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Abstract: This research focuses on the crucial role of monitoring tool conditions in milling to improve
workpiece quality, increase production efficiency, and reduce costs and environmental impact. The
goal was to develop predictive models for detecting tool condition changes. Data from a sensor-
equipped research setup were used for signal analysis during different machining stages. The study
applied logistic regression and a gradient boosting classifier for material layer identification, with
the latter achieving an impressive 97.46% accuracy. Additionally, the effectiveness of the classifiers
was further confirmed through the analysis of ROC (Receiver Operating Characteristic) curves and
AUC (Area Under the Curve) values, demonstrating their high quality and precise identification
capabilities. These findings support the classifiers’ utility in predicting the condition of cutting
tools, potentially reducing raw material consumption and environmental impact, thus promoting
sustainable production practices.

Keywords: sensor system; signal processing; milling process; logistic regression; gradient boost-
ing classifier

1. Introduction

Contemporary enterprises are required to overhaul their approaches to manufacturing
and consumption in order to comply with sustainability standards. These organizations are
committed to enhancing production efficiency, minimizing raw material usage, reducing
costs, and mitigating environmental impact.

Sustainable development is becoming an increasingly vital imperative for human
activities, emerging as a central objective in human progress. The principle of sustainability
is now applied across diverse fields, including engineering, manufacturing, and design. A
growing number of enterprises now regard ‘sustainable development’ as a pivotal goal in
their strategies and daily operations, driven by factors such as the potential for heightened
operational efficiency through reduced costs and waste, the opportunity to attract new
customers, and the pursuit of a competitive advantage while concurrently minimizing
material and energy consumption. Intelligent decision-making systems play a crucial role
in supporting the development of sustainable practices. Presently, advanced technological
solutions, integrating diverse measuring sensors and data processing systems through
industrial computer networks, offer unparalleled opportunities for the advancement of
intelligent companies in sustainable development. Within the realm of Industry 4.0 appli-
cations, strategic analysis and the utilization of extensive data sets, commonly referred to
as Big Data, are pivotal. A well-structured methodology for collecting, processing, and
analyzing data is a fundamental factor in improving process and product quality while
minimizing environmental impact [1].

In the manufacturing sector, milling assumes a crucial function in light of its produc-
tion flexibility [2]. As a key component, the cutting tool significantly impacts the products’
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quality and the machines’ reliability. During milling, the cutting tool interacts with the
workpiece’s surfaces, leading to tool wear [3]. Machine tools are integral to high-tech pro-
duction, forming complex systems that are key elements of Industry 4.0. This complexity
presents several technological and research challenges that relate to service life, health
monitoring, and reliability [4,5].

Monitoring tool breakage (TBM) is vital in milling operations to uphold workpiece
quality and minimize economic losses. Accurate recognition of tool breakage conditions is
achievable through TBM methods grounded in statistical analysis and artificial intelligence,
provided there are ample training data with a balanced distribution. However, in real
manufacturing scenarios prioritizing safety, cutting tools predominantly operate under
normal wear conditions, making it exceptionally challenging to acquire signals indicative
of tool breakage [6].

Direct and indirect methods can both be used for monitoring tool conditions. Out-
put variables can be measured with indirect methods enabling analysis of the machine’s
response to events [7], tool life [8], surface roughness in both conventional [9] and micro-
machining [10], as well as cutting forces in conventional machining [11]. Direct monitoring
directly collects data from the tool’s response.

Furthermore, the mentioned direct and indirect methods play a crucial role in moni-
toring the condition of tools, thereby providing valuable information about the ongoing
process. The use of machine-learning techniques enhances the analysis of collected data,
allowing for more precise predictions and strategies for the exchange of cutting tools in the
implemented processes. By combining these monitoring methods with machine-learning
algorithms, enterprises can optimize tool utilization, minimize downtime, and improve
overall operational efficiency [12,13]. The synergy between direct and indirect monitoring,
coupled with advanced data analysis using machine learning, enables organizations to
make informed decisions and streamline processes to increase their effectiveness.

