilized five key evaluation indices to quantitatively assess the quality of the fusion
results. These metrics are as follows:

(1) Peak Signal-to-Noise Ratio (PSNR) [53]: The PSNR measures the quality of image
reconstruction by comparing the fused image to the original data. A higher PSNR value
indicates superior image quality, with 30 or above typically considered excellent.

PSNR(Z, Ẑ) =
1
S

S

∑
i=1

PSNR(Zi, Ẑi), (17)

where Z∈ RW×H×S and Ẑ∈ RW×H×S are the reference and fused images. Zi∈ RW×H and Ẑi
∈ RW×H are the ith spectral bands of Z and Ẑ.

(2) Structural Similarity Index (SSIM) [54]: The SSIM evaluates the preservation of
structural information in the fused image. A higher SSIM score signifies a better ability to
retain fine details and structures, with a value of one indicating the best similarity.

SSIM(Z, Ẑ) =
1
S

S

∑
i=1

SSIM(Zi, Ẑi), (18)

(3) Correlation Coefficient (CC) [55]: The CC calculates the correlation between the
pixel values of the fused image and the reference image. A high CC score indicates a strong
correlation, suggesting that the fused image closely matches the original. A CC value
closer to one is generally desired, indicating a strong linear relationship and higher image
fusion quality.

CC(Z, Ẑ) =
∑N

i=1 (Ai − A)(Bi − B)√
∑N

i=1 (Ai − A)
2
∑N

i=1 (Bi − B)2
, (19)

where Ai and Bi represent the pixel values of the fused image and the reference image,
while A and B denote their respective mean values. N represents the total number of pixels.

(4) Spectral Angle Mapper (SAM) [56]: An SAM quantifies the spectral similarity
between the fused image and the reference data. Lower SAM values indicate a higher
degree of spectral similarity, which is essential in remote sensing applications.

SAM(Z, Ẑ) =
1

WH

WH

∑
i=1

arccos
ẑT

i zi

∥ẑi∥2∥zi∥2
, (20)

http://earthexplorer.usgs.gov
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where ẑi and zi are pixels in Ẑ and Z.
(5) Error Relative Global Accuracy Score (ERGAS) [57]: The ERGAS evaluates the level

of spectral distortion in the fused image. Lower ERGAS scores indicate reduced spectral
distortions, emphasizing the quality of the spectral information in the fused result; the best
value is zero.

ERCAS(Z, Ẑ) =
100

q

√√√√ 1
S

S

∑
i=1

MSE(ZiẐi)

µ2
Ẑi

, (21)

where q denotes the spatial downsampling factor, µ2
Ẑi

denotes the mean value of Ẑi, and

MSE(ZiẐi) represents the mean square error between Zi and Ẑi.

3.3. Results

In this section, we present the experimental results to demonstrate the performance of
the proposed method. The results are evaluated using metrics and error maps. Our method
consistently outperformed the comparison methods on the two datasets, achieving signif-
icantly better results. This underscores the effectiveness of our method in hyperspectral
image fusion.

3.3.1. Results of Experimental Dataset

The average quantitative results are summarized in Table 1. In Table 1, TRCG-HW ex-
hibits outstanding performance, with excellent scores in all evaluation metrics. It achieves a
high PSNR of up to 29.59, indicating its remarkable capabilities in image quality reconstruc-
tion. Furthermore, it excels in SSIM and CC, with scores of 0.981 and 0.976, respectively,
providing strong evidence of its ability to preserve structural information and maintain a
high correlation with the original data. Additionally, TRCG-HW demonstrates remarkable
spectral similarity, with an SAM score of 0 and an ERGAS score of 0.338, signifying effective
preservation of spectral fidelity. This implies that TRCG-HW not only effectively retains
image details but also significantly reduces noise levels.

Table 1. Average quantitative results of the test methods on the experimental dataset. (Note:
↑ indicates higher values are favorable, while ↓ indicates lower values are favorable.).

Method PSNR ↑ SSIM ↑ CC ↑ SAM ↓ ERGAS ↓
PCA 29.50 0.805 0.876 4.896 0.343
HIS 26.98 0.679 0.771 1.182 0.418
WT 27.25 0.789 0.857 0.004 0.411

