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Abstract: The growing popularity of microservices architectures generated the need for tools that
orchestrate their deployment in containerized infrastructures, such as Kubernetes. Microservices
running in separate containers are packed in pods and placed in virtual machines (nodes). For
applications with multiple communicating microservices, the decision of which services should
be placed in the same node has a certain impact on both the running time and the operation cost
of an application. The default Kubernetes scheduler is not optimal in that case. In this work, the
service placement problem is treated as graph clustering. An application is modeled using a graph
with nodes and edges representing communicating microservices. Graph clustering partitions the
graph into clusters of microservices with high-affinity rates. Then, the microservices of each cluster
are placed in the same Kubernetes node. A class of methods resorts to hard clustering (i.e., each
microservice is placed in exactly one node). We advocate that graph clustering should be fuzzy to
allow high-utilized microservices to run in more than one instance (i.e., pods) in different nodes.
ModSoft-HP Scheduler is a custom Kubernetes scheduler that takes scheduling decisions based on
the results of the ModSoft fuzzy clustering method followed by heuristic packing (HP). For proof
of concept, the workloads of two applications (i.e., an e-commerce application, eShop, and an IoT
architecture) are given as input to the default Kubernetes Scheduler, the Bisecting K-means, and the
Heuristic First Fit (hard) clustering schedulers and to the ModSoft-HP fuzzy clustering method. The
experimental results demonstrate that ModSoft-HP can achieve up to 90% reduction of egress traffic,
up to 20% savings in response time, and up to 25% less hosting costs compared to service placement
with the default Kubernetes Scheduler in the Google Kubernetes Engine.

Keywords: service-oriented architecture; Kubernetes Scheduler; fuzzy clustering; modularity
optimization

1. Introduction

Kubernetes (K8s) automates the deployment and orchestration of containerized ap-
plications across server infrastructures and in the cloud. Applications run in clusters of
nodes. The services are placed in nodes in a way that minimizes any of several criteria (e.g.,
latency, number of nodes, operation costs, security, fault tolerance) or a combination of
them. Configuring a Kubernetes cluster resorts to Kubernetes Scheduler [1]. The decision
to place a service in a node is taken based on (available and required) resources and user
preferences. The default Kubernetes Scheduler can be extended to address the requirements
of service deployment in heterogeneous or federated infrastructures [2,3]. For example,
service deployment in fog-edge computing environments dictates the placement of services
closer to network edges [4].

An assumption common to all these works is that the workload comprises inde-
pendent services (monolithic applications). However, the default scheduler cannot take
placement decisions based on service dependencies (affinities). The problem often occurs
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when deploying service-oriented-architecture (SOA) applications comprising multiple com-
municating services which do not all fit together in one node. The services must be placed
in nodes in a way that minimizes the number of nodes and inter-node communication
(i.e., egress traffic). We advocate that the decision of which services should be grouped
and placed in the same node has an impact on both the running time (i.e., latency) and the
operational cost of an application (i.e., cloud providers charge their clients based on the
number of reserved machines, the resources allocated to each machine, and the network
traffic between different machines).

In our recent work [5], all these objectives are met together by grouping the application
microservices into smaller groups with high-affinity rates and by placing each such group
within the same node. The problem of microservices placement is formulated as graph
clustering (or graph partitioning). Both nodes and edges of the graph are labeled by the
resources consumed (i.e., CPU and RAM) and by the affinities between microservices (i.e.,
network traffic), respectively. Clustering is hard (i.e., each graph node may belong to exactly
one partition). Services that exchange high traffic rates are placed in the same node. Placing
these services in the same node reduces the traffic exchanged between the infrastructure’s
nodes (i.e., egress traffic). In [5], several graph partitioning algorithms are tested and their
placement solutions are compared against the solution of the default Kubernetes Scheduler in
the Google Kubernetes Engine (GKE). Our proposed Bisecting K-Means (BKM) and Heuristic
First Fit (HFF) [6] proved to be more efficient by optimizing almost all cost factors (i.e., number
of nodes, egress traffic, infrastructure hosting cost). However, the hard partitioning approach
did not reduce the applications’ latency (response time) in all cases.

The performance of a microservice placement solution can be greatly improved by
applying [7] fuzzy clustering (rather than hard clustering) to partition the application graph.
To the best of our knowledge, fuzzy clustering has not been exploited for the problem
of service placement elsewhere in the literature. Fuzzy placement solutions allow more
than one instance (replica) of certain services to be placed in different nodes. This reduces
the workload of each microservice replica by load-balancing the incoming requests. This
results in faster application response times without impacting the hosting cost.

Modularity soft (ModSoft) clustering [8] followed by heuristic packing (HP) [9] leads
to a fuzzy service placement solution embedded into a custom Kubernetes (K8s) Scheduler.
Application deployment comes along with appropriate supporting services that produce
the graph of an application, a service mesh [10], with monitoring services and a middleware
service that automates service placement to GKE (i.e., translates the output of graph clus-
tering to Docker Compose). We present comparisons of the proposed fuzzy method with
placement with Bisecting K-Means [5], Heuristic First Fit [6], and the default Kubernetes
Scheduler [1] based on several performance metrics (i.e., response time, infrastructure re-
sources, and hosting cost). For proof of concept, service placement results from all methods
are reported for two real-world applications (i.e., the Google Online Boutique eShop demo
application [11] and iXen IoT architecture [12].

Section 2 presents work related to the scheduling of applications with multiple commu-
nicating services. The Kubernetes configuration for scheduling service-oriented architecture
applications is discussed in Section 3. Kubernetes is enriched with additional services to
support the proposed (user-defined) fuzzy service placement solution. Fuzzy clustering
and the proposed fuzzy placement algorithm are described in Section 4. Section 5 presents
the evaluation methods and the Kubernetes testbed. Affinity metrics and evaluation
comparison criteria are also discussed. Section 6 reports experimental results using the
default Kubernetes Scheduler of GKE, two hard-clustering algorithms, and ModSoft-HP.
Conclusions and issues for future work are discussed in Section 7.

2. Related Work

Service placement is a well-known problem and has been studied extensively in
the literature [13,14]. The ever-increasing popularity of containerized applications has
generated additional interest in scheduling solutions that run on Kubernetes (K8s) [2,3].
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Existing methods are categorized by type of infrastructure (i.e., single or heterogeneous
clouds or cloud-fog) and by optimization policy. The emphasis is on placing independent
monolithic applications (i.e., each service is an application) on the servers of a platform.

In Kubernetes and the cloud, service placement is determined by the scheduler(s) of
the provider. These are heuristic algorithmic solutions that pair the resource demands of
each service (e.g., CPU, RAM) and user preferences with the resource constraints of a server
(or VM) to decide its placement. Often, these servers belong to clusters in the same cloud. To
guarantee high availability, the cloud providers (or the developers themselves) may choose
to place the services in different zones, regions, or different clouds (i.e., federated clouds). In
that case, the end-users are opted to tolerate additional service charges and communication
delays for services deployed in different server clusters. The cloud-fog (or the cloud-edge)
environment, in particular, calls for solutions that place latency-critical services closer to
their end users [15]. In general, solutions to the service placement problem must preserve
acceptable quality of service (QoS) level subject to (possibly several) application constraints
(e.g., security, cost, latency, fault-tolerance, and general service level agreements). Typically,
the scheduler runs in the master node and schedules only one application (or service) at a
time. Distributed or self-adaptive scheduling solutions have also been proposed [4].

The advent of SOA architectures [16] generated the need for advanced coordination
and management of resources (i.e., service deployment, monitoring, scaling). At the
very basic level, Docker facilitates the build and management of SOA applications with
their services deployed as containers. At a larger scale (e.g., at the cloud provider level),
Kubernetes is a prominent platform for managing and orchestrating multiple containerized
applications. Kubernetes provides a framework to run distributed systems resiliently by
offering service discovery, load balancing, storage orchestration, scalability, automated
service placement, self-healing of containers, and enhanced security. SOA scheduling in
Kubernetes must consider (in addition to the resource demands of each service) the traffic
(i.e., affinities) between collaborating services. This is a relatively new problem and has not
been studied in depth in the literature. The assignment of services to servers resorts to the
default Kubernetes Scheduler [1], which has been proven to be sub-optimal for SOA [5].