The literature presents predictive models based on machine learning for monitoring
tools, including various signals, features, processing methods, and predictive models and
their corresponding accuracies or errors [14].

In the work [15], a novel machine-learning-based approach for identifying failure
symptoms of cutting tools in both frequency and time-frequency domains is presented.
The study utilizes five cutting tools as case studies in a 200 min machining operation.
The proposed methodology is validated using various techniques, including Fast Fourier
Transform, Short-time Fourier Transform, Empirical Mode Decomposition, and Variational
Mode Decomposition. The results indicate that the suggested method outperforms other
mentioned methods in identifying failure symptoms. An advantage of this approach
is its ability to provide clearer frequency and time-frequency domain diagrams while
maintaining accuracy by considering a lower order of the system.

Salgado et al. [16] utilized vibration signals with a frequency feature, applying singular
spectrum analysis and a multilayer neural network, achieving an accuracy represented
by a RMSE of 15.11. In another study, the same authors employed motor current and
sound signals with time-frequency features using singular spectrum analysis and LS-SVM,
achieving low error rates ranging from 4.94% to 8.72%. Kilundu et al. [17] focused on vibra-
tion signals and frequency features, employing singular spectrum analysis and a neural
network, achieving an accuracy of 67.4%. Miao et al. [18] achieved an impressive 99.92%
accuracy in predicting tool conditions using vibration signals and frequency features with
a convolutional neural network. Segreto et al. [19] incorporated force, acoustic emission,
and vibration signals, applying linear predictive analysis and a neural network, attaining a
high accuracy of 98.9%.

Seemuang et al. [20] explored sound signals with time-frequency features using STFT,
but specific accuracy details were not provided. Liu et al. [21] utilized sound signals,
time-frequency features, and WPD, achieving an error rate of 8.59% with an ANN model.

Tran et al. [22] focused on cutting force signals, applying continuous wavelet transform
and a convolutional neural network, achieving a high accuracy of 99.67%. Kothuru et al. [23]
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used sound signals with frequency features, employing FFT and SVM, achieving an ac-
curacy of 95.92%. Yao et al. [24] considered vibrations with time, frequency, and time-
frequency features, utilizing FFT and a NN based on fuzzy rules, achieving an incredibly
low MSE of 0.0003%. Lu et al. [25] employed sound signals with frequency features, using
FFT and a Hidden Markov Model, achieving an accuracy of 91.8%.

Schueller et al. [26] detail milling tool life experiments conducted under various ma-
chining conditions. Signals including sound, spindle power, and axial load were collected
during the processes. Different machine-learning models were assessed for predicting tool
wear levels, comprising four individual models including a decision tree (DT), support
vector machine (SVM), k-nearest neighbors (kNN), and an artificial neural network (ANN)
and five ensemble models. The results of the analysis revealed that overall, the ensemble
machine-learning model with extremely randomized trees performed the best for this
application. This model achieved a leave-one-group-out cross-validation accuracy score of
92.4%, a 10-fold cross-validation score of 98.9%, and an averaged accuracy across 11 gen-
eralizability tests of 87.3%. The study indicates the effectiveness of the ensemble model
with extremely randomized trees in predicting tool wear levels under various machining
conditions, which can be crucial for tool condition monitoring in milling processes.

Soori et al. [27] underlined that machine-learning systems can be applied to the cutting
forces and cutting tool wear prediction in CNC machine tools in order to increase cutting
tool life during machining operations. Optimized machining parameters of CNC machining
operations can be obtained by using the advanced machine-learning systems in order to
increase efficiency during part manufacturing processes.

He et al. [28] discuss the critical need for accurate milling tool wear monitoring
during high-speed cutting processes. The authors introduce a novel MB-DAAN (Multi-
Branch Dynamic Adversarial Adaptation Network) model that addresses challenges in
data screening and signal variations caused by changes in machining parameters. The
model includes a multi-branch classification module for adaptive feature extraction during
the cutting stage and a dynamic adversarial factor to align distributions across different
machining parameters. Evaluation using a milling tool wear data set shows that MB-DAAN
achieves a significant improvement in diagnostic accuracy (97.3%) compared to other
models. The proposed model effectively addresses challenges under practical machining
conditions, making it a robust solution for on-line milling tool wear monitoring.