TRCG-HW 29.59 0.981 0.976 0 0.338

We also provide qualitative results in the form of reconstruction error maps, as shown
in Figure 7. These error maps illustrate that our method achieved minimal reconstruction
errors, further validating its ability to better preserve spatial and spectral information.
Based on the error maps of the reconstructed images, where colors transition from blue
to red, indicating an increasing error, we have three rows representing three different sets
of observations (abcd columns) using four different fusion methods. First, let us assess
error uniformity. In the first row, all four methods exhibit some red areas, with the HIS
method having predominantly green regions, indicating higher errors. The WT and PCA
methods exhibit some red noise in their green areas. In contrast, the TRCG-HW method
performed exceptionally well, with most of its area in deep blue. It demonstrated a uniform
error distribution with minimal and concentrated red regions, making it convenient for
subsequent noise reduction. Moving on to the second row, the WT method stands out
as having the most red regions, followed by the HIS and PCA methods. The TRCG-HW
method excelled once again, with most of its area in deep blue, a smaller green portion,
and an evenly distributed error pattern. Now, looking at the third row, the PCA method
shows the most red regions, followed by the HIS and WT methods. The TRCG-HW
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method performed remarkably well, with almost the entire area in deep blue and a uniform
distribution of errors.
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Let us also consider the maximum error values. In the first row, the HIS fusion
method had the highest error with a maximum value of 0.2. The WT method performed
relatively poorly, while the PCA and TRCG-HW methods exhibited better results, with
TRCG-HW having smaller errors. In the second row, the WT fusion method had the highest
error, reaching a maximum value of 0.25. The HIS and PCA methods did not perform as
effectively, whereas the TRCG-HW method had the lowest error with a value of 0.1. In the
third row, the PCA fusion method had the highest error, with a maximum value of 0.16,
while the WT and HIS methods exhibited poorer performances. The TRCG-HW method
once again achieved the lowest error, with a maximum value of 0.12.

To summarize, the PCA method had the highest errors in the third set, while the HIS
method consistently produced high errors in all three sets. The WT method resulted in high
errors in the first and second sets but lower errors in the third set. On the other hand, the
TRCG-HW method consistently yielded low errors in all three sets. Overall, among these
three sets of images from different observations, the TRCG-HW method demonstrated the
best performance in terms of error reduction.

3.3.2. Results of IKONOS-2 Dataset

Results for the quality metrics for the IKONOS-2 dataset are presented in Table 2.
In Table 2, for the fusion image quality metrics, we observe the following results: The
TRCG-HW method achieved a significant PSNR score of 32.92, indicating a substantial
improvement in image quality. It excelled in SSIM and CC, with respective scores of 0.974
and 0.984, underlining its ability to preserve structural information and maintain a strong
correlation with the original data. Furthermore, TRCG-HW demonstrated exceptional
spectral similarity, with an SAM score of 0.001 and an ERGAS score of 0.270. These low
values highlight its effectiveness in minimizing spectral distortions and enhancing the
overall spectral accuracy, which is a critical aspect in remote sensing applications.
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Table 2. Average quantitative results of the test methods on the IKONOS-2 dataset. (Note: ↑ indicates
higher values are favorable, while ↓ indicates lower values are favorable.)

Method PSNR ↑ SSIM ↑ CC ↑ SAM ↓ ERGAS ↓
PCA 30.88 0.781 0.835 3.940 0.347
HIS 29.39 0.782 0.897 1.840 0.415
WT 35.73 0.817 0.885 6.520 0.285

TRCG-HW 32.92 0.974 0.984 0.001 0.270

Qualitative results: reconstruction error maps are also provided in Figure 8, where
colors transitioned from blue to red with increasing errors. The error maps reveal that
our method achieved minimal reconstruction errors, further confirming its ability to better
preserve spatial and spectral information. These experiments encompassed five different
locations (represented by rows) and involved four distinct fusion methods (designated
by columns: a, b, c, d). First, let us analyze the uniformity of errors. In the first row, the
PCA method exhibited the highest proportion of red regions, followed by the HIS method.
However, the TRCG-HW method demonstrated superior performance, with the majority
of its regions in deep blue and a smaller portion in light green. The error distribution was
relatively uniform. Moving on to the second row, the HIS method had the most red areas,
followed by the WT and PCA methods. Once again, the TRCG-HW method excelled, with
most areas in deep blue, a smaller portion in green, and a uniform distribution. In the third
row, the PCA method had the most red regions, followed by the WT method. The HIS and
TRCG-HW methods displayed exceptional performances, with almost all areas in deep
blue and a uniform distribution. The fourth row showed that the PCA method had the
highest proportion of red regions, followed by the HIS and WT methods, with a significant
green area. However, the TRCG-HW method performed exceptionally well, with the entire
area in deep blue and an even distribution of errors. Finally, in the fifth row, the PCA and
HIS methods had the most red regions, while the WT method had a considerable green
area. Once again, the TRCG-HW method stood out, with almost the entire area in deep
blue and a uniform distribution.