The following is a review of service scheduling solutions for SOA in the cloud and cloud-
fog infrastructures, including solutions for Kubernetes. Their emphasis is on minimizing the
number of hosts (VMs or nodes in K8s), an affinity metric, latency, infrastructure costs, or all
of them combined. Most methods model an application by means of a graph. Graph nodes
represent services (and their resource demands) and graph edges represent their message
traffic (e.g., requests per second). A placement solution is determined by partitioning the graph
into clusters of nodes with high affinity. All works report results based on simulations and
mock-up SOA applications (rather than on real-world applications and real workloads). Only
a few of them are tested on real server platforms (in the example of ModSoft-HP).

All methods rely on the idea that each service belongs to exactly one node. ModSoft-HP
relaxes the requirement of each service belonging to exactly one node and proves that this
results in a better placement solution compared to existing methods (e.g., [17,18]) and our
previous work [5]. Also, ModSoft-HP and [19] adapt the initial placement to the resource
demands of floating (i.e., changing) workloads. Table 1 summarizes the results of this review.

Table 1. Comparison table.

Method/Features Model Platform Application Placement

ModSoft-HP graph (fyzzy clustering) Google Kubernetes Engine eShop, iXen adaptive
[5] graph (hard clustering) Google Kubernetes Engine eShop, iXen static
[18] graph (K-cut partitioning) Exogeni simulator simulation static
[17] graph (K-cut partitioning) Amazon EC2, CloudSim simulation static
[6] REMAP (heuristic) Kuberbetes on Azure VMs Sock-shop static
[19] HTAS (heuristic) Kuberbetes on Nectar VMs simulation adaptive
[20] graph (affinity heuristic) cloud simulator simulation static
[21] graph (cost flow) Exogeni simulator Google traces static
[15] optimization (heuristic) iFogSim simulator simulation static
[22] optimization (heuristic) edge-cloud simulator simulation static
[23] optimization (heuristic) edge-cloud simulator simulation static
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Recent approaches model the problem of placing microservices in Kubernetes as a
graph partitioning one. Hu, Laat, and Zhao [18] run several experiments using synthetic
workloads on the Exogeni [24] cloud simulator. Sampaio et al. [6] proposed REMaP, a
service placement for Kubernetes that proved to improve the performance and reduce the
number of K8s nodes of an application. They implemented a monitoring component using
Influxdb [25] and Zipkin [26] and used mock-up and empirical evaluations on artificial
service topologies to assess the performance of their method.

Huang and Shen [17] proposed a service deployment method to reduce application
response times rather than the cost of application hosting. They modeled an application
using graphs that represent the communication costs and the parallelism between services.
They handled the problem of service placement in VMs as a minimum k-cut problem. They
showed performance results for four service deployment methods on Amazon EC2 and
CloudSim simulator [27]. They did not use Kubernetes and run all experiments on only one
VM. Bhahmare et al. [20] dealt with the problem of scheduling microservices on different
types of cloud environments. They showed reduction in the communication of microservices
and improved response times to requests. Hu and C. Laat and Z. Zhao [18] modeled service
placement as a graph partitioning problem and used service affinities to re-arrange services
into the nodes. Both methods rely on simulation results and have not been tested in a realistic
environment and in real use cases. Zhong and R. Buyya [19] proposed a task allocation
strategy for Kubernetes in a heterogeneous environment. Their method relies on a sufficient
job configuration policy, cluster size adjustment, and a service re-scheduling mechanism that
led to the cost reduction in application hosting by reducing the number of nodes. Hu at al. [21]
modeled K8s scheduling as a cost flow problem on the service graph and provided a realistic
evaluation of performance using data and a large Google cluster trace on the Exogeni simulator.

In a recent work [5], we solve the service placement problem from the scope of reducing the
total (monetary) cost of application hosting. An application is modeled by means of a weighted
and directed acyclic graph with two different affinity metrics, one counting the number of
requests between services and also one counting the message size (in bytes) exchanged between
the services. Several graph clustering algorithms are implemented and evaluated. Among them,
the Heuristic First Fit (HFF) [6] and our proposed Bisecting K-means (BKM) in combination with
heuristic packing (HP) [9] produced the best results. Heuristic packing is a post-processing step
that determines if there is a service placement solution with even fewer nodes. All algorithms
limit each service to a single instance placed on a node (i.e., hard clustering). All methods
outperformed the service placement solution of the default Kubernetes Scheduler in all criteria
(i.e., number of nodes, egress traffic, application hosting cost).

Farhadi et al. [22] presented a two-scale framework for joint service placement and
request scheduling in edge clouds for data-intensive applications. They used simulations
for testing. Pallewatta, Kostakos, and Buyya [15] proposed a decentralized microservice
placement policy for heterogeneous and resource-constrained fog environments. Each mi-
croservice is placed at the nearest data center to minimize latency and network usage. Their
method improved latency and reduced the delay in network communication. Apat, Sahoo,
and Maiti [23] proposed a service placement model for minimizing the energy consumption
in a fog environment. They did not test their model in an actual fog environment.

3. Kubernetes Configuration

A Kubernetes (K8s) cluster is a collection of node pools (i.e., groups of nodes with
the same configuration). Each node runs a container-optimized operating system (OS)
and hosts several pods. As a matter of good practice, each microservice is placed in a
separate pod (it is easier to debug, troubleshoot, or inspect the services). A node pool is
configured with the CPU, RAM, storage space, and OS requirements that each initialized
node must meet according to each application’s requirements. Node pools with a different
configuration can be added as well. A Kubernetes cluster includes at least one worker node
and a master node (or control plane) which host all Kubernetes components.



Electronics 2024, 13, 65 5 of 25

3.1. Network Traffic

Kubernetes uses IP addresses to enable communication between pods (microservices)
and K8s components. A pod is assigned an IP address upon creation. This IP address
is temporary (ephemeral) and changes every time the pod restarts (i.e., due to a crash
or update). For this reason, Kubernetes introduced a resource called Kubernetes Services.
Kubernetes Services are abstractions (configurations) that allow the pod to use the network
to communicate safely (either internal cluster communication or external network commu-
nication). Each pod bounds with its respective Kubernetes service that is responsible for
forwarding any traffic to the pod. The service discovers the pod’s IP address upon creation
(or change) and exposes a permanent address (user-defined in the Kubernetes Services
YAML configuration) and a port so that other services can communicate with it.

The Kubernetes Services are network configurations and not service instances. They
offer an address in order for a request to be forwarded to their respective pod (microservice).
Each Kubernetes service is assigned a unique IP address (clusterIP). This address is tied
to the lifespan of the service and will not change while the service is alive. Kubernetes
Services act as load balancers for oncoming traffic if multiple pod instances are attached to
the service. If there is a replica set of pods, Kubernetes Services will choose the optimal pod
to forward each request. In this work, we assume that Kubernetes Services will choose to
forward the requests to a destination pod deployed in the same node as the pod issuing the
request (if such a pod exists).

Figure 1 shows an example application deployed in nodes A and B. The blue box
inside each node represents the kube-proxy component that contains the configurations of
the Kubernetes Services (Service A, Service B, Service C) and has access to all Kubernetes
Services communication information (addresses). The Service C pod (instance of Service C)
delivers the request to Kubernetes Service A, which then forwards the request to the Service
A pod (optimal pod), located in the same node as Service C and not to the Service A pod in
node B. Gray lines in the figure represent ingress traffic, while blue lines represent egress
traffic. In this work, if one of the destination pod instances is located in the same node as the
source pod, the traffic between these pods is considered as ingress traffic (in-node traffic).

Figure 1. Traffic between pods.

3.2. Service Mesh and Service-Oriented Architectures

Microservices in Kubernetes must be configured to discover where other microservices
are deployed. The developers of the service-oriented architecture must implement additional
logic to handle communication, security configuration, and fail logic. A service mesh [10] is
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a dedicated infrastructure layer for applications to add capabilities for observability, traffic
management, and secure communication. The control plane of the service mesh injects a sidecar
proxy service as a third-party application, which handles all the logic mentioned above.

