
Citation: Chen, Z.; Zhuang, J.; Wang,

X.; Tang, X.; Yang, K.; Du, M.; Zhou, J.

Top-k Graph Similarity Search

Algorithm Based on Chi-Square

Statistics in Probabilistic Graphs.

Electronics 2024, 13, 192. https://

doi.org/10.3390/electronics13010192

Academic Editor: Kamal Berahmand

Received: 21 November 2023

Revised: 27 December 2023

Accepted: 27 December 2023

Published: 1 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Top-k Graph Similarity Search Algorithm Based on Chi-Square
Statistics in Probabilistic Graphs
Ziyang Chen 1,2, Junhao Zhuang 1, Xuan Wang 1,*, Xian Tang 3,*, Kun Yang 1, Ming Du 1 and Junfeng Zhou 1

1 School of Computer Science and Technology, Donghua University, Shanghai 201620, China;
zychen@ysu.edu.cn (Z.C.); 2212506@mail.dhu.edu.cn (J.Z.); kunyang@dhu.edu.cn (K.Y.);
duming@dhu.edu.cn (M.D.); zhoujf@dhu.edu.cn (J.Z.)

2 School of Information Management, Shanghai Lixin University of Accounting and Finance,
Shanghai 201620, China

3 School of Electronic and Electrical Engineering, Shanghai University of Engineering Science,
Shanghai 201620, China

* Correspondence: dhwangxuan@dhu.edu.cn (X.W.); tangxian@sues.edu.cn (X.T.)

Abstract: Top-k graph similarity search on probabilistic graphs is widely used in various scenarios,
such as symptom–disease diagnostics, community discovery, visual pattern recognition, and commu-
nication networks. The state-of-the-art method uses the chi-square statistics to speed up the process.
The effectiveness of the chi-square statistics solution depends on the effectiveness of the sample
observation and expectation. The existing method assumes that the labels in the data graphs are
subject to uniform distribution and calculate the chi-square value based on this. In fact, however, the
actual distribution of the labels does not meet the requirement of uniform distribution, resulting in a
low quality of the returned results. To solve this problem, we propose a top-k similar subgraph search
algorithm ChiSSA based on chi-square statistics. We propose two ways to calculate the expectation
vector according to the actual distribution of labels in the graph, including the local expectation
calculation method based on the vertex neighbors and the global expectation calculation method
based on the label distribution of the whole graph. Furthermore, we propose two optimization
strategies to improve the accuracy of query results and the efficiency of our algorithm. We conduct
rich experiments on real datasets. The experimental results on real datasets show that our algorithm
improves the quality and accuracy by an average of 1.66× and 1.68× in terms of time overhead, it
improves by an average of 3.41×.

Keywords: chi-square statistics; probabilistic graph; top-k query

1. Introduction

The subgraph-matching problem [1,2] aims to find all subgraphs in a data graph that
have the same structure as the query graph. The problem is widely used in compound
discovery, visual pattern recognition, communication networks, community discovery,
and other fields [3,4]. In practice, there is some uncertainty in the connections between
objects. For example, in symptom–disease diagnosis knowledge graphs [5,6], the correlation
between symptoms and diseases is uncertain and needs to be modeled using probabilistic
graphs [7,8]. Specifically, vertices are used to represent symptoms (e.g., cough, fever, etc.)
as well as diseases (e.g., colds, etc.), and the edges of the graph indicate the probable degree
to which a given symptom is associated with a particular disease. For example, cough is a
regular symptom of colds and is less likely to be associated with malaria, the probability on
the edge connecting cough and cold is higher, while the probability on the edge consisting
of cough and malaria is lower. In social networks, each vertex represents a person, while
labels indicate a person’s field of specialization, years of experience, and other information,
and the probability values on the edges indicate the strength of the connection between
two people. By using subgraph-matching algorithms, we can find similar subgraphs, i.e.,

Electronics 2024, 13, 192. https://doi.org/10.3390/electronics13010192 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010192
https://doi.org/10.3390/electronics13010192
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6494-5319
https://doi.org/10.3390/electronics13010192
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010192?type=check_update&version=2

Electronics 2024, 13, 192 2 of 25

subgroups of people with similar labels and connectivity patterns, in these two networks.
This can help us discover people with similar backgrounds and interests in different social
networks, and may help recommend potential partners, friends, or career opportunities.
On probabilistic graphs, since the presence or absence of an edge is correlated with its
probability, the probability of its existence may be too low for many subgraphs that exactly
match the structure of the query graph. Thus, when solving on probabilistic graphs using
subgraph-matching algorithms on deterministic graphs, there is the problem of poor quality
of matching results (too low probability) and inefficient matching.

The current method for similar subgraph search on probabilistic graphs is the ChiSeL
method proposed by Shubhangi Agarwal et al. [9], which is based on the idea of the chi-
square test in probabilistic statistics. By constructing observation vectors and expectation
vectors for the vertices, it transforms the vertex pairs that are the most likely to be matched
into the ones with the highest statistical significance. At the same time, the k most similar
subgraphs to the query graph are solved efficiently by constructing an efficient index in
order to quickly locate the vertex pairs with the highest similarity between the data graph
and the query graph, while improving the quality of the results. The rationale of utilizing
the chi-square test for subgraph matching lies in the fact that the number of labels in the
actual graph is large, and the value of the component in the computed expectation vector
that indicates a mismatch of vertex pairs is large, while the value of the component that
indicates a match is small. When the data graph is similar to the query graph vertex pairs,
the value of the component in the observation vector that indicates a match is larger and
the value of the component that indicates a mismatch is smaller. Therefore, when the data
graph is similar to the query graph vertex pair, the chi-square value obtained based on the
expectation vector and observation vector is larger. However, at the same time, the ChiSeL
algorithm still suffers from the problem of poor quality of matching results.

The main reasons for the poor quality of the results of the ChiSeL method are the fol-
lowing: (1) the ChiSeL algorithm calculates the expectation vector assuming that the labels
in the data graph are uniformly distributed, which does not match with the distribution
of the labels in the actual graph, resulting in its derived chi-square value not effectively
reflecting the similarity between pairs of vertices; (2) the ChiSeL algorithm adopts the
product of the probability on the edges and the chi-square value in the matching process
to select extended vertices. Since the edge probabilities have already been used in the
calculation of the chi-square value, multiplying them by the edge probabilities will lead to
a decrease in the quality of the matching results.

To address the above problems, we propose ChiSSA (chi-square statistics-based top-k
similar subgraph search algorithm), a new algorithm based on the chi-square test. Different
from the ChiSeL method, which assumes that the labels are uniformly distributed in the
graph, the ChiSSA method employs two new expectation vector computation strategies to
enhance the effectiveness of the chi-square test based on the actual distribution of the labels
in the data graph, including (1) a local computation strategy based on the distribution
of labels of the vertices’ neighbors, and (2) a global computation strategy based on the
distribution of labels in the whole graph. ChiSSA can find more effective chi-square values
for vertex pairs based on the computed expectation and observation vectors. Further, in
the query-matching phase, we first extend the results based on the size of the neighboring
chi-square values. In contrast, the ChiSeL method uses the product of the edge probabilities
and the chi-square values to select the extended vertices during the matching process,
which can cause the problem of low quality of the matching result due to the repeated use
of the edge probabilities. Secondly, in the query-matching phase, we propose a neighbor-
label-based filtering method for filtering unqualified vertex pairs and reducing the number
of vertex pairs that need to compute the chi-square value, thus improving the efficiency.
The specific contributions of our paper are as follows:

• Propose ChiSSA, a top-k similar subgraph search algorithm based on the chi-square
test on probabilistic graphs. The algorithm uses two new expectation vector computa-
tion methods based on the real distribution of labels in the data graph, including a

Electronics 2024, 13, 192 3 of 25

local computation strategy based on the distribution of labels of the vertices’ neighbors,
and a global computation strategy based on the distribution of labels of the whole
graph, to enhance the validity of the results of the chi-square value computation.

• A new vertex expansion strategy and a neighbor-label-based filtering method are
proposed for filtering ineligible vertex pairs in the query-matching phase, and reducing
the number of vertex pairs that need to compute the chi-square value to improve
the efficiency.

• Tests are conducted based on real datasets, and the experimental results show that
the method we proposed can significantly improve the quality of the obtained results
without losing the query efficiency.

The remainder of the paper is organized as follows. Section 2 discusses and analyzes
related work. Section 3 describes the overall flow and specific implementation of the ChiSSA
algorithm. Section 4 describes the optimization method based on neighbor label filtering.
Section 5 discusses how the ChiSSA algorithm copes with multiple uncertainty situations.
Finally, experimental results are shown in Section 6 and the full paper is summarized in
Section 7.