Now, let us assess the maximum error values. In the first row, the PCA fusion method
had the highest maximum error value, reaching 0.4. The HIS method performed relatively
poorly, while the WT and TRCG-HW methods demonstrated superior results with a
maximum error value of 0.2. In the second row, the HIS fusion method had the highest
maximum error with a value of 0.25. The WT method exhibited subpar performance,
whereas the PCA and TRCG-HW methods had lower maximum errors at 0.05. In the
third row, the PCA fusion method once again recorded the highest maximum error of
0.9. The WT method showed suboptimal performance, while the HIS and TRCG-HW
methods excelled with a maximum error of 0.3. In the fourth row, the PCA fusion method
had the highest maximum error at 0.1, while the HIS and WT methods demonstrated
better results with a maximum error of 0.06. The TRCG-HW method showcased the best
performance with a maximum error of 0.02. Finally, in the fifth row, both the PCA and HIS
fusion methods exhibited the highest maximum errors, at 0.9, while the WT method had a
substantial maximum error of 0.5. In contrast, the TRCG-HW method outperformed the
others, with a maximum error value of 0.2.

In conclusion, the PCA method resulted in the highest errors in sets 1, 3, and 4, but
lower errors in sets 2 and 5. The HIS method consistently yielded higher errors in sets
1, 2, and 5, while achieving lower errors in set 3. The WT method led to higher errors
in sets 2, 3, and 4, with lower errors in sets 1 and 5. On the other hand, the TRCG-HW
method consistently exhibited lower errors across all five sets. Overall, across these five
different locations, the TRCG-HW method demonstrated the most stable and lowest error
performance, surpassing the other fusion methods.
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4. Discussion

The TRCG-HW technique has undergone thorough assessments, employing both
visual inspections and quantitative analyses on simulated and real datasets. Its consistent
excellence in producing high-quality images, maintaining both structural and spectral
information, and minimizing reconstruction errors, has been convincingly showcased
when compared to other methods for hyperspectral image fusion:

(1) High Image-Quality Fidelity: The TRCG-HW method achieved outstanding scores
in PSNR evaluations, indicating its ability to reconstruct images with high quality. It
outperformed other methods in terms of image fidelity.

(2) Preservation of Structural Information: The TRCG-HW method obtained significant
scores in SSIM and CC evaluations, demonstrating its excellent performance in re-
taining structural information and maintaining a high level of correlation with the
original data.
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(3) High Spectral Fidelity: SAM and ERGAS scores for the TRCG-HW method indicate
its effectiveness in preserving spectral fidelity, allowing images to better reflect the
spectral characteristics of objects.

(4) Minimal Reconstruction Errors: Qualitative results in the form of error maps illustrate
that the TRCG-HW method achieved the fewest reconstruction errors, further substan-
tiating its outstanding performance in preserving both spatial and
spectral information.

In comparison to previous research, the novelty of integrating HIS, wavelet, and TRCG
techniques into a unified framework is a significant contribution. HIS transformation aids in
spectral information preservation, while wavelet transformation enhances spatial accuracy.
The unique feature of the TRCG technique, optimizing images at both the local and global
levels, allows the method to excel in various aspects. Furthermore, the TRCG-HW method
does not focus solely on one aspect but integrates multiple performance metrics, signifying
its well-rounded excellence in different aspects, resulting in overall superior performance.

The TRCG-HW method significantly differs by employing a hierarchical optimization
approach to handle high-dimensional hyperspectral data. It utilizes an inner-layer local
optimization and an outer-layer global optimization strategy. Local optimization helps
reduce computational complexity, while global optimization approximates the true val-
ues. This provides it with a computational efficiency advantage, especially in large-scale
hyperspectral datasets. The local optimization employs the truncated conjugate gradient
(TCG) algorithm at each wavelet decomposition level to ensure the effective extraction
and preservation of image details during the image reconstruction process. This enhances
spatial accuracy and structural preservation. The outer-layer global optimization intro-
duces the trust region algorithm (TRA) to coordinate features between different local
optimization levels to ensure their consistent coordination throughout the entire image.
It ensures that the TRCG-HW method can achieve a global optimum solution in both the
spectral and spatial dimensions, resulting in higher image quality. Another key feature of
the TRCG-HW method is its utilization of multiscale information extraction via wavelet
transformation from panchromatic images, which improves spatial accuracy and preserves
structural information.

While our study has produced promising outcomes, it is imperative to acknowledge
its limitations. One notable constraint pertains to the computational intricacy inherent
in utilizing wavelet transformation. The time-consuming nature of this process might
pose challenges, especially when handling extensive hyperspectral datasets. Further-
more, our method primarily concentrates on optimizing intensity components within the
HIS transformation. Although this reduction in computational complexity is beneficial,
it might constrain the comprehensive reconstruction of spatial structures and intricate
spatial details.