Figure 2 illustrates the architecture of a pod with service mesh. Without the service
mesh, the developer must implement (in addition to the microservice logic) a communication
configuration, security configuration and fail logic, and metrics, as shown in the middle
figure; this logic is packed within a sidecar proxy (figure in the middle), and it is automatically
configured and deployed within the Envoy sidecar proxy as illustrated in the figure on the right.

Figure 2. Pod architecture.

Istio [28] is an open-source implementation of a service mesh, and Istio is the control
plane of Istio. Istio automatically detects new services and endpoints in the cluster and
deploys an Envoy sidecar proxy service in each newly created pod. Istio also manages all the
certificates and configures secure TLS communication between the services. Finally, Istio
collects telemetry data and exports metrics from each pod, which can then be acquired by
a monitoring server, like Prometheus [29]. Many services do not have native Prometheus
support, so an extra component, called an exporter, is deployed to read the metrics from the
service, transform them into a compatible format, and expose the endpoint so Prometheus
can pull these metrics. In addition, Kiali [30] is a management console for Istio and provides
a powerful way to visualize the topology of the service mesh by creating the Kiali graph,
which displays the services’ network communication protocol, their traffic rates, and the
latency between them. Kiali is deployed as a service, and it offers an API through which
the mesh information and the Kiali graph can be obtained.

3.3. Kubernetes Cluster

The Kubernetes cluster in Figure 3 is deployed in the Google Cloud Platform (GCP).
Details on the customization of the Kubernetes cluster can be found in [31]. Istio is randomly
deployed in one node and configured to communicate with the service mesh created by
the Envoy sidecar proxies to log all network traffic on the cluster. A Prometheus node
exporter is deployed in every node and is responsible for exporting node metrics so that
the Prometheus server can pull and store these metrics in real time. The Prometheus server
is deployed randomly among the available nodes (based on the scheduler’s decision). The
Kiali service is also randomly deployed among the available nodes and is configured to
pull Istio’s logged network traffic through the Prometheus server.

Each Kubernetes node can host a finite number of pods (microservices), depending
on the available node resources. Each microservice has a respective associate Kubernetes
service responsible for all microservice communication. Suppose a microservice is deployed
as a replica set (i.e., there will be more than one instance of the microservice in separate
pods). In that case, the associate Kubernetes service is responsible for forwarding the
requests between the instances, as mentioned in Section 3.1. All the traffic within the pods
is forwarded through the injected Envoy sidecar proxies. Envoy proxies are responsible
for receiving incoming and outgoing requests to the pod’s microservice. If the request is
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incoming, the proxy forwards it to the microservice through the respective Kubernetes
service. If the request is outgoing, it is sent to the targeted pod so it can be processed
from that pod’s Envoy proxy. Istio monitors the service mesh, which is the communication
between the Envoy sidecar proxies. Every pod contains exactly one microservice, described
as a Kubernetes deployment (configured in a YAML file).

Figure 3. Kubernetes cluster deployed in the Google Cloud Platform.

4. Fuzzy Microservices Placement

The output of hard clustering algorithms is a partition of the dataset where each
element belongs to exactly one cluster. Fuzzy (or soft) clustering computes the probability
of each element belonging to a cluster [7]. For example, fuzzy C-Means (FCM) [32] is a
fuzzy extension of the standard K-means algorithm. Modularity optimization [33] detects
node clusters (modules) in graphs based on modularity. Modularity is defined as the
difference between the probability of two nodes of a graph belonging to a partition and the
probability of two random nodes belonging to the same partition. It measures the quality
of a module as the density of the connections within a module. The modularity score of a
node may increase (or decrease) by including one of its neighbors in its community. The
Louvain algorithm [34] is a popular implementation for modularity optimization. It is
widely used in community detection in large networks. Its application in microservices
placement has not been investigated in the literature. Perhaps this is due to the following
two reasons: first, it is inefficient for large graphs (i.e., modularity optimization is NP-hard)
and, second, it cannot detect small communities (e.g., graph partitions with only a few
nodes). In regards to complexity, several polynomial time approximations to the problem
of modularity optimization are known to exist [35]; in regards to the second issue, fuzzy
approaches seem to be more effective.
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4.1. ModSoft Algorithm

Modularity optimization produces a hard clustering solution. Soft modularity optimiza-
tion [36,37] produces fuzzy partitions by calculating a membership matrix p ∈ Rn×K, where
pik ≥ 0 is the degree of membership of node i ∈ V to the k-th cluster. V is the set of graph nodes,
and K ∈ [1, K] is the maximum number of clusters. ModSoft [38] is an efficient approximate
solution to the soft modularity problem. ModSoft introduces a membership matrix p ∈ Rn×n

which is independent of the number of clusters K (i.e., the number of clusters need not be
known in advance). Node memberships to a cluster depend on its neighbors and do not
require the processing of the entire graph. The worst case complexity of ModSoft is O(n2),
where n is the number of nodes. Most nodes produce zero membership probabilities which
facilitate graph storage, detection, and processing of graph partitions.

Algorithm 1 is an adaptation (for microservices placement) of the reference implemen-
tation of ModSoft [8]. W is the adjacency matrix of the graph (Wi,j is the weight of edge
(i, j)), wi,j = ∑j∈V Wi,j is the weighted degree of a node, w = ∑i∈V wi is the total weight
of the graph. The probability that an edge exists is wi · wj/w. The algorithm works in
three stages:

Initialization of membership matrix (lines 4–9) The membership matrix p (n× n matrix) is
initialized to the one’s matrix (I) and the weighted average vector p is initialized to the weighted
degree of each node (i.e., sum of the weights of the node’s edges). Each row of the matrix
represents the probability distribution for a node to belong to a partition, which sums to 1.

Calculation of membership matrix (lines 10–15) The membership matrix p is updated at
each step of an iterative process. At the end of each iteration, the modularity is calculated,
evaluating the optimality of the partitions. This process is repeated until the increase in
modularity falls below a given threshold MT, which we set at 0.01. The final result is the
membership matrix. Each cell of the membership matrix represents the probability of the
row node being in the same partition as the column–row node (which is a value in [0, 1]).
The sum of the probabilities of each row equals 1. During each iteration, a gradient descent
step is performed as an update rule for the membership of each node. The gradient descent
step is calculated locally (i.e., only the neighbors of each node are used to update the node’s
membership) and aims to maximize the modularity. After the gradient descent step, a
projection is performed and the (average) vector p is updated. The update_membership step
includes both the membership update function and the projection step and it returns the
updated membership matrix p.

Partitioning (lines 16–26) The final step iterates over the final membership matrix p
to calculate the microservices partitions. As mentioned before, the membership matrix
rows and columns represent the application services, and the value of each cell is a number
between 0 and 1 which represents the probability of the row service being in the same
partition as the column service. We create a partition for each row service by using a
predefined threshold t, which we set at 0.1. We place each column service whose value is
over our threshold in the partition of the row service. Finally, the partitions are sorted by
the number of services they contain. The algorithm produces the fuzzy partitions P. The
fuzziness parameter t controls the fuzziness of the produced partitions. A higher value of
t results in less-fuzzy partitions and the reverse (i.e., a high value might produce fewer
fuzzy partitions).

