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Abstract: This paper considers the confrontation problem for two tank swarms of equal size and
capability in a complex urban scenario. Based on the Unity platform (2022.3.20f1c1), the confrontation
scenario is constructed featuring multiple crossing roads. Through the analysis of a substantial amount
of biological data and wildlife videos regarding animal behavioral strategies during confrontations for
hunting or food competition, two strategies are been utilized to design a novel bio-inspired intelligent
swarm confrontation algorithm. The first one is the “fire concentration” strategy, which assigns a target
for each tank in a way that the isolated opponent will be preferentially attacked with concentrated
firepower. The second one is the “back and forth maneuver” strategy, which makes the tank tactically
retreat after firing in order to avoid being hit when the shell is reloading. Two state-of-the-art swarm
confrontation algorithms, namely the reinforcement learning algorithm and the assign nearest algorithm,
are chosen as the opponents for the bio-inspired swarm confrontation algorithm proposed in this paper.
Data of comprehensive confrontation tests show that the bio-inspired swarm confrontation algorithm
has significant advantages over its opponents from the aspects of both win rate and efficiency. Moreover,
we discuss how vital algorithm parameters would influence the performance indices.

Keywords: swarm confrontation algorithm; bio-inspired intelligent algorithm; complex urban scenario;
electronic game

1. Introduction

The research on swarm confrontation with a special focus on the competition and
conflict resolution among multiple autonomous entities in complex environments has
found applications in both civilian and military domains, such as electronic games [1–3]
and unmanned aerial vehicle (UAV) swarm combats [4–7]. The core challenge of swarm
confrontation lies in effectively coordinating and managing a group of autonomous enti-
ties. This coordination is crucial for optimizing decision-making and action strategies in
adversarial environments, as well as for effectively countering the strategies and actions of
opponents. Thus far, there have been three major ways to design swarm confrontation al-
gorithms, namely the game theory approach, the evolution computation approach, and the
artificial intelligence (AI)-based approach. The game theory method, through simulating
interactive strategic games between opposing forces, achieves optimal decision-making and
coordination among swarm agents using concepts like Nash equilibrium. The evolutionary
computation method, through applying principles of genetic evolution such as mutation,
selection, and crossover, achieves the continual adaptation and enhancement of strategies
to improve swarm efficiency and adaptability in competitive scenarios. The AI-based
method, through employing machine learning algorithms to analyze and predict opponent
behaviors, achieves the dynamic and intelligent adjustment of strategies to enhance the
overall tactical performance of the swarm.
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Besides the aforementioned results, recently, a rule-based swarm confrontation algo-
rithm was proposed in [8], employing the assign nearest tactic. Two scenarios were taken
into consideration for the drone swarm confrontation problem. It concludes that the assign
nearest rule, though simple, outperforms various swarm confrontation algorithms. This
paper also proposes a rule-based swarm confrontation algorithm for the confrontation
between two tank swarms of equal size and capability in a complex urban scenario. The
most typical characteristic of an urban scenario is the interlocking of roads, and the Unity
platform is utilized to construct the confrontation scenario featuring multiple crossing
roads. Instead of relying on intuition, we seek answers from nature on how to fight as a
swarm. Through the analysis of a substantial amount of biological data and wildlife videos
regarding animal behavioral strategies during confrontations for hunting or food competi-
tion, two strategies have been utilized to design a novel bio-inspired swarm confrontation
algorithm. The first one is the “fire concentration” strategy, which assigns a target for each
tank in a way that the isolated opponent will be preferentially attacked with concentrated
firepower. The second one is the “back and forth maneuver” strategy, which makes the
tank tactically retreat after firing in order to avoid being hit when the shell is reloading.
Integrating these two bio-inspired tactics with a guidance system for path planning in the
urban environment leads to an entire bio-inspired swarm confrontation algorithm. Two
swarm confrontation algorithms, namely the reinforcement learning algorithm [9] and
the assign nearest algorithm [8], are chosen as the opponents for the bio-inspired swarm
confrontation algorithm proposed in this paper. Data of comprehensive confrontation tests
show that the bio-inspired swarm confrontation algorithm has significant advantages over
its opponents from the aspects of both win rate and efficiency. Moreover, we discuss how
vital algorithm parameters would affect the performance indices.

The main contributions of this paper are threefold:

1. In most of the existing results on swarm confrontation, the environment is an open
field with no or a few simple obstacles. Meanwhile, in this paper, the urban scenario
featuring multiple crossing roads is considered, which is much more complicated.

2. Different from all the other existing results, the swarm confrontation algorithm pro-
posed in this paper is inspired by the animal behavioral strategies in nature during
confrontations for hunting or food competition.

3. Besides the win rate, we have also defined another performance index, i.e., efficiency,
to evaluate algorithm performance. Compared to state-of-the-art swarm confrontation
algorithms, the bio-inspired swarm confrontation algorithm proposed in this paper
exhibits significant advantages over both win rate and efficiency.

2. Related Work

Game theory [10,11] exemplifies a quintessential research methodology in swarm
confrontation, which concentrates on the analysis and prediction of adversaries’ behavior.
Cruz et al. [12] proposed a game-theory-based discrete-time dynamic model that takes into
account command and control hierarchies, strategic objectives, and operational constraints.
Additionally, they highlighted that in military aerial combat, the highly nonlinear nature
of discrete-time dynamic systems complicates the decision-making process. To tackle this
challenge, Cruz et al. [13] introduced a method that confines the controllers’ computations
to a short-term horizon. Nowak [14] developed a complex game-theoretic strategy that
includes task allocation for defensive UAVs and the analysis of the best course of action
against offensive UAVs. By optimizing the interception efficiency and tactical response of
the defensive UAVs when facing multiple intruders, the strategy ensures the security of
sensitive areas. Bhattacharya et al. [15] formalized the challenge of developing strategies for
UAVs to evade aerial jammer attacks into a zero-sum evasion pursuit game, applying Isaacs’
differential game theory to derive control strategies for UAVs. Yao et al. [16] developed
a method for multi-aircraft collaborative attacks on multiple targets, enhancing decision
accuracy and cooperation efficiency by combining situational assessment, Dempster–Shafer
evidence theory, and game theory. Özpala et al. [17] also proposed a multi-UAV air combat
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decision-making method for environments with incomplete information. Notably, this
study introduced a simplified approach to the mixed Nash equilibrium strategy when
involving a large number of agents. Ma et al. [18] introduced the DO-NS algorithm, a
hybrid of the double oracle algorithm and neighborhood search methods. This algorithm
significantly reduces the search space and enhances computational efficiency, thus more
effectively solving mixed-strategy Nash equilibrium problems involving a large number
of agents. However, swarm decision-making based on game theory still faces challenges,
such as excessive computational complexity with large-scale agents and poor adaptability
to dynamic environments.