2. Related Work

An undirected probabilistic graph of vertices with labels can be modeled as a quin-
tuple G = (V, E, Σ, L, P), where V and E denote the set of vertices and the set of edges,
respectively, Σ is the set of labels, L is the mapping of vertices to labels, and P is the map-
ping of the probability of existence from edge to edge. An undirected deterministic graph
of vertices with labels can be denoted as q = (Vq, Eq, Σq, Lq), and differs from G by the
absence of probabilities on edges. Explanatory notes on the notation are shown in Table 1.

Table 1. Frequently used notation.

Symbol Description

G, q Data graph G, query graph q
u, v Query graph vertex u, data graph vertex v

N(u) Neighbor set of vertex u
lu Label of vertex u
du Degree of vertex u

(u, v) Edges formed by vertices u and v

Problem 1 (Top-k similar subgraph search problem on probabilistic graphs). Given a query
graph q = (Vq, Eq, Σq, Lq) and a probabilistic graph G = (V, E, Σ, L, P), the top-k similar subgraph
search problem aims to find the top-k subgraphs in G with the highest statistical significance that
are similar to q.

2.1. Subgraph-Matching Algorithms on Non-Probabilistic Graphs

Given a data graph G = (V, E, Σ, L) and a query graph q = (Vq, Eq, Σq, Lq), the
subgraph-matching problem aims to find all subgraphs in G that are isomorphic to q [10].
An isomorphic subgraph is a subgraph in the data graph that has exactly the same structure
as the query graph. Existing algorithms for solving the subgraph-matching problem mainly
include QuickSI [11], GraphQL [12], VF2 [13], and so on. The above algorithms are mainly
based on the backtracking search method, which has a large time overhead to run on
large-scale data graphs. There are also some algorithms for biological networks such as
PathBlast [14], SAGA [15], NetAlign [16], and IsoRank [17], which mainly run on small
data graphs, and also suffer from inefficiency on large-scale graphs. In order to improve
the efficiency of the algorithms, the existing algorithms mainly use candidate point filtering
and query vertex sorting strategies, which can effectively reduce the number of vertices
that need to be traversed during the matching process, and are described below.

Electronics 2024, 13, 192 4 of 25

• Candidate point filtering. The most basic candidate point filtering method is la-
bel and degree filtering (LDF). Candidate points are generated using LDF C(u) =
v ∈ V|lv = lu ∧ dv ⩾ du. Based on this, GraphQL [12] uses local pruning and global
improvement filtering methods. Among them, the local pruning method generates
neighbor label strings for u according to the dictionary order and filters the candi-
date points by judging the containment relationship between the two strings, while
the global improvement filters the candidate points by using the pseudo-subgraph
isomorphism algorithm; CFL [18] proposes the following filtering rules:
Given X ⊆ N(u) and v ∈ C(u), where u ∈ Vq, C(u) is the set of candidate points, a
vertex v can be removed from the candidate points of vertex u if there exists such a
u′ ∈ X that C(u′) ∩ N(v) = ∅.
The CFL algorithm removes the candidate points that satisfy the filtering rules from
the candidate point set, thus reducing the number of candidate points. Candidate
point filtering can effectively reduce the number of vertices that need to be examined
in the matching process, thus improving the efficiency of the algorithm.

• Query vertex sorting strategy. For the subgraph-matching problem, different matching
orders greatly affect the query efficiency, so adopting a suitable sorting strategy can
effectively improve the efficiency of the subgraph-matching algorithm. Even so, the
time cost is still too high. Existing methods further adopt greedy strategies based
on heuristic rules for speedup. For example, the RapidMatch algorithm [19] utilizes
the method in [20] to find out the most tightly structured part of the query graph
and prioritizes the matching from this part; the QuickSI [11] algorithm proposes a
non-frequent edge prioritization method, which first constructs candidate edges for
each edge in the query graph based on the labels, and then finds the edge with the
smallest number of candidate edges, and selects the vertex with the smallest candidate
vertices on that edge to start matching. Based on the above sorting strategy, a large
number of vertices can be filtered out in the early stage of the matching algorithm,
thus reducing the amount of computation.

Subgraph-matching algorithms on deterministic graphs return exact matches and
cannot be used to solve similar subgraph search problems on probabilistic graphs.

2.2. Similar Subgraph Search Algorithms on Probabilistic Graphs

The extension of the underlying problems on deterministic graphs to probabilistic
graphs requires the study of algorithms specialized for probabilistic graphs. Examples of
such problems are frequent subgraph mining [21–25], clustering [26], shortest paths [27],
and maximum flow [28]. The problem of subgraph search on probabilistic graphs has also
been studied recently. For example, Refs. [29,30] provesthat an approximate subgraph-
matching method using path decomposition is effective on fuzzy RDF graphs; meanwhile,
Ref. [31] provides a detailed discussion of the state-of-the-art methods for subgraph mining
on probabilistic graphs.

The latest algorithm for similar subgraph search on probabilistic graphs is the ChiSeL
algorithm [9], proposed by Agarwal et al. in 2020. This algorithm is based on the chi-square
test, which computes the chi-square values for the vertices with the same labels of the query
graph q and the data graph G, and measures the degree of similarity between the vertices
using the chi-square values, and then finds the top-k subgraphs that are similar in structure
to the query graph. Specifically, the ChiSeL algorithm first forms vertex pairs with the same
labels in the query graph q and the data graph G, then computes the chi-square values for
all the vertex pairs, and finally prioritizes the vertex pair with the largest chi-square value
as a seed to be added into the result set. At the same time, it explores its neighbors to find
out the vertex pair that has the largest product of the chi-square value and edge probability
as the next seed, and keeps on expanding the result set until all the query vertices are
matched successfully or cannot be expanded due to a lack of matching vertex pairs. The
step of calculating the chi-square value is divided into two steps, namely, calculating the
expectation vector and observation vector.

Electronics 2024, 13, 192 5 of 25

• Compute the expectation vector E: The ChiSeL algorithm defaults to the idea that
in the average case, the labels in the data graph are uniformly distributed, and the
probability that for a vertex v, its neighbor’s label lx is 1/|L|, where |L| is the total
number of labels in the data graph. Based on this idea, the ChiSeL algorithm computes
its expectation vector for all data graph vertices.

• Compute the observation vector O: For any vertex pair <u, v>, the ChiSeL algorithm
first generates a vertex triple (x,u,y) for vertex u, where x and y are the two neighbors of
u. Correspondingly, a label triple <lx, lu, ly> can be obtained, where lx, lu, ly represent
the two neighbors of u, respectively. Correspondingly, a label triad <lx, lu, ly> is
obtained, where lx, lu, ly denote the labels of vertices x, u, and y, respectively. Then,
the vertex pair <u, v> similarity is classified into three categories according to the
existence of vertices with labels lx and ly in v’s neighbors, denoted as unlabeled match
s0, single-labeled match s1, and double-labeled match s2, and finally, the probabilities
of their occurrence in all possible worlds are enumerated for these three categories
and summed up as the three components of the observation vector.

After calculating the expectation vector E and the observation vector O, the chi-square
value of the vertex pair can be found according to Equation (1).

χ2<u, v> =
2

∑
i=0

(O[si]− E[si])
2

E[si]
(1)

Since the number of labels in the actual graph is higher, the component s0 in the
expectation vector that indicates a mismatch is larger. When the data graph is similar to
the query graph vertex pairs, the component s2 in the observation vector indicates a match
is larger. Calculating the chi-square value according to Equation (1), it shows that when
the data graph is more similar to the query graph vertex pair, the resulting chi-square
value is larger. Conversely, when the data graph is not similar to the query graph vertex
pairs, the component s0 of the observation vector that indicates a mismatch is larger, while
the component s2 that indicates a match is smaller, and according to Equation (1), the
corresponding chi-square value is smaller in this case. Based on this observation, the
ChiSeL algorithm starts matching from vertex pairs with large chi-square values to obtain
the top-k similar subgraph results. The ChiSeL algorithm can derive top-k similar subgraph
result sets; however, as shown in example 1 below, the quality of the results it obtains is not
high.

Example 1. Given a query graph q and a data graph G in Figure 1, the purpose is to find the
top-1 similar subgraph. The subgraph-matching algorithm on the graph is unable to distinguish the
quality of the results sought and will return all results that match exactly. For this example, both
results of Figure 1e,f would be returned, with the result shown in Figure 1f being of poorer quality.
If the ChiSeL algorithm, which specializes in probabilistic graphs, is used, the algorithm first obtains
the vertex pair chi-square values as shown in Figure 1c. Then, ChiSeL chooses the vertex pair
<u1, v1> with the largest chi-square value to start matching. When the matching process proceeds
to the vertex pairs <u5, v6>, <u5, v9>, and <u5, v10> generated by u5, the edge probabilities are
different from the chi-square values of <u5, v10>; because ChiSeL prioritizes the vertex pair with the
largest product of the edge probability and chi-square value, the vertex pair <u5, v9> is selected to be
added to the result set. Since there is no vertex in the neighborhood of v9 that can be matched with
u6, the matching process ends. The final top-1 result obtained by ChiSeL is shown in Figure 1d.
Obviously, for this example, we prefer to obtain the result shown in Figure 1e.