To mitigate the computational complexity concern, future investigations could ex-
plore parallel processing methodologies and hardware acceleration. These approaches
could substantially enhance our method’s efficiency, rendering it more viable for real-time
applications. Moreover, to overcome the limitations related to spatial details, further ex-
ploration could focus on integrating non-local self-similarity attributes of panchromatic
and hyperspectral images. Leveraging these characteristics could augment the local opti-
mization process within the TRCG-HW framework, elevating the overall performance in
hyperspectral fusion, particularly in spatial reconstruction.

Future research endeavors could be focused on various aspects. Primarily, there
should be a concerted effort to adapt the TRCG-HW method for real-time applications,
particularly in domains like automated monitoring and decision support systems. This
adaptation necessitates heightened performance and computational efficiency, enabling
the method to swiftly process data in real-time scenarios. Further refinements targeting
the enhancement of the TRCG-HW method’s performance, particularly in computational
efficiency and data processing speed, would render it more compatible with real-time
applications and large-scale data processing.
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Secondly, while the TRCG-HW method exhibits prowess in hyperspectral image
fusion, future investigations could extend its utility to diverse fields such as medical
imaging, remote sensing, and surveillance. Researchers could explore methods to tailor the
TRCG-HW approach to handle various data types, broadening its application spectrum.
By applying this method to different data types, like multimodal images or stereoscopic
images, it can cater to a wider array of field-specific requirements.

Lastly, an avenue for exploration could involve the fusion of hyperspectral stereo
images or other multimodal data to acquire more comprehensive information. Such an
approach could bolster a broader range of application domains, including, but not limited
to, environmental monitoring and geological exploration. This could lead to more nuanced
and enriched data interpretations, amplifying the method’s utility across diverse fields.

5. Conclusions

In this research endeavor, we present the TRCG-HW methodology for the fusion of
hyperspectral images, a technique harmonizing HIS, wavelet, and TRCG approaches. This
fusion method amalgamates both HIS and wavelet transformations, not solely preserving
the inherent traits of the HIS transform but also leveraging panchromatic images for
wavelet conversion. This innovative approach augments spatial precision and markedly
enhances spectral authenticity. To refine the fusion process and achieve veritable values,
our methodology adopts a dual-tiered approach. The inner tier employs the truncated
conjugate gradient (TCG) for localized optimization, while the outer layer employs the
trust region algorithm (TRA) for global convergence. A meticulous evaluation through
visual and quantitative analyses using simulated and empirical datasets substantiates the
prowess of the TRCG-HW method. Impressively, this approach demonstrates outstanding
performance metrics on both the IKONOS-2 and experimental datasets, registering PSNR
scores of 32.92 and 29.59, SSIM scores of 0.974 and 0.981, CC scores of 0.984 and 0.976, SAM
scores of 0.001 and 0, and ERGAS scores of 0.270 and 0.338, respectively. These results
consistently affirm the superior capabilities of the TRCG-HW method when compared to
recent advancements in hyperspectral image fusion methodologies.
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Appendix A

The linear RGB to HIS transformation is characterized by Equations (A1)–(A3), while
the HIS to RGB transformation is depicted in Equation (A4). I
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where v1 and v2 are intermediate variables, from which H and S can be computed.

S =
√

v2
1 + v2

2, (A2)

H = arctan
v2

v1
, (A3)
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2 0


 I
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. (A4)

The non-linear transformation from RGB to HIS is expressed as follows:

H =

{
θ , B ≤ G
360 − θ, B > G

, (A5)

where θ = arccos


1
2 [(R−G)+(R−B)][

(R−G)2+(R−B)(G−B)
] 1

2


I =

R + G + B
3

, (A6)

S = 1 − 3min(R, G, B)
R + G + B

, (A7)

The transformation from HIS to RGB is defined by the following equation:
if 0◦ ≤ H ≤ 120◦,

R = I
[

1 +
ScosH

cos(60◦ − H)

]
, (A8)

B = I(1 − S), (A9)

G = 3I − (R + B). (A10)

if 120◦ ≤ H ≤ 240◦, H = H − 120◦, R = I(1 − S), (A11)

G = I
[

1 +
ScosH

cos(60◦ − H)

]
, (A12)

B = 3I − (R + B). (A13)

if 240◦ ≤ H < 360◦, H = H − 240◦,
B = I

[
1 + ScosH

cos(60◦−H)

]
,

(A14)

G = I(1 − S), (A15)

R = 3I − (R + B). (A16)
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