Evolution computation strategy [19–21] is another traditional research method for swarm
confrontation, which primarily employs heuristic algorithms such as the pheromone algo-
rithm,the particle swarm optimization (PSO) algorithm, and the genetic algorithm for path
planning and decision-making. Sauter et al. [22] introduced a distributed pheromone al-
gorithm. This algorithm overlays multiple digital pheromone maps in layers, and each
individual in the swarm maintains its own digital pheromone map, facilitating the control
of unmanned units on the ground and in the air. Foo et al. [23] proposed a solution for
three-dimensional path planning problems. This method employs the PSO algorithm for
the path planning of UAV swarms, minimizing the risk posed by enemy threats while also
reducing fuel consumption. Li et al. [24] improved the Gravitational Search Algorithm (GSA)
for UAV swarm path planning, incorporating PSO and social information concepts. This
approach effectively mitigates GSA’s tendency to fall into local optima in complex global
optimization tasks. Duan et al. [25] proposed a hybrid PSO and genetic algorithm to address
the formation reconfiguration problem. Later, Duan et al. [26] also applied the PSO method
to solve mixed Nash equilibrium problems using game theory, proposing a UAV air combat
game theory based on a predator–prey PSO model, which effectively optimizes the air combat
mission assignments of UAV swarms. Dolicanin et al. [27] developed an adjusted brainstorm
optimization algorithm inspired by human brainstorming processes for path planning in
unmanned aerial combat, which demonstrated superior performance compared to eleven
other methods in various test scenarios. Li [28] proposed an ant colony optimization-based
algorithm for cooperative mission assignment among multiple UAVs tailored to meet the
operational requirements of cooperative UAV combat tasks. Ye et al. [29] proposed a modified
genetic algorithm with a multi-type gene chromosome encoding strategy. This algorithm, by
incorporating a multi-type gene-encoding scheme, generates feasible chromosomes that meet
the capabilities, task coupling, and priority constraints of UAVs, which effectively balances
the search capability of the algorithm with population diversity. However, evolutionary com-
putation strategies tend to be inefficient in handling large search space problems, potentially
leading to local optima in complex environments. They are usually sensitive to parameter
selection and are not well suited for precisely fine-tuning solutions.

In recent years, an increasing number of scholars have applied AI methods to swarm con-
frontation research [30–34]. Compared to traditional game theory and evolutionary computation
strategies, AI methods offer advantages in handling complex, high-dimensional environments
and adaptively learning optimal strategies from raw observational data. Liu et al. [35] developed
a deep-reinforcement-learning-based method for UAV air combat decision-making, utilizing
deep neural networks (DQNs) combined with Q-learning to effectively fit action-value functions,
thereby reducing the dimensionality issue in complex air combat scenarios. Yang et al. [36]
also trained a neural network model based on DQN for UAV air combat decision-making,
specifically addressing the dynamic and uncertain maneuvers of enemy aircraft. Lee et al. [37]
proposed an innovative autonomous control method for combat UAVs to evade surface-to-air
missiles, introducing the amplification of the imitation effect algorithm. By integrating self-
imitation learning with random network distillation, this algorithm enhances UAVs’ evasion
capabilities in complex environments. Zhang et al. [38] introduced a bidirectional recurrent
neural network for communication between UAVs and trained a collaborative decision-making
model for UAV swarms. This model is capable of integrating task allocation and situational
assessment, generating cooperative tactical maneuver policy based on actual combat conditions.
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Hu et al. [39] proposed an autonomous maneuver decision-making method for dual UAV
cooperative air combat based on specific formation strategies. By incorporating a situational
assessment model, a discretized combat state space, and predefined action commands, the
effectiveness and convergence speed of model training were enhanced. Nonetheless, AI-based
methods still face significant challenges, including large data requirements, limited robustness,
and poor generalization capabilities.

3. Problem Description

In this paper, we consider the confrontation of two tank swarms in a complex urban
scenario. The confrontation environment is developed by Unity, which is a popular platform
for creating 2D and 3D games. The map of the urban scenario is shown in Figure 1, which is
2400 m long and 2000 m wide. The green areas represent impassable zones for both the tanks
and the shells fired by the tanks, whereas the white areas allow the traveling of tanks and the
flying of shells. The two tank swarms have the same number of tanks, denoted by N, and all
the tanks have the same capability. The kinematic equation of the tank is given as follows:

xt+1 = xt + vt cos(θt)∆t

yt+1 = yt + vt sin(θt)∆t

θt+1 = θt + ωt∆t

Θt+1 = Θt + Ωt∆t

(1)

where (xt, yt) and θt denote the position and heading angle of the tank at time t, respectively.
Θt represents the turret angle of the tank. vt and ωt are the linear and angular velocities
of the tank at time t, respectively, while Ωt is the angular velocity of the tank’s turret. The
sampling time is denoted by ∆t, set to be ∆t = 0.02 s. vt, ωt, and Ωt are constrained by
vt ≤ vmax, ωt ≤ ωmax, and Ωt ≤ Ωmax, respectively. In this paper, we assume vmax = 20 m/s,
ωmax = 100◦/s and Ωmax = 100◦/s. The NavMesh navigation system [40] is adopted in
this paper, which calculates vt and ωt for the tank according to the navigation path. Similar
to [8,26,27,37,41–43], in this paper, it is assumed that the information of the confrontation is
complete, i.e., that the tanks can access

1. Complete information about themselves and their teammates, including positions,
linear velocities, angular velocities, heading angles, and ammunition load.