Electronics 2024, 13, 192 6 of 25

Figure 1. Result of ChiSeL.

3. ChiSSA Algorithm Based on Chi-Square Test
3.1. Basic Idea of ChiSSA Algorithm

The ChiSSA algorithm is based on the idea of the chi-square test in probabilistic
statistics, which calculates chi-square values for all pairs of vertices to measure the similarity
of the labeled same vertices in the data graph and the query graph, and then efficiently
solves the results of the top-k similar subgraphs. Compared with the ChiSeL algorithm, our
algorithm is able to find more effective chi-square values based on the actual distribution
of labels in the data graph, and improve the method of selecting vertex pairs in the process
of expanding the matching results, which in turn leads to higher-quality subgraph results.

Figure 2 shows the overall flow of the ChiSSA algorithm, which first generates vertex
pairs based on the labels of the vertices in the query graph and the data graph (Figure 2b),
followed by calculating the chi-square values based on the expectation vectors and the
observation vectors of the vertex pairs (Figure 2c), and finally, searching for the top-k results
based on the magnitude of the vertex pairs’ chi-square values (Figure 2d). These three steps
are described separately below.

Figure 2. Process of ChiSSA.

• Step 1: Generate same-label vertex pairs. Specifically, a vertex pair is composed of
vertex sums with the same label. Given a query vertex u, such a vertex pair can be
obtained from the label–vertex inverted table of the data graph G. For example, the
complete set of vertex pairs corresponding to the query graph q of Figure 2a and the
data graph G can be denoted as shown in Figure 2b.

Electronics 2024, 13, 192 7 of 25

• Step 2: Vertex pair chi-square computation. For any vertex pair <u, v>, first generate
a vertex triad <x, u, y> for vertex u, where x and y are the two neighbors of u. Cor-
respondingly, a labeling triad <lx, lu, ly> is obtained, which represents the labels of
vertices x, u, and y, respectively. For a vertex v in the data graph G, the vertex pair
similarity is classified into the following three categories based on the presence of
vertices labeled with lx and ly in its neighbors:

– s0: There are no vertices labeled lx and ly in the neighborhood of v;
– s1: Vertices labeled as lx and no vertices labeled as ly exist in the neighbors of v, or

vertices labeled as ly and no vertices labeled as lx exist in the neighbors of v;
– s2: Both vertices labeled with lx and ly exist in the neighbors of v.

The chi-square value is calculated as shown in Equation (1), where E is the expectation
vector and O is the observation vector, which consists of the expected and observed
values for the three cases s0, s1, and s2, respectively. The expectation vector represents
the distribution in the average case, while the observation vector represents the actual
distribution of the two vertices of the vertex pair for the three cases s0, s1, and s2. After
calculating the expectation vector E and the observation vector O, the chi-square value
of the vertex pair can be obtained by substituting into Equation (1). For example, for
the same-labeled vertex pair of Figure 2b, the resulting chi-square of the vertex pair is
shown in Figure 2c using the calculation in step 2.

• Step 3: Solve the top-k result set. After finding the chi-square values of all vertex pairs
in step 2, the vertex pair with the largest chi-square value is first selected to be added
to the result set, followed by preferentially matching the vertex pairs with the largest
chi-square value among its neighbors; keep expanding until all query vertices are
matched successfully or the expansion cannot continue due to a lack of vertex pairs
that can be matched, and a result is obtained. The above process is repeated until k
results are found. For example, for the query q of Figure 2a and the data graph G,
based on the chi-square value of Figure 2c, the top-1 result obtained in step 3 is shown
in Figure 2d.

The specific flow of the ChiSSA algorithm is shown in Algorithm 1. Step 1 calls the
vpairGenerate function (line 3) to generate same-label vertex pairs, as shown in Figure 2b;
step 2 (lines 4–7) calculates their expectation vectors and observation vectors for all the
vertex pairs and computes the chi-square values according to Equation (1), and the results
are shown in Figure 2c; step 3 (line 9) calls the getResult function to prioritize those vertex
pairs with large chi-square values to be added to the result set, and gradually expands to
obtain the top-k similar subgraph, as shown in Figure 2d. Lines 11–18 are the definition
of the function vpairGenerate(q,G), which forms vertex pairs by picking vertices with the
same vertex labels in V and Vq. The execution processes of step 2 and step 3 are described
in detail below.

3.2. Vertex Pair Chi-Square Value Calculation

After generating all the vertex pairs in the first step, the chi-square value of each vertex
pair needs to be computed. The chi-square value of vertex pairs is computed based on
the labels present in the neighbors of the vertices to measure their similarity. Based on the
neighbor labels in different cases, the vertex pairs are classified into three categories: s0, s1,
and s2. Considering Equation (1), the key to calculate the chi-square value is to find the
expectation vector and observation vector of the vertex pairs, which denote the theoretical
distribution and the actual observed distribution, respectively. The following describes
how to solve for the expectation vector and observation vector, respectively.

In order to solve the problem that the ChiSeL algorithm does not consider the specific
probability distribution of labels when calculating the expectation vector of vertex pairs,
our algorithm adopts a new way of calculating the expectation vector. First, for each vertex
in the data graph, according to the distribution of labels in its neighbors, we propose a local
computation strategy based on the vertex degree and vertex probability degree; on this
basis, considering the overall distribution of labels in the data graph, we further propose

Electronics 2024, 13, 192 8 of 25

a global computation strategy based on the vertex degree and vertex probability degree,
which are introduced separately below.

Algorithm 1: ChiSSA
Input : Query graph q, probabilistic data graph G, parameter k.
Output : top-k similar subgraph result R

1 Initialize the set of vertex pairs VP;
2 Initialize the Top-k result set R;
3 VP←vpairGenerate (q, G);
4 foreach vpair in VP do
5 Compute the expectation vector evector from Equation (11);
6 Compute observation vector ovector from Equation (21);
7 Calculate the chi-square of vertex pair vpair from Equation (1);
8 end
9 R←getResult(VP, q, G, k);

10 return R;

11 Function vpairGenerate((q, G)):
12 foreach u in Vq do
13 foreach v in V do
14 if lu = lv then
15 Insert <u, v> into VP;
16 end
17 end
18 return VP;

3.2.1. Strategies for Localized Computation of Expectation Vectors

The local computation strategy computes the expectation vector based on the distribu-
tion of labels in the neighbors of a vertex. Given any vertex pair <u, v>, assume that there
are Nlx

v vertices with the label lx in the neighbor of vertex v. On average, the probability
that the label lx is for any neighbor of v is Nlx

v /dv. Thus, the probability that there is no

vertex with label of lx in the neighbors of v is PLD(#lx = 0) = (1− Nlx
v /dv)

Nlx
v . For any

labeled triad <lx, lu, ly> generated by querying vertex u, the probability that there is no
vertex with label lx or ly in the neighbors of vertex v is the degree of vertex pair <u, v>
matching s0:

P(s0) = PLD(#lx = 0) · PLD(#ly = 0) (2)

The probability that vertex v has at least one neighbor with label lx is PLD(#lx ⩾ 1) =

1− (1− Nlx
v /dv)

Nlx
v . Thus, for the above labeled triad, the probability that the matching

case of vertex pair <u, v> is s2 is

P(s2) = PLD(#lx ⩾ 1) · PLD(#ly ⩾ 1) (3)

Since the probability of occurrence of the three matching cases s0, s1, and s2 sums to 1,
the probability that the matching case of the vertex pair <u, v> is s1 is

P(s1) = 1− P(s0)− P(s2) (4)

While this approach computes the expectation vector, it does not take into account
the probabilistic information on the neighboring edges of the vertices. For this reason,
we propose a probabilistic degree-based computation, which considers the number of
occurrences of the neighbor labels of any vertex v to be related to its probabilistic degree.

Electronics 2024, 13, 192 9 of 25

Definition 1 (Label probability). Given a vertex v, if it has nlx
v neighbors labeled lx that form

edges with v with probabilities p1, p2, p3, . . . , pnlx
v

, the label probability degree of the vertex v is

δlx
v = ∑nlx

v
i=1 pi for label lx .