ModSoft can be applied directly to the application’s graph. It relaxes the requirement
of only one instance per service in Kubernetes nodes and allows more than one replica of
each service to be placed in different clusters. Detail on the implementation of the ModSoft
algorithm for microservice placement can be found in [31].
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Algorithm 1 Fuzzy Partitioning Algorithm

1: procedure MODSOFT(Graph, P partitions)
2: Input: Services Graph (G), Graph nodes (V), Application Services (S), Threshold

(T), Modularity Threshold (MT), Fuzzyness Parameter (t)
3: Output: Microservices Partitions (P)

▷ Initialize membership matrix p
4: Calculate the total weight of graph G, total_weight
5: Calculate the weighted degree of each node N, degreenode
6: i← 1
7: for node i ∈ V do
8: pi ← 1

▷ Update membership matrix p
9: i← 1

10: repeat
11: i← i + 1
12: p← update_membership(p, t)
13: modularityi ← modularity(p)
14: until modularityi −modularityi−1 ≤MT

▷ Calculate services partitions P
15: i← 1
16: for service(S) i ∈ p do
17: Pk ← {Si}
18: for service j in pi do
19: if pij > T then
20: Pk ← Pk

⋃{Sj}
21: Sort P by partitions with most services
22: return P

4.2. ModSoft-HP Scheduler

In correspondence with the K8s scheduling problem, graph nodes are mapped to
services, and graph partitions are mapped to K8s nodes. ModSoft produces partitions
containing microservices. If the number of partitions is higher than the number of available
nodes, heuristic packing (HP) [9] is applied to the output of ModSoft to determine if there is
a placement solution with fewer nodes and to ensure that the services are optimally placed
in the available cluster nodes using traffic rates, CPU utilization, and RAM utilization. The
HP algorithm requires the fuzzy partitions, the node- and pod-requested resources, the list
of services, and the list of affinities as inputs. It produces a cost-optimized solution (i.e., a
placement solution that ensures that the least amount of resources will be allocated).

ModSoft-HP clustering decides where application services must be placed. The
ModSoft-HP Scheduler invokes ModSoft-HP clustering to instruct the scheduler where
(i.e., on which node) to place each service. The default Kubernetes Scheduler runs first
to produce an initial placement. The initial placement is updated based on the results
of an algorithm that partitions the graph of an application into clusters. The graph clus-
tering algorithm runs either inside the cluster or remotely on a server (so that it does
not waste cluster resources). The scheduler will automatically update the YAML of each
service (deployment) to migrate the service to the new host. ModSoft-HP might dictate
the replication of service in more than one pod. When a service is to migrate to a new
node, Kubernetes will wait until the status of the new node turns to RUNNING before the
service is terminated in the old node (so no downtime is observed until the new placement
takes effect).

Algorithm 2 outlines this process. Details can be found in [39]. Line 4 will obtain the
Application Default Credentials (ADCs). ADC is a strategy used by Google authentication
libraries to automatically find credentials based on the application environment. Line 5
will get the cluster configuration from GCP using the project name, cluster name, and
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cluster zone as input. Lines 6 will generate a kubectl configuration from the authentication
of the cluster. Line 7 will create a cluster instance to run kubectl requests to the cluster and
make changes in the deployment. Line 8 will get the initial placement using the default
Kubernetes Scheduler. The name of the clustering algorithm to apply on the application’s
graph is selected in Line 9 and the algorithm is executed to produce the desired placement
of pods to nodes (finalPlacement) in the cluster. If a service was on a different host in the
initial placement, it is migrated to the new host. To migrate the service, the YAML file
of the deployment is updated using node affinity, which constrains which nodes a pod
can be scheduled on based on node labels. Additional detail about Kubernetes Scheduler
customization can be found in [1–3].

Algorithm 2 ModSoft-HP Kubernetes Scheduler

1: procedure MODSOFT-HP-SCHEDULER(Graph, P partitions)
2: Input: Project name, Cluster name, Cluster zone, Algorithm
3: Output: Placement of Pods to nodes (YAML file)

▷ Authenticate and initialize cluster
4: Get the Application’s Default Credentials (ADC)
5: Get the cluster configuration from GCP
6: Create kubectl configuration
7: Create cluster instance

▷ Apply service placement logic
8: initialPlacement = getInitialPlacement()
9: SelectedAlgorithm = chooseAlgorithm(Algorithm)

10: finalPlacement = executeAlgorithm(SelectedAlgorithm)
11: for service ∈ finalPlacement do
12: if initialPlacement(service) ̸= finalPlacement(service) then
13: updateDeploymentYaml(service)

5. Evaluation and Testbed

The Kubernetes cluster is configured (Table 2) in the europe-west3-b region of GCP
using the latest stable version of GKE (1.21.11). Horizontal pod autoscaling [40], along with
all load balancing features of the GKE are enabled. This means that once the ModSoft-HP
scheduling is applied, resources available to VMs will adapt to workload variations by
adding new pods. Anthos service mesh [41] is disabled (at the time of the implementation
it is in the beta phase). We chose to implement our service mesh using Istio. The Google
Cloud Managed Service for Prometheus [42] is also disabled (it was in the beta phase on
the GKE). We choose to apply the Prometheus tool in our cluster, which is stable and very
well-documented.

Table 2. Cluster configuration.

Cluster Attributes Configuration

Location Type Zonal
Zone europe-west3-b
Release Channel Regular
Cluster Version 1.21.11-gke.1100
Horizontal Autoscaling Enabled
Vertical Autoscaling Disabled
HTTP Load Balancing Enabled
Managed Service for Prometheus Disabled
Anthos Service Mesh Disabled

A node pool is configured for our cluster as shown in Table 3. The node pool contains
all the specifications for the VMs that will be spawned as cluster nodes. The selected
machines are of e2-standard-2 type, each with two vCPUs, 8 GB of RAM, and a standard
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boot disk with 40 GB available for storage. The VMs are located in the same zone as the
cluster, and autoscaling is enabled. The OS of these machines is a Linux-based container-
optimized OS. In [5], we showed that the benchmarking applications, deployed along with
Istio, Kiali, and Prometheus, require at least two host machines (nodes) to run efficiently.
For our experiments, we initialize four nodes for our clusters.

Table 3. Node Pool configuration.

Node Pool Attributes Configuration

Machine Type e2-standard-2
vCPU 2
RAM 8 GB
Zone europe-west3-b
Image Container-Optimized OS with Container
Autoscaling Enabled
Boot Disk Standard/40 GB

5.1. Affinity Metrics

Two affinity metrics are used to evaluate the communication between services and
will be added as weights to the application graph. Choosing one or the other has a different
impact on the estimation of performance and costs.

The requests-per-second (RPS) metric measures the requests forwarded from one service
to another per second. RPS measurements are acquired from the Kiali API in JSON format.
Kiali calculates RPS using Equation (1). Si is the source service, Sj is the destination service,
and x is the total time of measurement in seconds. For TCP connections, Kiali reports only
the size of messages sent or received (in bytes). To convert it to RPS, the size measures are
combined with metrics from Istio and Prometheus.

RPSSi→Sj =
Sum of Requests from Si to Sj in x seconds

x seconds
(1)

The weighted bidirectional affinity (WBA) [5] also exploits the size of the exchanged mes-
sages (in bytes) between two microservices as well as the total number of these messages.
It is calculated according to Equation (2). Aa,b is the affinity metric between service a and
service b, m is the total number of messages exchanged, ma,b is the messages exchanged be-
tween a and b, d is the total amount of data exchanged in bytes, da,b is the amount of data ex-
changed in bytes between service a and service b, and w is a weight ({w ∈ R | 0 ≤ w ≤ 1})
that denotes the significance of each affinity components (i.e., size and messages count). In
this work, w = 0.5 (i.e., the two components are equally significant).

Aa,b = w ·
ma,b

m
+ (1− w) ·

da,b

d
(2)

5.2. Infrastructure Hosting Cost

The application hosting cost on the Google Cloud Platform (GCP) is calculated accord-
ing to GCP pricing documentation [43]. GCP charges its customers for the CPU and RAM
allocation (the prices vary per region). Ingress network traffic is not charged, while egress
traffic is charged based on the amount of data exchanged between nodes. Allocated storage
space is also charged by GCP, but in our work, the volume of storage space used by the
clusters is relatively low; hence, the cost of storage is negligible. Table 4 shows the price
per resource for the machine type used in this work.
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Table 4. GCP pricing for e2-standard machine type.

Resource Cost (USD)

Predefined vCPU $0.028103/vCPU/h
Predefined RAM $0.003766/GB/h
Ingress Traffic $0
Egress Traffic $0.01/GB

The total CPU and RAM charges for each machine are calculated according to Equation (3)
and Equation (4), respectively, based on the resources allocated per hour. The CPU metric
represents the virtual cores committed, while the RAM metric is the amount (in GB) of
RAM allocated.