2. The current positions of opponents.
3. The map of the environment.

Figure 1. Map of the urban scenario for tank swarm confrontation.
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Tanks attack opponents by firing shells, and a tank will be destroyed once it is hit by
a shell. The range of the shell is set to be d f ire = 1200 m, and the shell reloading time is set
to be trld = 5 s. In addition to the mobility of the chassis, the cannon of each agent is also
capable of rotation. The cannon remains parallel to the xoy plane and is restricted to rotational
movements within this plane. Upon acquiring a new target, the agent rotates its cannon at a
fixed angular velocity of Ωmax until the cannon is precisely aligned with the target.

Initially, the two tank swarms, identified, respectively, as the red team and the blue
team, are located in different areas of the map. We set the maximal match duration as
tend = 600 s. A team is called fully destroyed if all its members are destroyed. Either team
will win the match if, within tend, the other team is fully destroyed while it is not. Note that
the match will end when either one team wins or the time reaches the end. The objective of
the swarm confrontation algorithm is to win the match.

The confrontation algorithm is evaluated by two performing indices, namely win rate
and efficiency. Over a set of M matches, suppose a team wins Mw matches. Then, the win
rate of the algorithm adopted by the team is Mw/M. Moreover, within these Mr winning
matches, let ni denote the number of surviving tanks of the team by the end of the ith
match. Then, the efficiency of the algorithm adopted by the team is defined as

ψ =

{
1

Mw
∑Mw

i=1
ni
N Mw > 0,

0 Mw = 0.
(2)

The efficiency ψ represents straightforwardly the average survival rate of a team
counting in all winning matches. A higher value of ψ implies that the team can win the
match at a lower cost, thereby exhibiting better performance.

4. Swarm Confrontation Algorithm Design

The swarm confrontation algorithm needs to answer two key questions:

1. Given a swarm of opponents, how does one assign a target for each member?
2. When both teams are within each other’s firing range, how does one operate during

combats?

In this paper, we try to seek the answers to these two questions from nature. Through
the analysis of a substantial amount of biological data and wildlife videos, valuable ani-
mal behavioral strategies have been identified during confrontations for hunting or food
competition. These strategies enable them to form a local advantage in combat power and
minimize casualties. By extracting key actions from these animal behaviors and adapting
them to the swarm confrontation algorithm, the algorithm’s win rate and efficiency are
expected to be significantly enhanced.

4.1. Bio-Inspired Rules

We begin with the first question of how to assign a target for each member given a swarm
of opponents. Figure 2 shows the confrontation process between a pride of lions and a herd of
buffaloes [44]. To be more specific, (a) the lions are observing the distribution and movement
of the buffalo herd; (b) the lions tighten the encirclement of an isolated buffalo; (c) the lions
approach the isolated buffalo; (d) the lions launch a siege on the isolated buffalo. The priority
of the lion pride is to concentrate firepower on isolated individuals under the ever-changing
state of confrontation, thereby constantly forming local suppression and advantage. We refer
to this tactic of the lions as the “fire concentration” strategy. Given the complex urban scenario
considered in this paper, it is often the case that an opponent may find itself in a relatively
isolated position. By prioritizing such an opponent as the target with concentrated firepower,
the swarm confrontation algorithm would be more effective and efficient.
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(a) (b)

(c) (d)
Figure 2. The “fire concentration” strategy taken from the confrontation between a lion pride and a buffalo
herd [44]. (a) The lions are observing the distribution and movement of the buffalo herd. (b) The lions tighten
the encirclement of an isolated buffalo. (c) The lions approach the isolated buffalo. (d) The lions launch a
siege on the isolated buffalo.

Next, we continue with the second question on how to operate during combat when
both teams are within each other’s firing range. Figure 3 shows the confrontation scenario
where a pack of wild dogs and a clan of hyenas compete for food [45]. Specifically, (a) the
wild dogs are barking at the hyenas, closely observing their movements; (b) the wild dogs
launch an attack when the hyenas are distracted; (c) the wild dogs retreat after attacking to
avoid the hyenas’ counteroffensive; (d) the wild dogs launch an attack again as the hyenas
lower their guard. During confrontations, it is observed that the wild dogs strategically
choose to attack only when the hyenas become distracted or lower their guard. Additionally,
instead of engaging in direct combat with the advancing hyenas, the wild dogs opt for
a rapid withdrawal. They constantly and dynamically adjust their positions, thereby
increasing the chances of evading hyenas’ counterstrikes and minimizing unnecessary
casualties. Furthermore, the wild dogs maintain certain optimal distance from the hyenas,
not retreating too far, preparing the next round of attack. We refer to this tactic of the wild
dogs as the “back and forth maneuver” strategy. Noting that the tank considered in this
paper is subject to the shell reloading time trld, the chance of being hit for the tank would
be greatly lowered if the tank retreats to some safe position after firing, preparing for the
next round of firing. By emulating this strategic withdrawal behavior of the wild dogs, the
tanks can strike a balance between aggression and self-preservation.



Electronics 2024, 13, 1848 7 of 25

(a) (b)

(c) (d)
Figure 3. The “back and forth maneuver” strategy taken from the confrontation between a wild dog
pack and a hyena pride [45]. (a) The wild dogs are barking at the hyenas, closely observing their
movements. (b) The wild dogs launch an attack when the hyenas are distracted. (c) The wild dogs
retreat after attacking to avoid the hyenas’ counteroffensive. (d) The wild dogs launch an attack again
as the hyenas lower their guard.

4.2. Navigation System

NavMesh navigation is an AI pathfinding and routing system offered by Unity, derived
from improvements to the A* algorithm [46]. This system divides the three-dimensional
map into several tile regions, with each tile composed of basic voxels marked with given
cost values. This approach simplifies complex spatial path planning into a minimum
cost-solving problem within a finite discrete grid, achieving a balance between navigation
precision and computational complexity. In this paper, the NavMesh navigation system
is employed to facilitate automatic path planning and obstacle avoidance for the tanks,
and the baking map of the urban scenario is shown in Figure 4. The cost value for all
navigable areas is set to be 1, while non-navigable areas are assigned a cost of 10,000. The
navi-distance between two tanks is defined as the length of the path between the two points
on the navigation mesh that are closest to these two tanks. To ensure the proper functioning
of the navigation system, it is essential to pre-configure the general property settings for the
NavMesh navigation system, the navigation component settings for the NavMesh agent,
and the property settings for the NavMesh surface components mounted on the map. The
specifics of these configurations are detailed in Tables 1–3.