For vertex pair <u, v>, if vertex v has Nlx
v neighbors labeled lx, the probability that its

label is lx for any of its neighbors is Nlx
v /dv, and thus the probability that there is no vertex

labeled lx in the neighbors of vertex v, is PLPD(#lx = 0) = (1− Nlx
v /dv)

δlx
v . For any label

triad <lx, lu, ly> generated by vertex u in the query graph, the vertex pair <u, v> appears to
match with degree s0, the label lx or ly will not appear in the neighbors of vertex v, so its
probability is

P(s0) = PLPD(#lx = 0) · PLPD(#ly = 0) (5)

Similarly, the probability that vertex v has at least one neighbor with label lx is

PLPD(#lx ⩾ 1) = 1− (1− Nlx
v /dv)

δlx
v . Therefore, the probability that the matching case of

vertex pair <u, v> is s2 is

P(s2) = PLPD(#lx ⩾ 1) · PLPD(#ly ⩾ 1) (6)

Since the probability of occurrence of the three matching cases s0, s1, and s2 sums to 1,
P(s1) can be given by Equation (4).

3.2.2. Expectation Vector Global Computation Strategy

The ChiSeL algorithm solves the expectation vector with uniformly distributed la-
bels by default, while the local computation strategy takes the individual actual data of
each point as a reference, and different points with different reference data may produce
inconsistent results. Unlike the above two approaches, the global computation strategy
presented here considers the global actual distribution of the labels of the vertices in the
data graph. Assuming that there are θlx vertices labeled lx in the data graph G, on average,
the probability that a label is lx is θlx /|V| for any neighbor of vertex v. Considering any
vertex pair <u, v>, if vertex v has Nlx

v neighbors with labels of lx, then the probability that

there is no vertex labeled lx among the neighbors of vertex v is PGD = (1− θlx /|V|)Nlx
v . For

any label triad <lx, lu, ly> generated by vertex u, the vertex pair <u, v> appears to match
with degree s0, and the labels lx or ly do not appear in the neighbors of vertex v, so its
probability is

P(s0) = PGD(#lx = 0) · PGD(#ly = 0) (7)

The probability that vertex v has at least one neighbor with label lx is PGD(#lx = 0) =

(1− θlx /|V|)δlx
v . Thus, for the above labeled triad, the probability that the matching case of

vertex pair <u, v> is s2 is

P(s2) = PGD(#lx ⩾ 1) · PGD(#ly ⩾ 1) (8)

Similarly, P(s1) can be given by Equation (4).
For the global computation strategy, we also consider the probabilistic-degree-based

case. Given a vertex pair <u, v>, the probability that a label is lx for any neighbor of vertex
v is θlx /|V|. If it has nlx

v neighbors labeled lx, the probability that there is no vertex labeled

lx in the neighbors of vertex v is PGPD = (1− θlx /|V|)δlx
v . For any label triad <lx, lu, ly>

generated by vertex u in the query graph, vertex pair <u, v> appears to have matching
degree s0, the label lx or ly will not appear in the neighbors of vertex v, so its probability is

P(s0) = PGPD(#lx = 0) · PGPD(#ly = 0) (9)

Electronics 2024, 13, 192 10 of 25

Similarly, PGPD(#lx ⩾ 1) = 1− PGPD(#lx = 0), so the probability that the vertex pair
<u, v> has a matching case s2 is

P(s2) = PLPD(#lx ⩾ 1) · PLPD(#ly ⩾ 1) (10)

P(s1) can likewise be given by Equation (4).
According to the above method, the probability values P(s0), P(s1), and P(s2) of the

vertex pair <u, v> about any labeled triad with matching degree of s0, s1, s2 can be found.
Assuming that vertex u involves η labeled triples, τ1, τ2, . . . , τη , all the expectation vectors
obtained by using the above equation are Eτ1 , Eτ2 , . . . , Eτη , where Eτ1 = [P(s0), P(s1), P(s2)],
the expectation vector of vertex pair <u, v>, the expectation vector of <u, v> is

E =
η

∑
i=1

Eτi (11)

3.2.3. Observation Vector Calculation

For any vertex pair, its observation vector can be found by enumerating all possible
worlds and calculating the probability of two vertices in the vertex pair with different
matching degrees. Consider any vertex pair <u, v>, for any labeled triple <lx, lu, ly> gener-
ated by querying vertex u, the matching degree of vertex pair <u, v> is s0 occurs if lx ̸= ly,
if and only if the probability of this event occurring when the number of occurrences of
vertices labeled lx and ly in the neighbors of vertex v are both zero:

P(s0) = P(#lx = 0) · P(#ly = 0) (12)

where #lx denotes the number of vertices labeled lx in the neighbors of vertex v of the data
graph. Similarly, a vertex pair <u, v> with a matching degree of s2 occurs if and only if the
vertices labeled lx and ly both occur at least once in the neighbors of the vertex v. Thus,

P(s2) = P(#lx ⩾ 1) · P(#ly ⩾ 1) (13)

Since the sum of the probabilities of occurrence of s0, s1, and s2 is 1, the probability of
occurrence of case s1 can be obtained:

P(s1) = 1− P(s0)− P(s2) (14)

Consider below the case lx = ly, where s0 occurs as none of the vertices labeled lx
appear in the neighborhood of vertex v. Thus,

P(s0) = P(#lx = 0) (15)

Similarly, s1 occurs as a vertex labeled lx in the neighborhood of vertex v occurs
only once:

P(s1) = P(#lx = 1) (16)

Similarly, since the probability of occurrence of the three cases sums to 1, the probability
of occurrence of case s2 is

P(s2) = 1−O(s1)−O(s0) (17)

Considering Equations (12)–(17), the key to solving the observation vector is to find
the probabilities that the number of occurrences of any of the labels in the neighbors of
vertex v is 0, 1, and greater than or equal to 1, as detailed below.

Assuming that vertex v has ψ neighbors labeled lx, and the probabilities of the edges
they form with v are plx

1 , plx
2 , . . . , plx

ψ , then P(#lx = 0) is equal to the probability that
none of the edges formed by v and the above vertices exists, which can be given by the
following equation:

Electronics 2024, 13, 192 11 of 25

P(#lx = 0) = Πψ
i=1(1− plx

i) (18)

The probability that the number of occurrences of a vertex labeled lx in the neighbor-
hood of vertex v is greater than or equal to 1 can be quickly derived from Equation (17):

P(#lx ⩾ 1) = 1− P(#lx = 0) (19)

Similarly, the probability that the label lx occurs only once in the neighbors of vertex
v is

P(#lx = 1) =
ψ

∑
i=1

[plx
i ·∑

j ̸=i
(1− plx

j)] (20)

According to the above formula, the probability that a vertex pair <u, v> matches about
any labeled triad with the degree of s0, s1, s2 cases can be found. Assuming that vertex u
involves a total of η labeled triples as τ1, τ2, . . . , τη , all the observation vectors obtained by
using the above formula are O(τ1), O(τ2), . . . , O(τη), where O(τ1) = [P(s0), P(s1), P(s2)],
the observation vectors of the vertex pair <u, v>, the observation vector is

O =
η

∑
i=1

Oτi (21)

3.2.4. Index Construction

Based on the above discussion, its chi-square value can be obtained for all vertex pairs.
To speed up this computational process, we construct corresponding indexes based on
the data graph for storing vertex and probability information. Specifically, the indexes are
constructed as follows:

• Label–vertex inverted index: The label–vertex inverted index stores the mapping
between labels and vertices in the data graph. The index constructed from the data
graph G in Figure 1 is shown in Table 2. The label–vertex inverted index is mainly
used for the generation of vertex pairs. Based on the labels of the vertices in the query
graph, accessing the label–vertex inverted index can quickly obtain the set of vertices
in the data graph that have the same labels as them.

• Neighbor label index: For each vertex in G, the neighbor label index stores the number
of times each label appears in its neighbors, while the sum of the probabilities of
these neighbors forming an edge with that vertex is pre-computed. Table 3 shows the
structure of the neighbor label index constructed based on some of the vertices in the
data graph G of Figure 1. During the computation of the expectation vector, based on
a given vertex with a label, the neighbor label index can be used to quickly obtain the
probability degree of a specific label in a vertex’s neighbors, as well as the number of
times that label appears.

• Neighbor label probability index: In order to accelerate the solving of observation
vectors, for each vertex in the data graph, we pre-calculated the probability of each
kind of label appearing 0 times, 1 time, and greater than or equal to 1 time in their
neighborhoods according to Equations (18)–(20).

Example 2. In the data graph G of Figure 1, the probability that the E label appears 0 times in the
neighbors of vertex v5 can be derived from Equation (18): p(#E = 0) = (1− 0.1)× (1− 0.8)×
(1− 0.4) = 0.108.

Electronics 2024, 13, 192 12 of 25

Table 2. Label–vertex inverted table.