CostCPU = 2vCPU× vCPUcost × hours

= 2× 0.028103× hours

= 0.056206× hours (3)

CostRAM = 8GB× RAMcost × hours

= 8× 0.003766× hours

= 0.030128× hours (4)

The network traffic is charged for each cluster, based on the amount of traffic exchanged
between nodes (i.e., egress traffic). It can be calculated by summing the requested bytes
between services placed in different nodes. GCP charges for the size of messages in requests
but not in responses. The location of each node is also a key factor in calculating egress
traffic cost, but in our work, the nodes are all based on europe-west3, so all egress traffic
(according to GCP) is charged the same. If i and j services in a node N, t(i → j), the
requested bytes between services i, j, and te the egress traffic, the network cost function can
be expressed as:

CostTraffic =
N

∑
i

N

∑
j

te(i→ j)× costegress

=
N

∑
i

N

∑
j

te(i→ j)× 0.01 (5)

where

te(i→ j) =

{
t(i→ j), if i, j in different nodes
0, otherwise

(6)

The total cluster cost function for n nodes can be calculated as

TotalCost = TotalCostCPU + TotalCostRAM + TotalCostTraffic

= n× (CostCPU + CostRAM) + TotalCostTraffic

= n× (0.086334× hours) + 0.01×GBegress (7)

The total cluster cost for the initial placement, which utilizes four nodes, is:

TotalCost = 0.345336× hours + 0.01×GBegress (8)

5.3. Benchmark Applications

All service placement methods are evaluated on two benchmarking applications.
Google Online Boutique eShop [11] is a cloud-native microservices demo application

that Google uses to demonstrate the use of technologies like Kubernetes, Istio, and the
gRPC protocol. It is a Web-based e-commerce application consisting of 11 microservices
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(12 with the Redis cache), where users can perform multiple e-commerce-related actions.
The application is stable, and it uses five different coding languages and two of the leading
service-to-service communication protocols (HTTP and gRPC), and it is implemented and
optimized for use with the Google Kubernetes Engine as well as Istio. Figure 4 illustrates
the architecture of the eShop application.

• Frontend Service (Go): Exposes an HTTP server that serves the website to the Web and
generates session IDs for all users automatically.

• Cart Service (C#): Stores and retrieves the items users place on their shopping cart in a
Redis cache database.

• Product Catalog Service (Go): Provides the list of products (read from a JSON file) and
the ability to search and get individual products.

• Currency Service (node.js): Fetches real currency values from the European Central
Bank and converts one money amount to another currency. It is the highest QPS (i.e.,
queries per second) service.

• Payment Service (node.js): Charges the user-provided credit card info (mock) with the
payment amount and returns a transaction ID.

• Shipping Service (Go): Estimates shipping cost based on the shopping cart and ships
items to the given address (mock).

• Email Service (Python): Sends user an order confirmation email (mock).
• Checkout Service (Go): Retrieves the user cart, prepares the order, and orchestrates the

payment, shipping, and email notification.
• Recommendation Service (Python): Recommends products based on what the user placed

in its cart.
• Ad Service (Java): Provides text ads based on given context words.
• Load Generator Service (Python/ Locust): Simulates application traffic by continuously

sending requests imitating realistic user shopping flows to the frontend service.

iXen IoT Platform. iXen [12] is a prototype service architecture for the IoT. It supports
the processing of information acquired by a network of devices. It has been developed
as a microservice-based architecture with portable, independent microservices. iXen is a
three-tier architecture design model, with each tier (layer) implementing unique logic for its
respective targeted user group. The first-tier user group includes the infrastructure owners
and the system administrators, which can install and connect devices in the infrastructure.
The second-tier user group is the application developers, which can create subscriptions to
sensors and create applications with these sensors. The final user group includes customers
who subscribe to developer-created applications. Figure 5 illustrates iXen’s architecture.

• Web Service: Provides a Web interface so the users can use the application
• Keyrock Service: Provides a REST API so that users can register, provides policies about

user rights, and uses OAuth2 tokens to authorize users.
• AuthZForce Service: Describes respective user access rights using XACML.
• PEP Proxy Services: Provides a security mechanism for services offering a public inter-

face. Every request to these public services is being forwarded through its respective
PEP proxy and only requests from authorized users with access to the service are
being forwarded to the service.

• Querying Sensors Service: Converts a custom query syntax to Mongo queries on the
Mongo DB in order to search for a device based on location, model type, type of
measurement, or the unit of the measurement.

• Orion Context Broker Service: Publish/Subscribe service that receives measurements
from devices and makes this information available to other services and users based
on their subscriptions.

• Cygnus Service: Accepts data streams in NGSI compliant and can store them on
multiple types of databases.

• Comet Service: Reads Orion entities stored in a MongoDB and manages historical
sensor data.
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• Mashup Service: Responsible for creating developers’ applications with the aid of
Node-Red, an open-source flow-based programming tool for the IoT.

• Load Generator Service: Written in Python for Locust [44], it continuously applies
distributed requests on the application’s endpoints, simulating realistic user traffic
and IoT devices’ measurements/updates.

Figure 4. eShop architecture.

Figure 5. iXen Architecture.
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5.4. Benchmark Application Stressing

For the stress testing of the applications, the load generator service is configured to
issue requests (to the application endpoints of both applications) that simulate a load of
concurrent users. These requests generate a traffic load through which we calculate the
RPS and WBA affinity metrics to create the application graph.

For Google’s online boutique eShop, the integrated load generator service is configured
to simulate 10 users. We modified this service to simulate the load from 300 concurrent users
using 57,706 requests with a (spawn) rate around 35 RPS. Table 5 shows the distribution of
these requests by type.

Table 5. Stress-testing requests for the eShop application.

Request Request Type Number of Requests Distribution

Visit homepage GET 2498 4%
Show items in cart GET 7616 13%
Add item to cart POST 7632 13%
Submit an order POST 2538 4%
Obtain a product GET 32,396 56%
Change currency POST 2514 9%

For stress testing the iXen application, the load generator service simulates 100 users
applying 5520 requests with a rate of around 10 RPS. Table 6 shows the distribution of
requests by type. Each simulated user initially logs into the application and obtains a
cookie which we store and use for authentication in all requests. We have pre-configured
the sensors and mashup applications to which developers and users can subscribe. In
addition to simulating user-performed actions, we simulate a sensor sending random
measurements.

Table 6. Stress-testing requests for iXen.

Request Request Type Number of Requests Distribution

Visit Homepage GET 957 17%
Search Available Sensors POST 632 11%
Subscribe Developer to Sensor POST 545 10%
Search Applications POST 639 12%
Search Application Subscriptions GET 654 12%
Search Subscriptions to Sensors GET 580 11%
Send Measurement to Sensor POST 604 11%
Subscribe to Application POST 264 5%
Deploy a Mashup Application POST 91 2%
Access Mashup Application GET 545 10%
Login into the App POST 100 2%

5.5. Application Graph

Figure 6 illustrates the microservices graph of the eShop application. It is a directed
acyclic graph (DAG) constructed based on information provided by the Kiali API and
performance metrics extracted from the Prometheus server. It represents the placement of
the default Kubernetes Scheduler on four nodes (i.e., pods with the same color are placed
in the same node). HTTP and gRPC traffic between pods is measured in RPS, while TCP
traffic is represented as measured in BPS.
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Figure 6. Kiali (microservices) graph of eShop application.

5.6. Kubernetes Testbed

We tested four different placement strategies. The first is placement by the default
Kubernetes Scheduler of GKE. Each time an application is deployed in Kubernetes (without
specifying the pod relations or the nodes that each pod must be placed in) the Kubernetes
Scheduler produces a placement, which mainly depends on available node resources and
the resources required by the pods. Second is placement using the BKM-HP method [5].
The method applies Bisecting K-Means hard clustering followed by heuristic packing (HP).
The method partitions the application graph into K = 4 clusters and applies HP to find
a placement with fewer nodes. The third method is Heuristic First Fit (HFF) [6], which
minimizes inter-node traffic (i.e., egress network traffic) and reserves as few nodes as
possible in one step. The last is ModSoft-HP, the proposed fuzzy service placement produced
by ModSoft fuzzy clustering followed by HP.