Table 1. General property settings for the NavMesh navigation system.

Property Name Property Explanation Property Value

radius (m) The radius of the agent 2.5
height (m) The height of the agent 3

step height (m) The maximum height the agent can climb 0.4
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Table 1. Cont.

Property Name Property Explanation Property Value

maximum slope (°) The maximum slope the agent can move 1
Drop height (m) The maximum height an agent can fall to 0.5

Jump distance (m) The maximum distance the agent can jump 0.5

Table 2. Navigation component settings for the NavMesh agent.

Property Name Property Explanation Property Value

speed (m/s) Movement speed of the agent 1.0
angular speed (°/s) Rotational speed of the agent 100
acceleration (m/s2) Acceleration of the agent 8

stopping distance (m) Minimum distance to target for stopping 0.5

auto braking Whether the agent automatically slows down when
approaching the target True

obstacle avoidance radius (m) The radius used for avoiding obstacles 0.5

Table 3. Property settings for the NavMesh surface components.

Property Name Property Explanation Property Value

Layer The layer covered by the navigation system Everything
Default Area The default area type in the map Walkable

Voxel Size (m) Edge length of the voxels (squares) for the NavMesh grid 0.833
Tile Size Number of tiles the NavMesh grid is divided into 256

Figure 4. Baking map of the urban scenario.

4.3. Algorithm Design

In what follows, the team adopting the bio-inspired intelligent swarm confrontation
algorithm is called the red team, whose members are labeled as r1, r2, . . . , rN , while the
opponent team adopting another swarm confrontation algorithm is called the blue team,
whose members are labeled as b1, b2, . . . , bN . At step k, for each surviving blue team
member bi, we define Dbi

(k) as the sum of the navi-distances from bi to all other surviving
blue team members and Lbi

(k) as the sum of the navi-distances from bi to all surviving red
team members. By definition, Dbi

(k) measures how far away bi is from other surviving blue
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team members and Lbi
(k) measures how far away bi is from red team members. Moreover,

let Davg(k) be the average of all Dbi
(k), and

b∗i (k) = arg min
bi

{Lbi
(k)}. (3)

By definition, b∗i (k) refers to the blue team member that is nearest to the red team.
If Db∗i (k)

≥ Davg(k), i.e., the nearest blue team member to the red team happens to be
sufficiently far away from other blue team members, then we further define the fire concen-
tration set S f c(k) for the red team as follows. A red team member rj belongs to S f c(k) if, at
step k, it simultaneously satisfies the following three conditions:

1. rj is surviving;
2. The navi-distance between rj and b∗i (k) is less than ℓ;
3. The navi-distance between rj and the surviving blue team members except b∗i (k) is

more than d f ire.

Condition 2 collects red team members that are close to b∗i (k), and Condition 3 rules
out red team members which have more suitable targets.

The bio-inspired intelligent swarm confrontation algorithm is given by Algorithm 1.

Algorithm 1 Bio-inspired intelligent swarm confrontation algorithm

1: for step k do
2: if k = 1 then
3: Select t∗sw and dback. Set t∗back = 300. Initialize tsw > t∗sw and tback > t∗back.
4: end if
5: for each surviving red team member ri do
6: if tsw ≥ t∗sw then
7: if S f c(k) has at least two elements and ri ∈ S f c(k) then
8: Let the target of ri be b∗i (k).
9: else

10: Let the target of ri be bi which is surviving at step k and has the shortest
navi-distance to ri.

11: end if
12: Reset tsw to 0.
13: else
14: tsw = tsw + 1.
15: end if
16: if tback ≥ t∗back then
17: if the shell is ready and the navi-distance from ri to its target is more than d f ire

then
18: ri moves toward the target.
19: else if the shell is ready and the navi-distance from ri to its target is less than

d f ire then
20: ri fires at the target.
21: else if the shell is not ready and the navi-distance from ri to its target is less

than dback then
22: Let where ri was 6s ago be the retreat destination for ri. Reset tback to 0.
23: end if
24: else
25: ri moves towards the retreat destination. tback = tback + 1.
26: end if
27: end for
28: end for

In Algorithm 1, t∗sw represents the minimal dwell time for target switching. With
the constraint of t∗sw, the tank shall not switch targets too frequently. dback determines the
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minimal safety firing distance. t∗back represents the fixed time duration for executing a one-
time “back and forth maneuver” strategy with the corresponding timer tback in Algorithm 1.
It is set at 300 to accommodate the 250 steps required for reloading shells. Algorithm 1 has
two key bio-inspired features. First, the strategy “fire concentration” has higher priority in
selecting targets for the red team members. Second, the red team members would retreat
instantly after firing, following the “back and forth maneuver” strategy until the shell is
ready again. Note that t∗sw and dback are the two key parameters for Algorithm 1.

5. Opponent Swarm Confrontation Algorithms

This section will introduce two benchmark opponent swarm confrontation algorithms
for the bio-inspired intelligent swarm confrontation algorithm (abbreviated as the BIO
algorithm hereafter), namely the reinforcement learning algorithm (abbreviated as the RL
algorithm hereafter) [9] and the assign nearest algorithm (abbreviated as the AN algorithm
hereafter) [8]. The RL swarm confrontation algorithm is an AI-based algorithm, trained by
the MA-POCA method, while the AN algorithm is a rule-based algorithm, similar to the
BIO algorithm proposed in this paper.

5.1. RL Algorithm

The MA-POCA method establishes a novel framework to address the posthumous
credit-assignment problem in multi-agent reinforcement learning. It leverages a self-attention
mechanism to accommodate dynamically varying numbers of agents, effectively distributing
rewards to both active and deceased agents, thereby enhancing performance in dynamic
multi-agent environments. Compared to the conventional approaches, the MA-POCA method
significantly improves performance in scenarios involving the generation or elimination of
agents during swarm confrontation processes. In this work, the MA-POCA method [9] is
employed for model training and the RL algorithm is obtained after undergoing 150 million
training steps. Note that the outputs of the RL Algorithm include vt, ωt and Ωt for the tanks,
as well as a binary parameter deciding whether to fire or not.