Label Vertex Label Vertex

A v1, v4 E v6, v9, v10
B v2 F v7, v11
C v3 G v8
D v5

Table 3. Neighbor label index.

Vertex Neighborhood Label Number of Occurrences Label Probability

v1

A 1 0.8
B 1 0.9
C 1 0.9
D 1 0.9

v2
A 2 1.4
C 1 0.7

v3
A 2 1.2
B 1 0.7

v4

A 1 0.8
B 1 0.5
C 1 0.3
D 1 0.9

v5
A 2 1.8
E 3 1.3

3.3. Top-k Result Matches

The process of solving the top-k result set is based on selecting and expanding the
vertex pairs based on their chi-square values. The vertex pair with the largest chi-square
value is first selected and preferentially matched with the vertex pair with the largest chi-
square value among its neighbors. This process expands until all query vertices are matched
successfully or no further expansion is possible to obtain a result. The process is then
repeated until k results are found. The ChiSSA algorithm inserts all vertex pairs according
to their chi-square values into a big-topped heap called the initial heap; subsequently, the
vertex pairs at the top of the heap are sequentially selected as the initial vertex pairs of the
expansion result.

For each vertex pair selected from the initial heap, its neighbor vertex pairs need to be
searched until the end of the matching process. Assuming that the selected vertex pair is
<u, v>, a vertex pair <nu, nv> consisting of vertices with the same labels in the neighbors
of vertices u and v will be selected and inserted into another big-topped heap, called
the secondary heap, with the top of the vertex pair of the heap’s χ2

<nu ,nv> value being
maximized. After selecting a heap’s top vertex pair, the vertex pair is used as a new seed
vertex pair to continue searching its neighbor vertex pairs. The neighbor search is repeated
until the query graph completes the matching or the subgraph in the target graph cannot
continue to expand due to the lack of eligible vertex pairs. The above steps are repeated k
times to find the top-k result set.

Algorithm 2 is the pseudocode of the getResult function, which first adds the vertex
pair with the largest chi-square value to the result set and marks it as visited (lines 3–6);
and then extends the similar subgraph results from that vertex pair using the breadth-first
search method (lines 7–24), where VP[w2] in line 16 serves to gather all the same-labeled
vertex pairs associated with query point w2 according to the “query point–vertex pair”
inverted table. Here, the “query point–vertex pair” inverted table is used to organize the
set of vertex pairs according to the query points so as to quickly find all the vertex pairs
associated with a particular query point. Based on the input query graph, the inverted table

Electronics 2024, 13, 192 13 of 25

is generated by scanning the set of vertex pairs with the same label once. The judgment
condition in line 17 requires two vertex pairs to be connected, i.e., (v1, v2) is the edge in
the data graph and (w1, w2) is the edge in the query graph; finally, the above process is
repeated k times to find the top-k similar subgraph result.

Algorithm 2: getResult

Input : Query graph q = (Vq, Eq, Lq, Σq), probabilistic data graph
G = (V, E, L, Σ, P),Vertex pair set,VP, parameter k.

Output : top-k similar subgraph result R
1 visitq[1. . .|Vq|] = f alse; visitG[1. . .|V|] = f alse;
2 while k > 0 do
3 Remove <u, v> with the max χ2 − value in VP;
4 if visitq[u] = f alse and visitG[v] = f alse then
5 r = r ∪ {<u, v>}
6 visitq[u] = true; visitG[v] = true;
7 Initialize queue Q;
8 Insert u into Q;
9 while is Empty(Q) = f alse do

10 w1 = Q.pop() // w1 ∈ Vq
11 foreach w2 in N(w1) do // (w1, w2) ∈ Eq
12 if visitq[w2] = f alse then
13 Insert w2 into Q;
14 Initialize max heap H according to χ2-value of vertex pairs;
15 <w1, v1> = r[w1];
16 foreach <w2, v2> in VP[w2] do
17 if (v1, v2) ∈ E and visitq[w2] = f alse and visitG[v2] = f alse then
18 Insert <w2, v2> into H;
19 end
20 <u, v>← H.pop();
21 r = r ∪ {<u, v>};
22 visitq[u] = visitG[v] = true;
23 end
24 R = R ∪ {r};
25 k = k− 1;
26 end
27 end
28 return R;

3.4. Algorithm Analysis

Given the data graph G = (V, E, L, Σ, P), query graph q = (Vq, Eq, Lq, Σq), and the
number of query results k, the time complexity and spatial complexity of the query phase
of the ChiSSA algorithm with index construction are analyzed as follows.

3.4.1. Query Stage

The time overhead of the query phase has three steps.

• Generate same-label vertex pairs. This operation can be generated directly from the
“label–vertex” inverted table. In this process, the “query point–vertex pair” inverted
table is generated at the same time. Suppose the set of vertex pairs is VP. Since
|VP| |Vq| × |V| is small and can be regarded as constant, the time cost of this operation
can be expressed as O(|V|).

• Calculate the chi-square value. The observation vectors in this step are computed in
the same way as ChiSeL, and its time cost is O(|E|), similarly, the expectation vectors

Electronics 2024, 13, 192 14 of 25

in ChiSSA are computed with the same time complexity as the observation vectors,
and then its time cost is also O(|E|), so this is the time cost of step (2).

• Solving the top-k result set. First, analyze the time complexity of solving each result in
the top-k result set. The time complexity of inserting vertex pairs into the initial heap is
O(|V| ∗ log|V|), and the time complexity of constructing the subheap by selecting the
top vertex pair of the heap each time is O(dv ∗ logdv), where dv is the average degree
of the graph G. Consider |E| ⩽ |V|2, then dv = 2 ∗ |E|/|V| ∼ O(|V|). Therefore, the
time complexity of constructing the subheap each time is O(|V| ∗ log|V|), and this
step is executed at most |Vq| times, then the time complexity of solving a single result
is O(|Vq| ∗ |V| ∗ log|V|) ∼ O(|V| ∗ log|V|). Therefore, the overall time complexity of
the ChiSSA algorithm is O(|E|+ k ∗ |V| ∗ log|V|).
The space overhead is mainly used for the initial heap and subheap. The size of

the initial heap is the number of vertex pairs O(|V|) and the size of each subheap is
O(dv) ∼ O(|V|), so the overall space complexity of the algorithm is O(|V|).

3.4.2. Index Construction

The time complexity of constructing the three indexes is analyzed as follows. (1)
“Label–vertex” inverted index: constructing the label–vertex inverted index requires one
traversal of the vertices in the data graph, and its time complexity is O(|V|). (2) Neighbor
label index: constructing a neighbor label index requires one traversal of the neighbors of
all vertices, which is equivalent to one traversal of the edges of the whole graph, and its
time complexity is O(|E|). (3) Neighbor label probability index: the same as (2), it requires
one traversal of the neighbors of all vertices, so its time complexity is. In summary, the
overall time complexity of index construction is O(|V|+ |E|).

The label–vertex inverted index stores every vertex in the data graph, so its space
complexity is O(|V|); the neighbor label index stores the number of occurrences with
probability for labels that have appeared in each vertex’s neighbors, so the worst-case
space consumption is |V| ∗ |Σ|. Even if the number of labels in the graph is high, the actual
number of labels that have appeared in each vertex neighbor is at most the number of its
neighbors, so the space complexity of the neighbor label index is O(|V| ∗ dv) ∼ O|E|; the
neighbor label probability index needs to record the probability of all labels appearing
various times in each vertex neighbor. Therefore, the space complexity of the neighbor
label probability index is O(|V| ∗ |Σ|).

4. Algorithm Optimization

Although the ChiSSA algorithm can find the top-k similar subgraph results with high
accuracy, it needs to calculate the chi-square of all vertex pairs, which is a large amount
of computation. To address this problem, we propose an optimization method based on
neighbor label filtering to generate vertex pairs, which can reduce the size of the set of
generated vertex pairs, and thus, improve the algorithm’s efficiency.

Definition 2 (Accuracy of results [9]). Given a query graph q = (Vq, Eq, Lq, Σq) and a top-k
result set res = r1, r2, . . . , rk, where ri = (Vri , Eri). Result accuracy, acc = ∑k

i=1 |Eri |/(k ∗ |Eq|).

Lemma 1 (Filter criteria). Given a vertex pair <u, v>, where u ∈ Vq, v ∈ V, ∀p ∈ N(u), if there
exists no satisfaction q ∈ N(v), the addition of the result set does not improve the accuracy of
the result.

Proof. Proof by contradiction. Assuming that the addition of vertex pairs <u, v> to the
result set improves the accuracy of the results, there must exist p ∈ N(u), q ∈ N(v) such
that (p, u), (q, v) ∈ E, and lu = lv ∧ lp = lq, which contradicts the conditions of Lemma 1.
Proof completion.