Figure 7 illustrates the placement of services of the eShop application by the default
Kubernetes Scheduler on four nodes. Blue lines denote egress service-to-service traffic,
while gray lines denote ingress traffic. Figure 8 illustrates the placement results of the
fuzzy method on three nodes and the horizontal pod autoscaler (HPA) is disabled. The
fuzzy method reduced the number of nodes to three and created a replica of the frontend
service in a different node. This service communicates with seven other services and by
creating a replica almost all of its communication converts to ingress. The productcatalog
service, which receives a lot of requests, is replicated in all three nodes to reduce the load of
each replica and to achieve faster response times (i.e., if there is a destination pod instance
running on the same node as the source pod, the request will be served on the same node).

Figure 9 illustrates the placement results of the fuzzy method with the horizontal pod
autoscaler (HPA) enabled. ModSoft-HP retained the number of nodes as three. Compared
to Figure 8, both the upper-left and bottom nodes feature two additional pods installed. The
upper-left and bottom nodes have copies of the recommendation and currency services (pods).
Also, copies of the frontend and recommendation services are placed in the bottom node.
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Figure 7. Microservices placement by the default Kubernetes Scheduler (eShop).

Figure 8. Fuzzy microservices placement with HPA disabled (eShop).



Electronics 2024, 13, 65 18 of 25

Figure 9. Fuzzy microservices placement with HPA enabled (eShop).

6. Experiments

The purpose of the following set of experiments is twofold: The first objective is to
produce a fuzzy placement that reduces the total hosting cost of the infrastructure. This is
achieved by reducing the number of nodes (VMs) required to host the applications and
by reducing egress traffic. The second objective is to optimize the applications’ response
times. In the following, the results of our fuzzy service placement strategy (ModSoft-HP) are
compared against similar results obtained by placement with the Kubernetes Scheduler and
the BKM-HP [5] and HFF [6] hard clustering methods. We report results for the number of
hosts used, the egress traffic, the latency (i.e., average response time over many thousands
of service requests), and the monthly infrastructure cost for each method.

Service placement is determined based on the partitioning of the services graph. Graph
properties are measured based on pod resource metrics and affinity metrics. As discussed in
Section 5.1, WBA and RPS are alternative ways to calculate affinities between communicating
services and adding weights to the edges of the services graph. As a result, graph clustering
(and consequently service placement) depends on the selection of affinity metric. To study the
impact of relevance on service placement, the entire set of experiments is repeated for both
WBA and RPS. The experiments reveal that WBA offers a more realistic measure of the actual
communication load and outperforms placement determined based on RPS in all cases.

Similar to fuzzy clustering, the HPA allows pods to be replicated (on the same or
different nodes) if stressed at runtime. To study the impact of the HPA, the entire set of
experiments is repeated once with the HPA disabled and once more with the HPA enabled.
The experiments reveal that ModSoft-HP achieves the best performance when the HPA is
enabled (i.e., outperforms all hard clustering solutions with the HPA enabled as well). Also,
ModSoft-HP outperforms the K8s Scheduler even with the HPA enabled. Fuzzy clustering
offers a better initial service placement solution that the HPA will adapt to workload needs.
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6.1. Execution Time

The execution time is measured after the graph is created and the affinity metrics
are produced. It stands for the time a placement method takes to execute and produce a
placement solution. All methods run on a desktop machine with 3 GHz processor power,
6 cores, and 16 GB RAM. Figures 10 and 11 present the execution time of each method. The
execution time for the fuzzy placement is greater than the time of BKM-HP or HFF. The
fuzzy strategy produces more partitions and more services, which are given as input to
the HP algorithm. All methods have acceptable execution times (i.e., a few milliseconds).
These times are added to the time of the Kubernetes Scheduler.

Figure 10. Service placement execution time for the eShop application.

Figure 11. Service placement execution time for the iXen application.

6.2. Number of Hosts

According to Equation (7), the total cost of the infrastructure depends mainly on the
number of utilized nodes (n). Figures 12 and 13 illustrate the number of hosts utilized for
each affinity and from each generated placement. In general, the ModSoft-HP placement
might require more hosts than other clustering solutions because the fuzzy placement will
always produce more pods. For eShop (with fewer services), ModSoft-HP reduced the
nodes to three. For iXen, all placement solutions will use four nodes when the HPA is
enabled. However, the HPA does not utilize more nodes (i.e., the additional pods still fit in
the same number of nodes).
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Figure 12. Host utilization by eShop application.

Figure 13. Host utilization by iXen application.

6.3. Egress Traffic

The message size of a request between two pods is retrieved from Prometheus. Accord-
ing to Google [43], to estimate the egress traffic, only the requested message size between
services on different nodes is considered. Figures 14 and 15 illustrate the requested MBs
between services in different nodes per hour. The fuzzy placement policy exhibited a
significant reduction (i.e., up to 1/10th) in the egress traffic per hour for both applications
compared to the default Kubernetes Scheduler. The selection of the affinity metric (i.e., RPS,
WBA), the same as that for the HPA, had no significant impact on egress traffic.

Figure 14. Hourly requested MBs by the eShop application.
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Figure 15. Hourly requested MBs by the iXen application.

6.4. Infrastructure Hosting Cost

The monthly cost for each examined placement is calculated according to Equation (7).
The cost depends mainly on the number of pods (VMs) used to host each placement. The
egress traffic (in GBs) also affects the total cost but not as much as the number of pods.
Figures 16 and 17 illustrate the projected monthly cost for each placement using the two
affinity metrics. For eShop, the difference between the BKM-HP and the ModSoft-HP
placement is negligible because both placements utilize the same number of hosts. For
eShop, all clustering methods managed to reduce the cost by at least 25% compared to
placement with the default Kubernetes Scheduler. For iXen, no cost difference is noticeable
because iXen has more microservices than eShop and their placement requires more nodes.
The selection of the affinity metric or the HPA had no significant impact on cost.

Figure 16. Estimated monthly infrastructure hosting cost for the eShop application.

Figure 17. Estimated monthly infrastructure hosting cost for the iXen application.
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6.5. Response Time

ModSoft-HP with the HPA enabled and clustering with WBA has a noticeable impact
on the response time. Figures 18 and 19 report average response times (over all requests)
during the stress testing. Some high-traffic services run in more than one instance and
sometimes within the same pod; hence, the requests are processed faster, while each
instance’s load is reduced. For example, the frontend service, which receives most of the
requests for each application, is replicated in more than one instance. The requests are
balanced between these instances and are forwarded faster to their respective targets. The
speed improvement with ModSoft-HP is consistently above 8% for clustering with WBA
and the HPA enabled. The HPA, if enabled, improved the latency of all methods. If disabled,
the speed improvement with ModSoft-HP reaches 17% for the iXen application.

Figure 18. Average response time of service request for the eShop application.

Figure 19. Average response time of service request for the iXen application.

7. Conclusions and Future Work

We investigate the problem of the optimal placement of SOA applications in Kuber-
netes. The decision of which services (pods) should be grouped together and run in the
same node has a certain impact on the performance and hosting cost of the application.
The services must be placed in nodes (VMs) in a way that minimizes a cost objective (i.e.,
latency, number of hosts, infrastructure hosting cost, egress traffic) or all of them combined.

The problem of service placement is formulated as a graph clustering (or graph partition-
ing) one. Application services form directed acyclic graphs (DAGs) with nodes representing
services and edges representing communicating microservices. Both nodes and edges are la-
beled by the resources consumed by the services (i.e., mainly CPU and RAM for microservices)
and by the affinities between them (i.e., network traffic). Graph partitioning suggests a mini-
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mum set of weakly connected clusters of nodes each comprising services linked heavily with
each other. This guides the placement of service clusters to Kubernetes nodes. ModSoft-HP is a
fuzzy clustering method that has been embedded into a custom Kubernetes Scheduler referred
to (in this work) as the ModSoft-HP Scheduler. The ModSoft-HP Scheduler allows multiple
instances of an application’s microservices to run on different nodes.