The reward and punishment settings for the training process of the MA-POCA method
are summarized in Table 4. During the match, there are instant individual rewards for
killing opponents and punishments for collisions and accidental injuries to teammates.
Moreover, when the match ends, there are individual settlement rewards for winning,
both alive or deceased; team settlement rewards for winning, counting also the amount of
surviving members nsvv; and team settlement punishments for not winning.

Table 4. Reward and punishment settings.

During Match

Event Subject Reward/Punishment

Hit teammate Individual −0.2
Kill opponent Individual +0.15

Collision with obstacle Individual −0.2
Collision with teammate or enemy Individual −0.1

End of Match

Event Subject Reward/Punishment

Winning while alive Individual +0.6
Winning while deceased Individual +0.3

Not winning Team −0.2
Winning Team 0.6 + 0.4 × (nsvv/N)

Hyperparameters significantly influence the training performance of the reinforcement
learning framework. The hyperparameter settings for the training of the RL algorithm is
given in Table 5.
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Table 5. Hyperparameter settings of the RL algorithm.

Property Name Property Type Property Explanation

Batch Size Number of training examples utilized in one iteration 2048
Buffer Size Size of the buffer for storing transitions 20,480

Learning Rate Step size at each iteration while moving toward a minimum of a loss function 0.0003
Beta The strength of the entropy regularization term in the training strategy. 0.005

Epsilon The exploration rate that balances between exploring new actions and
exploiting known rewards. 0.2

Lambda The discount factor that determines the present value of future rewards. 0.95
Hidden Units Number of units in each hidden layer 512
Num Layers Number of hidden layers 3

Discount Factor Discount factor used in the reward calculation 0.99
Strength Parameter to adjust the strength of the reward 1.0

5.2. AN Algorithm

Reference [8] considers the drone swarm confrontation problem for two scenarios. The
first scenario is a simple swarm vs. a swarm scene in an open playing field, whereas the
second scenario is much more complex, involving ship attack and defense. It was pointed
out that among various swarm confrontation algorithms, the algorithm employing the assign
nearest strategy exhibits superior performance. The principle of the assign nearest algorithm
is simple, i.e., to continuously pair the closest members from the two opposing teams until
there are unpaired members remaining. At that point, these surplus members will directly
target their nearest opponents even if these opponents have already been assigned as targets.
Suppose the blue team members adopt the AN algorithm while the red team members adopt
the other opponent swarm confrontation algorithm. The detailed AN algorithm adapted for
the complex urban scenario considered in this paper is given by Algorithm 2.

Algorithm 2 Assign nearest swarm confrontation algorithm

for step k do
for each surviving red team member ri do

Calculate Lri(k), which is the sum of the navi-distances from ri to all surviving blue
team members.
In ascending order of Lri(k), for each surviving red team member ri, find its nearest
and unassigned surviving blue team member, if possible. If such blue team member
exists, then the red team member will be assigned as the target for this blue team
member.

end for
if the blue team has more surviving members than the red team then

for each unassigned surviving blue team member bi do
Assign the closest red team member as the target for bi, based on navi-distance.

end for
end if

end for

In contrast to the results of [8], two changes have been made to make the AN algorithm
suitable for the complex urban scenario. First, the distance between two opposing members is
measured by the navi-distance. Second, the AN algorithm also engages in path planning and
obstacle avoidance based on the NavMesh navigation system. As a result, the very difference
between the BIO algorithm and the AN algorithm lies in the two bio-inspired strategies
adopted by the BIO algorithm, namely, “fire concentration” and “back and forth maneuver”.

6. Swarm Confrontation Tests and Results Analysis

To evaluate the performance of the BIO algorithm, in this section, comprehensive con-
frontation tests have been conducted between the BIO algorithm and the RL algorithm, as
well as between the BIO algorithm and the AN algorithm. In what follows, the analysis
of the results for the single match will be first given to obtain an overall impression of the
confrontation process. In particular, two typical scenes are presented to illustrate how the
bio-inspired “fire concentration” and “back and forth maneuver” strategies work. After that,
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the analysis of the results for the group matches is shown, and the confrontation algorithms
involved are evaluated in terms of both the win rate and the efficiency. Moreover, we also
discuss how algorithm parameters would affect the performance indices of the BIO algorithm.

6.1. Results Analysis for Single Match
6.1.1. Entire Confrontation Process of a Match

Figure 5 presents the entire confrontation process of a single match with N = 5. The
red team members, adopting the BIO algorithm, are highlighted with circles, while the
blue team members, adopting the AN algorithm, are highlighted with squares. Specifically,
(a) the two teams are generated on different sides of the map; (b) both teams advance
towards each other; (c) the red team initiates combat, and an opponent is destroyed;
(d) the red team destroys another opponent, and then some members retreat tactically;
(e) the red team destroys the third opponent; (f) the red team member at the bottom moves
left to attack the opponent on the left; (g) the red team’s main force destroys the fourth
opponent but also loses a member; and (h) the red team destroys the last opponent and wins
the match.

(a) (b)

(c) (d)

(e) (f)
Figure 5. Cont.
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(g) (h)
Figure 5. The entire confrontation process of a single match with N = 5. The red team members,
adopting the BIO algorithm, are highlighted with circles, while the blue team members, adopting the
AN algorithm, are highlighted with squares. (a) The two teams are generated on different sides of the
map. (b) Both teams advance towards each other. (c) The red team initiates combat, and an opponent
is destroyed. (d) The red team destroys another opponent, and then some members retreat tactically.
(e) The red team destroys the third opponent. (f) The red team member at the bottom moves left to
attack the opponent on the left. (g) The red team’s main force destroys the fourth opponent but also
loses a member. (h) The red team destroys the last opponent and wins the match.

6.1.2. Typical Scenes for the Bio-Inspired Strategies

Two scene segments have been taken to illustrate the bio-inspired strategies. Similar
to before, the red team members adopt the BIO algorithm, while the blue team members
adopt the AN algorithm.