Electronics 2024, 13, 192 15 of 25

According to the filtering criterion, for a vertex pair<u, v>, if the labels of all neighbors
of u are not the same as the neighbor labels of v, it can be filtered out.

Algorithm 3 shows the pseudocode of the vertex pair generation method vpairGenerate+
based on the neighbor label filtering optimization. For all the vertex pairs generated by
the vpairGenerate method, counting is used to determine whether they meet the filtering
criteria. The following is an example of vertex pairs. First, the array A is initialized as well
as the counter count (lines 3–4), and for all neighbors of u, the corresponding label position
in the array A is marked as 1 (lines 5–7). If any of v’s neighbors has the same label as u’s
neighbor’s label, 1 counter is added to count (lines 8–11). If the final counter count value is
0, it means that all the labels in the neighbors of u and v are not the same, and according to
the filtering criterion, the vertex pair is removed from the set of vertex pairs (lines 12–13).
Finally, the filtered set of vertex pairs VP′ is returned.

Algorithm 3: vpairGenerate+

Input : Query graph q = (Vq, Eq, Lq, Σq), probabilistic data graph
G = (V, E, L, Σ, P), Vertex pair set, VP

Output : Filtered set of vertex pairs VP′

1 VP′ ← VP;
2 foreach <u, v> in VP do
3 Initialize array A;
4 count← 0;
5 foreach n in N(u) do
6 A[ln]← 1;
7 end
8 foreach label in LNT[v] do

// LNT is Label neiborhood index
9 if A[label] = 1 then

10 count← count + 1;
11 end
12 if count = 0 then
13 remove <u, v> from VP′;
14 end
15 return VP′;

5. Analysis of Other Situations

Previously, we discussed the case where the ChiSSA algorithm solves for similar
subgraph outcomes on probabilistic graphs with labeled vertices, and the uncertainty in
such probabilistic graphs exists only on the edges. In this section, we briefly describe how
to deal with other types of uncertainty cases.

5.1. Edge Label

For the case that the edges in the data graph are also labeled, the labels of both vertices
and edges in the query result need to be the same as those in the query graph. In order to
meet the above requirements, when constructing the labeled triples, the vertex labels are
combined with the labels of the corresponding edges, and when calculating the degree of
matching of the triples, only when the vertex labels and the edge labels are the same is it
recorded as a successful match.

5.2. Uncertain Vertex

Consider the case where the vertices in the data graph also have uncertainty, each
vertex is associated with a probability value which indicates the probability of the existence
of that vertex. For this case, multiply the edge probability with the vertex probability as
the new edge probability, based on which the corresponding result can be obtained using
our method. For example, assuming that the existence probabilities of vertices u, v, and

Electronics 2024, 13, 192 16 of 25

w are pu, pv, and pw, respectively, and the existence probabilities of edges e1 = (u, v) and
e2 = (w, v) are p1 and p2, respectively, the probabilities of edges e1 and e2 are updated to
p′1 = p1 pu pv, p′2 = p2 pw pv, respectively, based on our method, and then the results can be
obtained.

6. Experimentation and Analysis
6.1. Experimental Setup

Experimental environment: The hardware configuration used for the experiments is
with 1 TB of running memory; the operating system is Ubuntu 20.04.6 LTS, and all the
algorithms are implemented in C++.

Comparison algorithms: The main comparison algorithms for the experiment are the
ChiSeL [9], ChiSSA-LD, ChiSSA-LPD, ChiSSA-GD, and ChiSSA-GPD algorithms. Where
ChiSSA-LD and ChiSSA-LPD denote local algorithms based on vertex degree and ver-
tex probability degree, respectively, and ChiSSA-GD and ChiSSA-GPD denote global
algorithms based on vertex degree and vertex probability degree, respectively. Our ex-
periments do not include subgraph search algorithms on deterministic graphs because
the experimental results in Ref. [9] have verified the inefficiency of these algorithms on
deterministic graphs.

Datasets: We employ nine real datasets in our experiments, as shown in Table 4.
Among these datasets, soc-flickr, soc-FourSquare, soc-catster, yeast, dblp, and youtube can
be downloaded on networkrepository (networkrepository.com, accessed on 5 September
2023). PPI is the COG mapping of proteins and their links, which can be retrieved from the
STRING DB (string-db.org, accessed on 5 September 2023). Yago (yago-knowledge.org,
accessed on 5 September 2023) is an open-source knowledge graph consisting of extracted
entities and relations from Wikipedia, WordNet, and GeoNames. IMDB (konect.cc, accessed
on 5 September 2023) is a dataset with information on movies, actors, directors, etc.

Evaluation metrics: The evaluation metrics used in the experiment are result quality
and runtime, respectively, where result quality can be further categorized into result
accuracy and result probability. The formal definition of result accuracy is shown in
Definition 2, which reflects the degree of similarity between the obtained results and the
structure of the query graph, independent of the size of the probabilities on the edges in
the results. The result probability sum is defined as shown in Definition 3. This metric
represents the sum of the probability values on the edges in the result subgraph, and the
larger the result quality value, the higher the probability that the result obtained exists.
The combination of the two can reflect the quality of the result from the perspective of
structural similarity and the probability of existence.

Definition 3 (Sum of result probabilities). Given a top-k result set res = {r1, r2, . . . , rk} of a

query graph q, where ri = (Vri , Eri), assuming that the set of edges Eri consists of e1
ri

, e2
ri

, e3
ri

, . . . , e
|Eri |
ri ,

the result probability sum quality = ∑k
i=i ∑

|Eri |
j=1 p(ej

ri).

Table 4. Datasets.

Dataset |V | |E| Avg. Degree Labels

soc-flickr 513,970 3,190,452 12.4 70
yeast 3112 12,519 8.0 3112
dblp 226,414 716,460 6.3 15

youtube 1,134,890 2,987,624 5.3 25
soc-FourSquare 639,015 3,214,986 10.1 27

soc-catster 149,701 5,449,275 72.8 30
PPI 140,098 23,084,050 329.5 80

IMDB 1,199,921 3,782,464 6.3 60
yago 876,252 13,668,320 31.2 70

networkrepository.com
string-db.org
yago-knowledge.org
konect.cc

Electronics 2024, 13, 192 17 of 25

6.2. Experimental Results and Analysis

Setting parameter k = 5, 30 query graphs each with vertices 4, 6, 8, 10, 12, 14, and 16 are
randomly generated from the data graphs for the query operation, and the accuracy, result
probability sum, and running time of the ChiSeL, ChiSSA-LD, ChiSSA-LPD, ChiSSA-GD,
and ChiSSA-GPD algorithms to find the top-k result set are recorded.

6.2.1. Comparison of Result Accuracy

Figure 3 shows a comparison of the accuracy of the results obtained by the three
algorithms for different sizes of query graphs on nine datasets. The following observations
are made based on Figure 3:

• The accuracy of the results obtained by the four ChiSSA algorithms is much higher
than that of the ChiSeL algorithm on almost all the datasets, where the accuracy of
the results obtained by the global computation strategy is higher than that of the local
computation strategy.

Figure 3. Comparison of accuracy of results.

• As the query graph size increases, the accuracy of the results obtained by the five
algorithms decreases, but the accuracy of the results obtained by the four ChiSSA
algorithms proposed is still much higher than that of the ChiSeL algorithm. On most
of the datasets, the accuracy of the results obtained by the ChiSSA algorithms can
be maintained at a high level. There are two main reasons for this: first, the ChiSeL
algorithm assumes that all labels have exactly the same probability of occurrence
when solving for the expected value, which is not realistic. In contrast, the ChiSSA
algorithm considers the specific distribution of labels when calculating the expectation
value, which makes the chi-square value obtained by the ChiSSA algorithm more
reflective of the similarity of vertex pairs.

• The accuracy of the results obtained by the ChiSSA algorithm based on the global
computation strategy is higher than that obtained by the local computation strategy

Electronics 2024, 13, 192 18 of 25

because the local computation strategy only takes into account the distribution of
labels in the neighbors of individual vertices, while the global computation strategy
considers the overall probability distribution of labels in the data graph.

It should be noted that for the yeast, the accuracy of the results obtained by the five
methods is the same, at 0.2, which is because the number of labels and the number of
vertices in these datasets are closer to or the same as the number of vertices, so that there is
only a unique subgraph in the data graph that has the exact same structure as the query
graph, and therefore, the accuracy of the results obtained according to Definition 2 is 0.2.