Weighted bidirectional affinity (WBA) and requests per second (RPS) are alternative
ways to calculate affinities between communicating services and adding weights to the
edges of the services graph. As a result, graph clustering (and consequently service
placement) depends on the selection of the affinity metric. The experiments reveal that
WBA offers a more realistic measure of the actual communication load and outperforms
placement determined based on RPS in all cases. This is reasonable since WBA affinity
exploits the size of the messages in partitioning the graph. The experimental results are
obtained on two benchmark applications, Google’s Online Boutique eShop and the iXen
application for IoT data processing. ModSoft-HP with the HPA enabled and clustering with
WBA has a noticeable impact on the response time. It achieves the best performance without
impacting operation costs or other performance metrics. The egress traffic reduction
is impressive, reaching 90% in some cases compared to deployments with the default
Kubernetes Scheduler.

Although the reduction of egress traffic does not affect the monetary cost, it is expected
to lead to a significant cost reduction in a heterogeneous environment (with Kubernetes
nodes deployed in different regions). ModSoft-HP can prove even more effective in fog
and edge cloud environments, where latency between services is significant (left as future
work). In a fog-edge environment, the egress traffic reduction is expected to result in a
significant reduction in hosting cost and also in latency.

Author Contributions: Conceptualization, E.G.M.P., A.A. and K.T.; Methodology, E.G.M.P., V.S.,
P.E., A.A. and K.T.; Software, V.S., P.E., A.A. and K.T.; Validation, E.G.M.P., V.S., P.E., A.A. and
K.T.; Formal analysis, E.G.M.P., V.S., A.A. and K.T.; Investigation, E.G.M.P., V.S., P.E., A.A. and K.T.;
Resources, V.S., A.A. and K.T.; Data curation, V.S., P.E., A.A. and K.T.; Writing—original draft, V.S., P.E.,
A.A. and K.T.; Writing—review & editing, E.G.M.P.; Supervision, E.G.M.P.; Project administration,
E.G.M.P.; Funding acquisition, E.G.M.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Derived data supporting the findings of this study are available from
the corresponding author on request.

Acknowledgments: We are grateful to Google for the Google Cloud Platform Education Grants program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. GCP. Kubernetes Scheduler, 2022. Kubernetes Documentation. Available online: https://kubernetes.io/docs/concepts/

scheduling-eviction/kube-scheduler/ (accessed on 7 December 2023).
2. Carrión, C. Kubernetes Scheduling: Taxonomy, Ongoing Issues and Challenges. ACM Comput. Surv. 2022, 55, 1–37. [CrossRef]
3. Rejiba, Z.; Chamanara, J. Custom Scheduling in Kubernetes: A Survey on Common Problems and Solution Approaches. ACM

Comput. Surv. 2022, 55, 1–37. [CrossRef]
4. Cardellini, V.; Presti, F.L.; Nardelli, M.; Rossi, F. Self-adaptive Container Deployment in the Fog: A Survey. In Proceedings of the

International Symposium on Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2019), Munich, Germany, 10 September
2019; pp. 77–102. Available online: https://link.springer.com/chapter/10.1007/978-3-030-58628-7_6 (accessed on 7 December
2023).

5. Aznavouridis, A.; Tsakos, K.; Petrakis, E.G. Micro-Service Placement Policies for Cost Optimization in Kubernetes. In Proceedings
of the Advanced Information Networking and Applications (AINA 2022), Sydney, NSW, Australia, 13–15 April 2022; pp. 409–420.
Available online: https://link.springer.com/chapter/10.1007/978-3-030-99587-4_35#citeas (accessed on 7 December 2023).

6. Sampaio, A.R.; Rubin, J.; Beschastnikh, I.; Rosa, N.S. Improving Microservice-Based Applications with Runtime Placement
Adaptation. J. Internet Serv. Appl. 2019, 10, 4. [CrossRef]

7. Dixit, S. Fuzzy Clustering. In NCSS Statistical Software; SCRIBD: San Francisco, CA, USA, 2022; Chapter 448. Available online:
https://www.scribd.com/document/437613492/Fuzzy-Clustering (accessed on 7 December 2023).

https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
http://doi.org/10.1145/3539606
http://dx.doi.org/10.1145/3544788
https://link.springer.com/chapter/10.1007/978-3-030-58628-7_6
https://link.springer.com/chapter/10.1007/978-3-030-99587-4_35#citeas
http://dx.doi.org/10.1186/s13174-019-0104-0
https://www.scribd.com/document/437613492/Fuzzy-Clustering


Electronics 2024, 13, 65 24 of 25

8. Hollocou, A. ModSoft Repository, 2022. Available online: https://github.com/ahollocou/modsoft (accessed on 7 December 2023).
9. Lewis, R. A General-Purpose Hill-Climbing Method for Order Independent Minimum Grouping Problems: A Case Study in

Graph Colouring and Bin Packing. Comput. Oper. Res. 2009, 36, 2295–2310. [CrossRef]
10. Platform9. Kubernetes Service Mesh: A Comparison of Istio, Linkerd, and Consul; 2021. Available online: https://platform9.com/

blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/ (accessed on 7 December 2023).
11. Google. e-Shop: Online Boutique, 2022. Available online: https://github.com/GoogleCloudPlatform/microservices-demo

(accessed on 7 December 2023).
12. Petrakis, E.; Koundourakis, X. iXen: Secure Service Oriented Architecture and Context Information Management in the Cloud. J.

Ubiquitous Syst. Pervasive Netw. 2021, 14, 1–10. [CrossRef]
13. Hedhli, A.; Mezni, H. A Survey of Service Placement in Cloud Environments. J. Grid Comput. 2021, 19, 23. [CrossRef]
14. Sliwko, L. A Taxonomy of Schedulers—Operating Systems, Clusters and Big Data Frameworks. Glob. J. Comput. Sci. Technol. B

Cloud Distrib. 2019, 19, P03024. Available online: https://globaljournals.org/GJCST_Volume19/4-A-Taxonomy-of-Schedulers-
Operating.pdf (accessed on 7 December 2023).

15. Pallewatta, S.; Kostakos, V.; Buyya, R. Microservices-Based IoT Application Placement within Heterogeneous and Resource
Constrained Fog Computing Environments. In Proceedings of the IEEE/ACM 12th International Conference on Utility and
CloudComputing (UCC 2019), Auckland, New Zealand, 2–5 December 2019; pp. 71–81. [CrossRef]

16. Walker, A. What Is SOA? Service-Oriented Architecture Principles; 2022. Available online: https://www.guru99.com/soa-principles.
html (accessed on 7 December 2023).

17. Huang, K.; Shen, B. Service Deployment Strategies for Efficient Execution of Composite SaaS Applications on Cloud Platform. J.
Syst. Softw. 2015, 107, 127–141. [CrossRef]

18. Hu, Y.; Laat, C.; Zhao, Z. Optimizing Service Placement for Microservice Architecture in Clouds. Appl. Sci. 2019, 9, 4663.
[CrossRef]

19. Zhong, Z.; Buyya, R. A Cost-Efficient Container Orchestration Strategy in Kubernetes-Based Cloud Computing Infrastructures
with Heterogeneous Resources. ACM Trans. Internet Technol. 2020, 20, 1–24. [CrossRef]

20. Bhamare, D.; Erbad, M.S.A.; Jain, R.L.; Gupta, H.A.C. Multi-Objective Scheduling of Micro-Services for Optimal Service Function
Chains. In Proceedings of the IEEE International Conference on Communications (ICC 2017), Paris, France, 21–25 May 2017; pp. 1–6.
Available online: https://ieeexplore.ieee.org/document/7996729 (accessed on 7 December 2023).

21. Hu, Y.; Zhou, H.; Laat, C.; Zhao, Z. ECSched: Efficient Container Scheduling on Heterogeneous Clusters. In Proceedings of the
Euro-Par 2018: Parallel Processing, Turin, Italy, 27–28 August 2018; pp. 365–377. Available online: https://link.springer.com/
chapter/10.1007/978-3-319-96983-1_26 (accessed on 7 December 2023).

22. Farhadi, V.; Mehmeti, F.; He, T.; La-Porta, T.; Khamfroush, H.; Wang, S.; Chan, K.S. Service Placement and Request Scheduling
for Data-Intensive Applications in Edge Clouds. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer
Communications, Paris, France, 29 April–2 May 2019; pp. 1279–1287. Available online: https://ieeexplore.ieee.org/document/87
37368 (accessed on 7 December 2023).