Figure 6 illustrates the “fire concentration” strategy. In particular, (a) the conditions for
the “fire concentration” strategy are all satisfied, and three red team members are assigned
a common target; (b) the three red team members move toward the target; (c) the three red
team members attack the target; and (d) the target is destroyed.

Figure 7 illustrates the “back and forth maneuver” strategy. In particular, (a) the two red
team members move toward the target; (b) the two red team members attack the target; (c) the
two red team members retreat a little bit after firing to avoid being hit; and (d) the two red
team members go back and move toward the target again when the shells are ready, and one
opponent is destroyed. This scenario represents a special case in which the red team, having
entered the road first, sets up an ambush for the blue team’s tanks. As soon as the blue team
exposes part of their tanks, they are immediately attacked by the red team, which employs
precise sniper tactics. The attack is timed to prevent the blue team from retaliating, resulting
in their tanks being destroyed before they can respond. Simultaneously, the red team executes
a tactical retreat, firing while maneuvering to avoid incoming damage.

(a) (b)
Figure 6. Cont.
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(c) (d)
Figure 6. Illustration of the “fire concentration” strategy, where the red team members adopt the BIO
algorithm while the blue team members adopt the AN algorithm. (a) The conditions for the “fire
concentration” strategy are all satisfied, and three red team members are assigned a common target.
(b) The three red team members move toward the target. (c) The three red team members attack the
target. (d) The target is destroyed.

(a) (b)

(c) (d)
Figure 7. Illustration of the “back and forth maneuver” strategy, where the red team members adopt
the BIO algorithm, while the blue team members adopt the AN algorithm. (a) The two red team
members move toward the target. (b) The two red team members attack the target. (c) The two red
team members retreat a little bit after firing to avoid being hit. (d) The two red team members go
back and move toward the target again when the shells are ready, and one opponent is destroyed.

6.1.3. Algorithm Computational Complexity Analysis

The computational resource consumption of the BIO algorithm is shown by Figure 8.
The main functions of the BIO algorithm are implemented through the FixedUpdate function.
The scripts Fire_Concentration, Pathcalculate, and ManControl corresponding to the
“fire concentration” strategy, the “back and forth maneuver” strategy, and the basic algorithmic
functionalities, respectively. It can be observed that they utilize 8.0%, 0.6%, and 4.3% of CPU
computational resources, respectively. The basic functionalities encompass a wide array
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of operations, with a reasonably managed computational complexity. In contrast, the
computational complexity of the “back and forth maneuver” strategy is quite low, whereas
the “fire concentration” operation exhibits a significantly higher complexity. The reason
for the high CPU utilization by the “fire concentration” strategy primarily stems from
extensive computations of navigation distances, which involve a substantial number of
subdivided grid details of the navigation mesh. This process significantly increases the
consumption of computational resources. However, overall, the algorithm’s demand for
computing resources remains moderate. During the test, the algorithm operates on the host
computer with the configuration specified in Table 6.

Figure 8. The algorithm performance consumption analysis.

Table 6. Computer configuration details.

Component Specification

CPU AMD Ryzen 5 5600X 6-Core Processor, 3.70 GHz
GPU Nvidia GeForce GT 1030
RAM 16 GB DDR4

Operation System Windows 11 Family Version

6.2. Results Analysis for Group Matching

Next, we perform group matching between the BIO algorithm and the RL algorithm,
as well as between the BIO algorithm and the AN algorithm. A group of matches consists
of 100 matches, and both the cases of N = 5 and N = 10 are tested. Different swarm con-
frontation algorithms are compared in terms of win rate and efficiency. As mentioned before,
the minimal dwell time for target switching t∗sw, the minimal safety firing distance for the
back and forth maneuver strategy dback, and the triggering distance of the “fire concentration”
strategy ℓ are the three key parameters for the BIO algorithm. Thereby, a comprehensive
series of comparative tests have been conducted to reveal the influence of these three param-
eters on the performance indices. In particular, by setting dback = 1200 m and ℓ = 1800 m,
we let t∗sw = 0, 1, 5, 20, 50, 100, 200 steps; by setting t∗sw = 20 steps and ℓ = 1800 m, we let
dback = 0, 100, 300, 500, 700, 900, 1100, 1200 m; and by setting t∗sw = 20 steps and
dback = 1200 m, we let ℓ = 1300, 1400, 1500, 1600, 1700, 1800, 1900 m.
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6.2.1. The BIO Algorithm vs. The RL Algorithm

The confrontation results between the BIO algorithm and the RL algorithm are illus-
trated in Figures 9–12, which demonstrate that in all cases, the BIO algorithm outperforms
the RL algorithm.

(a) (b)
Figure 9. Confrontation results for the case of N = 5 subject to different values of t∗sw, with the
red team adopting the BIO algorithm and the blue team adopting the RL algorithm. (a) Win rate.
(b) Efficiency.

(a) (b)
Figure 10. Confrontation results for the case of N = 10 subject to different values of t∗sw, with the
red team adopting the BIO algorithm and the blue team adopting the RL algorithm. (a) Win rate.
(b) Efficiency.

(a) (b)
Figure 11. Confrontation results for the case of N = 5 subject to different dback, with the red team
adopting the BIO algorithm and the blue team adopting the RL algorithm. (a) win rate (b) efficiency.
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(a) (b)
Figure 12. Confrontation results for the case of N = 10 subject to different values of dback, with the
red team adopting the BIO algorithm and the blue team adopting the RL algorithm. (a) Win rate.
(b) Efficiency.