6.2.2. Comparison of Sum of Result Probabilities

Figure 4 illustrates the comparison of the sum of the result probabilities found by
the ChiSSA algorithm and the ChiSeL algorithm on the nine datasets. The following
observations are made based on Figure 4: (1) The resultant probability sums obtained
by the four ChiSSA algorithms are much better than the ChiSeL algorithm on almost all
the datasets, which is because the chi-square values computed by the ChiSSA algorithms
better reflect the similarity of the vertex pairs, and thus the resultant probability sums are
better. (2) On the yeast datasets, the resultant probability sums are also identical because
the number of labels is close to the number of vertices, which makes the five algorithms
produce consistent results.

Figure 4. Comparison of sums of result probabilities.

6.2.3. Comparison of Calculation Time of Chi-Square Values

Figure 5 shows the time consumption of the ChiSeL algorithm, ChiSSA algorithm, and
ChiSSA+ algorithm to compute the chi-square value for different sizes of query graphs on
nine datasets, where ChiSSA+ denotes the ChiSSA algorithm optimized with neighborhood
vertex filtering. According to Figure 5, there are the following observations:

Electronics 2024, 13, 192 19 of 25

• The running time of the base ChiSSA algorithm is about 30% higher than that of the
ChiSeL algorithm because the ChiSeL algorithm computes the expectation vectors
with default labels that are uniformly distributed so that the expectation vectors can
be obtained before the query arrives; comparatively, the ChiSSA algorithm needs to
spend more time to compute the expectation vectors.

• The ChiSSA+ algorithm takes less time to run than the ChiSeL algorithm after opti-
mization with neighbor label filtering, because the use of neighbor labels filters out
more pairs of vertices, which effectively reduces the computations of the algorithm.

• As the size of the query graph increases, the overall computation time is increased. The
reason is that the number of vertex pairs to be computed increases with the number of
query graphs. Table 5 counts the comparison of the number of vertex pairs that need
to be computed before and after using the neighbor label filtering optimization on the
dblp dataset, which is used to explain the effectiveness of the neighbor label filtering
optimization.

Figure 5. Comparisons of time of calculating chi-square values.

Table 5. Comparisons of computing number of vertex pairs.

Query Graph Size Vertex Pair Number
ChiSSA ChiSSA+

4 56,292 17,761
6 84,510 28,696
8 113,319 41,275
10 141,373 51,620
12 169,272 56,456
14 189,799 64,566

Figure 6 shows the overall running time of the ChiSeL algorithm, ChiSSA algorithm,
and ChiSSA+ algorithm on the nine datasets with the parameter k set to 5 and the number
of vertices of the query graph set to eight. It shows that the ChiSSA+ algorithm with
filtering optimization has the highest running efficiency.

Electronics 2024, 13, 192 20 of 25

Figure 6. Total runtime.

6.2.4. Effect of Parameter k on Experimental Results

The parameter k is set to 5, 10, 15, 20, 25, and 30 for the nine datasets in Table 4, and
the query operation is carried out using 30 query graphs, in which the number of vertices
of all the query graphs is eight. The statistical results are shown in Figures 7–9.

Figure 7 demonstrates the results’ accuracy. As can be seen from Figure 7, with the
change in the k value, the overall accuracy of the results obtained by the ChiSSA algorithm
is much higher than that of the ChiSeL algorithm on almost all the datasets; the accuracy of
the results obtained by the ChiSeL algorithm decreases significantly as k increases, while
the two ChiSSA algorithms are still able to maintain a higher accuracy of the results, which
is because the expectation vectors calculated by the ChiSeL algorithm do not reflect the real
situation well, which leads to the low accuracy of the obtained top-k results.

Figure 8 demonstrates the results’ probability sums. As can be seen from Figure 8, on
almost all datasets, the probability sum of the results obtained by all ChiSSA algorithms is
much higher than that of the ChiSeL algorithm as a whole, which is because the chi-square
values obtained by ChiSSA algorithm are more effective, which in turn means they obtain
results with a higher probability of existence; as the value of k increases, the probability
sum of the results obtained by the ChiSSA algorithm is always higher than that of the
ChiSeL algorithm.

Figure 9 shows the overall running time. From Figure 9, it can be seen that the overall
running time grows linearly as the value of k increases, which is because the third step of
the algorithm, solving for the top-k results, occupies the main running time, and the larger
the value of k, the longer the time used.

In particular, on yeast, the ChiSSA and ChiSeL algorithms can only obtain one result
for any query, since their label counts are close to the vertex counts, so their result accuracies
acc = 1/k. Similarly, the result probability sums remain constant as the k value increases.

Comprehensively comparing the above results, it can be concluded that when solving
the top-k similar subgraphs on probabilistic graphs, the ChiSSA algorithm can be more
efficient than the ChiSeL algorithm in providing top-k results with better quality.

Electronics 2024, 13, 192 21 of 25

Figure 7. Influence of k on the accuracy.

Figure 8. Influence of k on the probability sum.

Electronics 2024, 13, 192 22 of 25

Figure 9. Influence of k on the time cost.

6.2.5. Index Experiment

The nine datasets in Table 4 are randomly assigned the number of labels 20, 40, 60, 80,
and 100 to study the effect of the number of labels on the index size as well as the index
running time, and the results are shown in Figures 10 and 11.

Figure 10. Influence of number of labels on the index size.

Figure 10 shows the effect of the number of labels on the index size. From Figure 10, it
can be seen that ChiSSA-index outperforms ChiSeL-index on all datasets; as the number of
labels increases, the index size increases, the number of neighboring label types maintained
by each vertex increases also increases, and the size of the neighboring label index and

Electronics 2024, 13, 192 23 of 25

neighboring label probability index increases, with a limited effect on the “label–vertex”
inverted index.

Figure 11 shows the effect of the number of labels on the index construction time. As
shown from Figure 11, the ChiSSA-index exhibits higher efficiency relative to the ChiSeL-
index. We observe that the ChiSSA-index is able to complete the index construction process
faster under the same dataset and hardware environment.

Figure 11. Influence of number of labels on the index construction time.

7. Conclusions

Aiming at addressing the low quality of the results obtained by the existing algorithms
for solving top-k similar subgraphs on probabilistic graphs, we propose an algorithm based
on the chi-square test, ChiSSA. According to the actual distribution of labels in the data
graph, the algorithm employs two new strategies for calculating the expectation vectors,
namely, the local expectation vector computation based on the distribution of the vertices’
neighbors and the global expectation vector computation based on the distribution of
labels of the whole graph. The local computation strategy computes the expectation vector
based on the distribution of labels in the vertex neighbors, and the global computation
strategy computes the expectation vector based on the distribution of labels in the data
graph. Further, we propose an optimization strategy to simultaneously improve the
results’ quality and reduce the number of vertex pairs to be computed. Finally, we conduct
experiments on real datasets, and the experimental results show that (1) in terms of result
quality, the ChiSSA algorithm is better than the ChiSeL algorithm regarding both result
accuracy and result probability sum. In terms of result accuracy, the ChiSSA algorithm
is about 20% higher than the ChiSeL algorithm overall, and in the best case the accuracy
is nearly double; in terms of result probability sums, the results obtained by the ChiSSA
algorithm are about double that of the ChiSeL algorithm. (2) In terms of runtime, the
ChiSSA algorithm has a lower chi-square-value computing time than the ChiSeL algorithm,
and in the best case is about an order of magnitude faster than existing methods.

Author Contributions: Conceptualization, Z.C. and J.Z. (Junhao Zhuang); methodology, Z.C., J.Z.
(Junhao Zhuang) and K.Y.; software, J.Z. (Junhao Zhuang) and K.Y.; validation, X.W., X.T., M.D. and
J.Z. (Junfeng Zhou); formal analysis, X.W. and X.T.; investigation, X.T.; resources, X.T.; data curation,
J.Z. (Junfeng Zhou); writing—original draft preparation, J.Z. (Junhao Zhuang), X.T., X.W., and J.Z.

Electronics 2024, 13, 192 24 of 25

(Junfeng Zhou); writing—review and editing, Z.C. and M.D.; funding acquisition, X.W. and J.Z.
(Junfeng Zhou). All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by grants from the Natural Science Foundation of China
(Nos.: 62372101, 61873337, 62272097).

Data Availability Statement: All datasets used in this study are publicly available and are discussed
in Section 6. They are also available from the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gouda, K.; Bujdosó, G.; Hassaan, M. Scaling Subgraph Matching by Improving Ullmann Algorithm. Comput. Inform. 2022,

41, 1002–1024. [CrossRef]
2. Sun, Y.; Li, G.; Du, J.; Ning, B.; Chen, H. A subgraph matching algorithm based on subgraph index for knowledge graph. Front.

Comput. Sci. 2022, 16, 1–18. [CrossRef]
3. Gu, Y.; Gao, C.; Wang, L.; Yu, G. Subgraph similarity maximal all-matching over a large uncertain graph. World Wide Web 2016,

19, 755–782. [CrossRef]
4. Chen, T.; Tsourakakis, C. AntiBenford Subgraphs: Unsupervised Anomaly Detection in Financial Networks. In Proceedings of

the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD’22, Washington, DC, USA, 14–18 August
2022; pp. 2762–2770.