23. Apat, H.K.; Sahoo, B.; Maiti, P. Service Placement in Fog Computing Environment. In Proceedings of the International
Conference on Information Technology (ICIT 2018), Bhubaneswar, India, 19–21 December 2018; pp. 272–277. Available online:
https://ieeexplore.ieee.org/document/8724192 (accessed on 7 December 2023).

24. Baldine, I.; Xin, Y.; Mandal, A.; Ruth, P.; Heerman, C.; Chase, J. ExoGENI: A Multi-Domain Infrastructure-as-a-Service Testbed.
In Proceedings of the International Conference on Testbeds and Research Infrastructures (TridentCom 2012), Thessanoliki, Greece,
11–13 June 2012; pp. 97–113. Available online: https://link.springer.com/chapter/10.1007/978-3-642-35576-9_12 (accessed on 7
December 2023).

25. InfluxDB, 2023. Influxdata Documentation. Available online: https://www.influxdata.com/ (accessed on 7 December 2023).
26. Zipkin, 2023. Available online: https://github.com/openzipkin (accessed on 7 December 2023).
27. CloudSim: A Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services; The Cloud Computing

and Distributed Systems (CLOUDS) Laboratory, University of Melbourne: Melbourne, Australia, 2023. Available online:
http://www.cloudbus.org/cloudsim/ (accessed on 7 December 2023).

28. Istio. The Istio Service Mesh, 2022. Version Istio 1.14.1. Available online: https://istio.io/latest/about/service-mesh/ (accessed
on 7 December 2023).

29. Prometheus. From Metrics to Insight, 2022. Cloud Native Computing Foundation Graduated Project. Available online:
https://prometheus.io (accessed on 7 December 2023).

30. Kiali, I. Visualizing Your Mesh, 2022. Available online: https://kiali.io/docs/architecture/architecture/ (accessed on 7
December 2023).

31. Skevakis, V. Microservice Placement Strategies in Kubernetes for Cost Optimization. Technical Report, Diploma Thesis,
School of Electrical and Computer Engineering, Technical University of Crete (TUC), Chania, Greece, 2022. Available online:
https://dias.library.tuc.gr/view/92796 (accessed on 7 December 2023).

32. Cannon, R.L.; Dave, J.V.; Bezdek, J.C. Efficient Implementation of the Fuzzy C-Means Clustering Algorithms. IEEE Trans. Pattern
Anal. Mach. Intell. 1986, 8, 248–255. [CrossRef] [PubMed]

33. Newman, M.; Girvan, M. Finding and Evaluating Community Structure in Networks. Phys. Rev. E 2004, 69, 026113. [CrossRef]
[PubMed]

https://github.com/ahollocou/modsoft
http://dx.doi.org/10.1016/j.cor.2008.09.004
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://github.com/GoogleCloudPlatform/microservices-demo
http://dx.doi.org/10.5383/JUSPN.14.02.001
http://dx.doi.org/10.1007/s10723-021-09565-z
https://globaljournals.org/GJCST_Volume19/4-A-Taxonomy-of-Schedulers-Operating.pdf
https://globaljournals.org/GJCST_Volume19/4-A-Taxonomy-of-Schedulers-Operating.pdf
http://dx.doi.org/10.1145/3344341.3368800
https://www.guru99.com/soa-principles.html
https://www.guru99.com/soa-principles.html
http://dx.doi.org/10.1016/j.jss.2015.05.050
http://dx.doi.org/10.3390/app9214663
http://dx.doi.org/10.1145/3378447
https://ieeexplore.ieee.org/document/7996729
https://link.springer.com/chapter/10.1007/978-3-319-96983-1_26
https://link.springer.com/chapter/10.1007/978-3-319-96983-1_26
https://ieeexplore.ieee.org/document/8737368
https://ieeexplore.ieee.org/document/8737368
https://ieeexplore.ieee.org/document/8724192
https://link.springer.com/chapter/10.1007/978-3-642-35576-9_12
https://www.influxdata.com/
https://github.com/openzipkin
http://www.cloudbus.org/cloudsim/
https://istio.io/latest/about/service-mesh/
https://prometheus.io
https://kiali.io/docs/architecture/architecture/
https://dias.library.tuc.gr/view/92796
http://dx.doi.org/10.1109/TPAMI.1986.4767778
http://www.ncbi.nlm.nih.gov/pubmed/21869343
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526


Electronics 2024, 13, 65 25 of 25

34. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech.
Theory Exp. 2008, 10008. [CrossRef]

35. Fortunato, S.; Castellano, C. Community Structure in Graphs. In Computational Complexity: Theory, Techniques, and Applications;
Springer: New York, NY, USA, 2012; pp. 490–512. [CrossRef]

36. Nicosia, V.; Mangioni, G.; Carchiolo, V.; Malgeri, M. Extending the Definition of Modularity to Directed Graphs with Overlapping
Communities. J. Stat. Mech. Theory Exp. 2009, 2009, P03024. [CrossRef]

37. Havens, T.C.; Bezdek, J.C.; Leckie, C.; Ramamohanarao, K.; Palaniswami, M. A Soft Modularity Function for Detecting Fuzzy
Communities in Social Networks. IEEE Trans. Fuzzy Syst. 2013, 21, 1170–1175. [CrossRef]

38. Hollocou, A.; Bonald, T.; Lelarge, M. Modularity-based Sparse Soft Graph Clustering. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS 2019), Naha, Japan, 16–18 April 2019; Proceedings of Machine
Learning Research; pp. 323–332. Available online: http://proceedings.mlr.press/v89/hollocou19a/hollocou19a.pdf (accessed on
7 December 2023).

39. Eliades, P. Dynamic Microservice Placement in Kubernetes in the Cloud. Technical Report, Diploma Thesis, School of
Electrical and Computer Engineering, Technical University of Crete (TUC), Chania, Greece, 2023. Available online: https:
//dias.library.tuc.gr/view/94893 (accessed on 7 December 2023).

40. Horizontal Pod Autoscaling (HPA), 2023. Google Kubernetes Engine. Available online: https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/ (accessed on 7 December 2023).

41. GCP. Anthos Service Mesh, 2022. Available online: https://cloud.google.com/service-mesh (accessed on 7 December 2023).
42. GCP. Google Cloud Managed Service for Prometheus, 2022. Available online: https://cloud.google.com/stackdriver/docs/

managed-prometheus (accessed on 7 December 2023).
43. GCP. GCP Pricing, 2022. Available online: https://cloud.google.com/compute/all-pricing (accessed on 7 December 2023).
44. Locust. Locust Documentation, 2022. Available online: https://docs.locust.io/en/stable/what-is-locust.html (accessed on 7

December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1007/978-1-4614-1800-9_33
http://dx.doi.org/10.1088/1742-5468/2009/03/P03024
http://dx.doi.org/10.1109/TFUZZ.2013.2245135
http://proceedings.mlr.press/v89/hollocou19a/hollocou19a.pdf
https://dias.library.tuc.gr/view/94893
https://dias.library.tuc.gr/view/94893
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://cloud.google.com/service-mesh
https://cloud.google.com/stackdriver/docs/managed-prometheus
https://cloud.google.com/stackdriver/docs/managed-prometheus
https://cloud.google.com/compute/all-pricing
https://docs.locust.io/en/stable/what-is-locust.html

	Introduction
	Related Work
	Kubernetes Configuration
	Network Traffic
	Service Mesh and Service-Oriented Architectures
	Kubernetes Cluster

	Fuzzy Microservices Placement 
	ModSoft Algorithm
	ModSoft-HP Scheduler

	Evaluation and Testbed
	Affinity Metrics
	Infrastructure Hosting Cost
	Benchmark Applications
	Benchmark Application Stressing
	Application Graph
	Kubernetes Testbed

	Experiments
	Execution Time
	Number of Hosts
	Egress Traffic
	Infrastructure Hosting Cost
	Response Time

	Conclusions and Future Work
	References