In Figure 9, it is observed that when N = 5, the BIO algorithm achieves its highest win
rate and efficiency against the RL algorithm when t∗sw = 5 steps. Similarly, Figure 10 shows
that the BIO algorithm reaches its peak performance in terms of win rate and efficiency against
the RL algorithm when t∗sw = 20 steps. These results indicate that there might exist an optimal
minimal dwell time for a target switching t∗sw regarding algorithm performance, and the
optimal value may vary with N. Notably, when t∗sw < 5 steps, a significant overall decrease in
win rate and efficiency becomes apparent. Though frequent target switching may enable the
tank to better adapt to the dynamic confrontation scenario, occasionally, the tank may get stuck
in selecting targets and thus miss the opportunity to attack. On the other hand, t∗sw > 20 steps
also results in a similar reduction in win rate and efficiency as the decision-making would lag
far behind the current confrontation situation. Furthermore, compared to t∗sw = 0 steps, which
corresponds to the absence of a dwell time for target switching, the maximum win rates for
the cases of N = 5 and N = 10 are improved by 6% and 11%, respectively, and the maximum
efficiencies for the cases of N = 5 and N = 10 are enhanced by 0.112 and 0.223, respectively.
These enhancements underscore the significant impact of the target switching mechanism in
boosting the BIO algorithm’s win rate and efficiency.

In Figures 11 and 12, both the win rate and the efficiency peak at around dback = 1200 m,
and this is because the range of the shell is set to be 1200 m. The test results confirm that being
at the critical point of the shell range is actually the optimal choice, which allows prompt firing
and effective retreating. Moreover, in comparison to the case where dback = 0 m, indicating
the absence of the “back and forth maneuver” strategy, the incorporation of this strategy
leads to significant performance improvements in confrontations. Specifically, for the cases of
N = 5 and N = 10, the maximum win rate enhancements are 19% and 9%, respectively, and
the increases in maximum efficiency are notably 0.212 and 0.232, respectively.

In Figures 13 and 14, the win rate trend of the BIO algorithm as ℓ varies first increases
and then achieves its maximum value at ℓ = 1700 m. The efficiency trend also improves
with increasing ℓ, peaking at ℓ = 1700 m. Beyond this point, both metrics begin to decline
slightly, indicating that ℓ = 1700 m is the optimal engagement distance under these testing
conditions. When ℓ < 1700 m, both the win rate and the efficiency increase as ℓ rises.
This improvement is primarily due to the fact that the increasing distance allows the BIO
team to engage more effectively without entering into the immediate firing range of the
RL opponent, which is crucial in avoiding direct confrontations that are less favorable in a
conservative combat scenario. As the distance increases, the BIO algorithm leverages its
strategic capabilities better, resulting in improved targeting and maneuvering space, which
contributes to the overall combat effectiveness. Additionally, for smaller values of ℓ, such as
1300 m and 1400 m, the “fire concentration” strategy defined by the BIO algorithm becomes
challenging to trigger. When ℓ > 1700 m, both the win rate and the efficiency begin to
decrease, primarily due to the inefficiency in tactical execution in complex environments.
At these larger distances, tanks under the BIO algorithm often need to move significantly
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further to participate in concentrated fire efforts, which can be especially challenging in
environmental settings with numerous obstacles. This increased movement reduces not
only the speed of engagement but also the overall tactical responsiveness. At ℓ = 1700 m,
compared to ℓ = 1300 m, the win rates for the 5V5 and 10V10 configurations increase by
3% and 5%, respectively, while the efficiency improves by 0.040 and 0.084, respectively.

(a) (b)
Figure 13. Confrontation results for the case of N = 5 subject to different values of ℓ, with the
red team adopting the BIO algorithm and the blue team adopting the RL algorithm. (a) Win rate.
(b) Efficiency.

(a) (b)
Figure 14. Confrontation results for the case of N = 10 subject to different values of ℓ, with the
red team adopting the BIO algorithm and the blue team adopting the RL algorithm. (a) Win rate.
(b) Efficiency.

6.2.2. The BIO Algorithm vs. The AN Algorithm

The confrontation results between the BIO algorithm and the AN algorithm are illus-
trated in Figures 13–16. It can be seen that the BIO algorithm achieves a win rate of over
91% against the AN algorithm in all scenarios, demonstrating the robust performance of
the BIO algorithm. Moreover, if we compare the results of Figures 9–16, it can be found
out that the RL algorithm has a better performance than the AN algorithm when facing
the same opponent, revealing the fact that simple rules might not be suitable for complex
confrontation scenarios.
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(a) (b)
Figure 15. Confrontation results for the case of N = 5 subject to different values of t∗sw, with the
red team adopting the BIO algorithm and the blue team adopting the AN algorithm. (a) Win rate.
(b) Efficiency.

(a) (b)
Figure 16. Confrontation results for the case of N = 10 subject to different values of t∗sw, with the
red team adopting the BIO algorithm and the blue team adopting the AN algorithm. (a) Win rate.
(b) Efficiency.

In Figures 15 and 16, the win rate of the BIO algorithm is almost 100%, except for
a slightly lower rate of 93% in the 5V5 scenario with t∗sw = 200 steps. In both the 5V5
and 10V10 scenarios, the BIO algorithm’s efficiency peaks at t∗sw = 5 steps. Compared to
t∗sw = 0 step, setting t∗sw = 5 steps results in an efficiency increase of 0.051 and 0.088 for the
BIO algorithm in the 5V5 and 10V10 configurations, respectively.

In Figures 17 and 18, the win rate and efficiency of the BIO algorithm overall exhibit
an increasing trend with the rise in dback. In both the 5V5 and 10V10 configurations, the
win rates remain at 100% for dback ≥ 300, and the maximum efficiency is achieved at
dback = 1200 m. At dback = 1200 m, compared to dback = 0 m, the win rates for the 5V5 and
10V10 configurations increase by 6% and 4%, respectively, while the efficiency improves by
0.107 and 0.094, respectively. We believe the reasons behind these phenomena are largely
consistent with those observed in Figures 11 and 12. Compared to the BIO vs. AN scenario,
the decline in the win rate and efficiency for dback < 300 m is more pronounced in the BIO
vs. RL scenario, probably because the RL algorithm has a higher hit rate.
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(a) (b)
Figure 17. Confrontation results for the case of N = 5 subject to different values of dback, with the
red team adopting the BIO algorithm and the blue team adopting the AN algorithm. (a) Win rate.
(b) Efficiency.

(a) (b)
Figure 18. Confrontation results for the case of N = 10 subject to different values of dback, with the
red team adopting the BIO algorithm and the blue team adopting the AN algorithm. (a) Win rate.
(b) Efficiency.