5. Rotmensch, M.; Halpern, Y.; Tlimat, A.; Horng, S.; Sontag, D. Learning a Health Knowledge Graph from Electronic Medical
Records. Sci. Rep. 2017, 7, 5994. [CrossRef] [PubMed]

6. Wang, M.; Zhang, J.; Liu, J.; Hu, W.; Wang, S.; Li, X.; Liu, W. PDD Graph: Bridging Electronic Medical Records and Biomedical
Knowledge Graphs via Entity Linking; Springer: Cham, Switzerland, 2017.

7. Jin, R.; Liu, L.; Ding, B.; Wang, H. Distance-constraint reachability computation in uncertain graphs. Proc. VLDB Endow. 2011,
4, 551–562. [CrossRef]

8. Valiant, L.G. The complexity of enumeration and reliability problems. Siam J. Comput. 1979, 8, 410–421. [CrossRef]
9. Agarwal, S.; Dutta, S.; Bhattacharya, A. ChiSeL: Graph similarity search using chi-squared statistics in large probabilistic graphs.

Proc. VLDB Endow. 2020, 13, 1654–1668. [CrossRef]
10. Sun, S.; Luo, Q. In-memory subgraph matching: An in-depth study. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data, Portland, OR, USA, 14–19 June 2020; pp. 1083–1098.
11. Shang, H.; Zhang, Y.; Lin, X.; Yu, J.X. Taming verification hardness: An efficient algorithm for testing subgraph isomorphism.

Proc. VLDB Endow. 2008, 1, 364–375. [CrossRef]
12. He, H.; Singh, A.K. Graphs-at-a-time: Query language and access methods for graph databases. In Proceedings of the 2008 ACM

SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 9–12 June 2008; pp. 405–418.
13. Cordella, L.P.; Foggia, P.; Sansone, C.; Vento, M. A (sub) graph isomorphism algorithm for matching large graphs. IEEE Trans.

Pattern Anal. Mach. Intell. 2004, 26, 1367–1372. [CrossRef]
14. Kelley, B.P.; Yuan, B.; Lewitter, F.; Sharan, R.; Stockwell, B.R.; Ideker, T. PathBLAST: A tool for alignment of protein interaction

networks. Nucleic Acids Res. 2004, 32, W83–W88. [CrossRef]
15. Tian, Y.; Mceachin, R.C.; Santos, C.; States, D.J.; Patel, J.M. SAGA: A subgraph matching tool for biological graphs. Bioinformatics

2007, 23, 232–239. [CrossRef] [PubMed]
16. Liang, Z.; Xu, M.; Teng, M.; Niu, L. NetAlign: A web-based tool for comparison of protein interaction networks. Bioinformatics

2006, 22, 2175–2177. [CrossRef] [PubMed]
17. Singh, R.; Xu, J.; Berger, B. Global alignment of multiple protein interaction networks with application to functional orthology

detection. Proc. Natl. Acad. Sci. USA 2008, 105, 12763–12768. [CrossRef] [PubMed]
18. Bi, F.; Chang, L.; Lin, X.; Qin, L.; Zhang, W. Efficient subgraph matching by postponing cartesian products. In Proceedings of the

2016 International Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016; pp. 1199–1214.
19. Sun, S.; Sun, X.; Che, Y.; Luo, Q.; He, B. Rapidmatch: A holistic approach to subgraph query processing. Proc. VLDB Endow. 2020,

14, 176–188. [CrossRef]
20. Sariyuce, A.E.; Seshadhri, C.; Pinar, A.; Catalyurek, U.V. Finding the hierarchy of dense subgraphs using nucleus decompositions.

In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 927–937.
21. Chen, Y.; Zhao, X.; Lin, X.; Wang, Y.; Guo, D. Efficient mining of frequent patterns on uncertain graphs. IEEE Trans. Knowl. Data

Eng. 2018, 31, 287–300. [CrossRef]
22. Li, J.; Zou, Z.; Gao, H. Mining frequent subgraphs over uncertain graph databases under probabilistic semantics. VLDB J. 2012,

21, 753–777. [CrossRef]
23. Papapetrou, O.; Ioannou, E.; Skoutas, D. Efficient discovery of frequent subgraph patterns in uncertain graph databases. In

Proceedings of the 14th International Conference on Extending Database Technology, Uppsala, Sweden, 21–24 March 2011;
pp. 355–366.

http://doi.org/10.31577/cai_2022_4_1002
http://dx.doi.org/10.1007/s11704-020-0360-y
http://dx.doi.org/10.1007/s11280-015-0358-9
http://dx.doi.org/10.1038/s41598-017-05778-z
http://www.ncbi.nlm.nih.gov/pubmed/28729710
http://dx.doi.org/10.14778/2002938.2002941
http://dx.doi.org/10.1137/0208032
http://dx.doi.org/10.14778/3401960.3401964
http://dx.doi.org/10.14778/1453856.1453899
http://dx.doi.org/10.1109/TPAMI.2004.75
http://dx.doi.org/10.1093/nar/gkh411
http://dx.doi.org/10.1093/bioinformatics/btl571
http://www.ncbi.nlm.nih.gov/pubmed/17110368
http://dx.doi.org/10.1093/bioinformatics/btl287
http://www.ncbi.nlm.nih.gov/pubmed/16766562
http://dx.doi.org/10.1073/pnas.0806627105
http://www.ncbi.nlm.nih.gov/pubmed/18725631
http://dx.doi.org/10.14778/3425879.3425888
http://dx.doi.org/10.1109/TKDE.2018.2830336
http://dx.doi.org/10.1007/s00778-012-0268-8

Electronics 2024, 13, 192 25 of 25

24. Zou, Z.; Gao, H.; Li, J. Discovering frequent subgraphs over uncertain graph databases under probabilistic semantics. In
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA, 25–28 July 2010; pp. 633–642.

25. Lee, E.; Noh, S.H.; Seo, J. Sage: A System for Uncertain Network Analysis. Proc. VLDB Endow. 2022, 15, 3897–3910. [CrossRef]
26. Kollios, G.; Potamias, M.; Terzi, E. Clustering large probabilistic graphs. IEEE Trans. Knowl. Data Eng. 2011, 25, 325–336.

[CrossRef]
27. Hua, M.; Pei, J. Probabilistic path queries in road networks: Traffic uncertainty aware path selection. In Proceedings of the 13th

International Conference on Extending Database Technology, Lausanne, Switzerland, 22–26 March 2010; pp. 347–358.
28. Han, S.; Peng, Z.; Wang, S. The maximum flow problem of uncertain network. Inf. Sci. 2014, 265, 167–175. [CrossRef]
29. De Virgilio, R.; Maccioni, A.; Torlone, R. Approximate querying of RDF graphs via path alignment. Distrib. Parallel Databases

2015, 33, 555–581. [CrossRef]
30. Li, G.; Yan, L.; Ma, Z. An approach for approximate subgraph matching in fuzzy RDF graph. Fuzzy Sets Syst. 2019, 376, 106–126.

[CrossRef]
31. Kassiano, V.; Gounaris, A.; Papadopoulos, A.N.; Tsichlas, K. Mining uncertain graphs: An overview. In International Workshop of

Algorithmic Aspects of Cloud Computing; Springer: Cham, Switzerland, 2016; pp. 87–116.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.14778/3565838.3565844
http://dx.doi.org/10.1109/TKDE.2011.243
http://dx.doi.org/10.1016/j.ins.2013.11.029
http://dx.doi.org/10.1007/s10619-014-7142-1
http://dx.doi.org/10.1016/j.fss.2019.02.021

	Introduction
	Related Work
	Subgraph-Matching Algorithms on Non-Probabilistic Graphs
	Similar Subgraph Search Algorithms on Probabilistic Graphs

	ChiSSA Algorithm Based on Chi-Square Test
	Basic Idea of ChiSSA Algorithm
	Vertex Pair Chi-Square Value Calculation
	Strategies for Localized Computation of Expectation Vectors
	Expectation Vector Global Computation Strategy
	Observation Vector Calculation
	Index Construction

	Top-k Result Matches
	Algorithm Analysis
	Query Stage
	Index Construction

	Algorithm Optimization
	Analysis of Other Situations
	Edge Label
	Uncertain Vertex

	Experimentation and Analysis
	Experimental Setup
	Experimental Results and Analysis
	Comparison of Result Accuracy
	Comparison of Sum of Result Probabilities
	Comparison of Calculation Time of Chi-Square Values
	Effect of Parameter k on Experimental Results
	Index Experiment

	Conclusions
	References