In Figures 19 and 20, it is observed that the win rate shows minor variation, and the effi-
ciency is also marginally affected by changes in ℓ, although the general trend still increases before
decreasing. The reasons for these results are consistent with those discussed in Figures 13 and 14.
Specifically, when N = 5, the maximum efficiency is achieved at ℓ = 1700 m. In contrast, for
a larger swarm N = 10, peak efficiency is reached at ℓ = 1800 m, although the differences
between these settings are slight. Compared to a triggering distance of ℓ = 1300 m, when
ℓ is optimized, the win rates for the 5V5 and 10V10 scenarios are increased by 1% and 0%,
respectively, with corresponding gains in efficiency of 0.052 and 0.085.

(a) (b)
Figure 19. Confrontation results for the case of N = 5 subject to different values of ℓ, with the
red team adopting the BIO algorithm and the blue team adopting the AN algorithm. (a) Win rate.
(b) Efficiency.
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(a) (b)
Figure 20. Confrontation results for the case of N = 10 subject to different values of ℓ, with the
red team adopting the BIO algorithm and the blue team adopting the AN algorithm. (a) Win rate.
(b) Efficiency.

However, synthesizing the data from Figures 13, 14, 17 and 18 shows that the variability
in efficiency due to changes in ℓ is more pronounced for the team size N = 10 than for
N = 5. This increased sensitivity in larger teams can be attributed to the fact that with more
team members, the coordination and alignment for effective “fire concentration” becomes
more challenging. The greater number of agents increases the potential for misalignment
in positioning and timing, which can amplify the impact of suboptimal distances on
overall efficiency. Additionally, in larger teams, the need to maintain formation and cover
more ground to utilize the “fire concentration” strategy effectively at varying ℓ distances
necessitates more complex and precise maneuvering, further contributing to the observed
variability in efficiency.

6.2.3. Analysis of Tank Behavior under the RL and AN Algorithms

In the confrontation process, tanks under the RL Algorithm exhibit significant behav-
ioral uncertainty, a characteristic of the neural network models. Meanhile, in general, the
following behavioral patterns can be observed during engagements.

1. Tanks do not necessarily choose their nearest opponents as targets, and the choice of
targets may change constantly.

2. During the approach phase, tanks tend to move at a slow pace.
3. Tanks often position themselves at the edges of intersections of roads, strategically

waiting to ambush opponents (Figure 21a).
4. Tanks frequently execute flanking maneuvers, aiming to stealthily attack from the

sides (Figure 21b).

(a) (b)
Figure 21. Analysis of tank behavior under the RL algorithm (blue team). (a) Tanks often position
themselves at the edges of intersections of roads, strategically waiting to ambush opponents. (b) Tanks
frequently execute flanking maneuvers, aiming to stealthily attack from the sides.
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A major drawback of the RL algorithm is that the tanks often perform in a manner
that could be perceived as clumsy. Their movement is slow, and they occasionally collide
with obstacles, demonstrating a lack of fluid path navigation and obstacle avoidance. In
contrast, the tanks under the BIO algorithm, driven by scripted intelligence, show highly
efficient decision-making and execution capabilities with smooth path-finding and obstacle
avoidance, which explains the higher win rate and efficiency of the BIO algorithm.

In contrast to the RL algorithm, the AN algorithm is rule-based, which means that the
tank behaviors are deterministic for all scenarios. Below are summaries of some typical
behavioral patterns for tanks under the AN algorithm.

1. Tanks immediately lock onto and approach their targets at the beginning of the engagement.
2. Tanks advance towards their targets in an orderly manner, avoiding collisions with

obstacles or teammates.
3. Tanks directly confront opponents, engaging them head-on in combat scenarios (Figure 22a).
4. Tanks actively pursue retreating opponents, showcasing persistent and strategic

chasing behavior (Figure 22b).

(a) (b)
Figure 22. Tanks behavior analysis under the AN algorithm (blue team). (a) Tanks directly con-
front opponents, engaging them head-on in combat scenarios. (b) Tanks actively pursue retreating
opponents, showcasing persistent and strategic chasing behavior.

In contrast to the BIO Algorithm, the AN Algorithm is in general overly aggressive.
This lack of strategic retreat and adaptability frequently exposes the tanks to enhanced risks
of opponents’ attacks and counterattacks, which lowers down the win rate and efficiency
of the AN Algorithm.

7. Conclusions

This paper considers the swarm confrontation problem for two tank swarms in a
complex urban scenario. A novel intelligent swarm confrontation algorithm is proposed
featuring two bio-inspired strategies, namely the “fire concentration” strategy and the
“back and forth maneuver” strategy. The former one helps to create a favorable combat
situation, while the latter one may reduce the risk of being hit when the shell is reloading.
Compared to two other state-of-the-art swarm confrontation algorithms, the bio-inspired
swarm confrontation algorithm exhibits significant advantages in terms of the win rate
and efficiency. Moreover, it is also revealed how algorithm parameters would affect
algorithm performance.

In this paper, we have considered the cases of N = 5 and N = 10, while, for larger
swarms in similar urban environments, it might be necessary for the BIO algorithm to
employ a hierarchical structure so that the swarm can be divided into several small sub-
swarms. The reason lies in the fact that the effectiveness of the “fire concentration” strategy
may be compromised since the roads are narrow, which cannot accommodate a large
number of tanks for focused fire. Moreover, regarding the “back and forth maneuver”
strategy, the retreating of tanks during the “back and forth maneuver” could cause severe
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congestion for large swarms. On the other hand, the BIO algorithm would be well suited for
different environments with similar urban characteristics since it is based on the foundation
of navigation. There will be no difference in how to select targets for different environments.

Regarding future work, techniques such as deep reinforcement learning and evolution-
ary strategies may offer avenues for the further optimization of the algorithm’s parameters.
Furthermore, due to limitations of space, we cannot conduct comparative study with more
existing works within this paper. We may further do this in the future with, say, [47–51],
which involves RL-based methods, visual language models, game-theoretic approaches,
and evolutionary strategies. Additionally, it is necessary to further investigate the dynamics
of swarm confrontation under conditions of incomplete information in order to enhance
the broader applicability of the bio-inspired confrontation algorithm.
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