Literature reviews show the importance of monitoring the condition of tools during
milling processes in real production environments. Although recognizing tool condition
precisely is fundamental to maintain processed object quality and minimize economic
losses during milling operations, the challenge is to obtain signals indicative of tool con-
dition changes under production conditions. The challenge stems from the asymmetric
distribution between normal wear conditions and changes in tool condition, which makes
it extremely difficult to acquire a sufficient amount of data from the milling process for
effective statistical analysis and methods based on artificial intelligence. The identified
research gap highlights the requirement for innovative methodologies or techniques that
can detect data distribution asymmetry and enhance the efficiency of monitoring tool
wear, especially under production conditions. Furthermore, the application of alternative
machine-learning methods to develop highly accurate predictive models is recommended.

The main objective of this article was to develop predictive models that allow for
the identification of changes in the state of the cutting tool during the milling process. To
build these models, data obtained from a properly prepared research work stand equipped
with various types of sensors mounted on the technological machine were used. Logistic
regression and gradient boosting classifiers were used to develop the predictive models.

The article consists of an introduction followed by a chapter describing research
methods and materials. Then, the research results obtained using various signal sources
and machine-learning methods are presented. Finally, the conclusions and future directions
of the research are presented.
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2. Materials and Methods

The research was carried out in two stages. The aim of the first stage was to develop
and carry out laboratory experiments and build a database of measurement data, which
will be used to develop methods for analyzing signals and identifying their parameters,
allowing for preventive and predictive supervision of cutting tool wear in the machining
process of machine parts. The experimental research was carried out on a Haas VF-1
industrial CNC machine (Figure 1) equipped with a set of sensors (accelerometers, power
sensors, acoustic sensor).
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Figure 1. Haas milling machining center type VF-1 with sensors.

Vibration measurements were taken near the machine spindle. A three-axis Hansford
sensor with a sensitivity of approximately 100 mV/g was selected. The design of the milling
spindle made it impossible to install the vibration sensor directly inside the machine’s
working chamber. The sensor was installed in the place closest to the spindle bearing after
removing the machine covers. For this reason, it was decided to install an independent
acoustic signal source inside the machine’s working chamber. A microphone with a
sensitivity of approximately 50 mV/Pa was selected. An additional parameter measured
was the power consumption of the milling machine from one of the phases. A current
transformer with a sensitivity of approximately 10 mV/A AC was used to record from this
source. The cables from the above-mentioned transducers were secured and routed to the
measurement system consisting of signal conditioners, a measurement card, and a laptop
with installed data visualization and recording software. The system was calibrated using
calibrated reference signals. To ensure the reliability of the obtained data, the new sensors
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were tested on dedicated calibration stations. The entire measurement track was calibrated
with standards independently before each series of measurements.

Figure 2 presents the scheme illustrating all the recording signals.
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In the research, the accuracy of measurements of selected physical quantities was
analyzed using algorithms taking into account the current metrological properties of the
measurement paths of these quantities in the full range of processing. The metrological
properties of the measurement paths were determined as a result of the developed methods
for the calibration of sensors and measurement paths under laboratory conditions. Data
representing the cluster-zone processing in the experiments were acquired in real time. The
main goal of this stage was to obtain qualitative data from measurements of electrical and
non-electrical quantities.

For the experiments, 1.7225 steel samples with a hardness of 45 ± 2 HRC were utilized.
Two types of cutters, namely, a TEFS-E44-CF and a TEC-A4, were employed in the research.

The study focused on the milling process, a machining technique involving the re-
moval of successive material layers until the desired object geometry is achieved. Key
parameters in the milling process encompass cutting speed, feed speed, as well as the
depth and width of the cut. Optimal parameters are determined based on specialized tables
provided by the tool manufacturer. The input parameters for the process are the cutting
tool, material, and technological process parameters (x1—cutting speed, x2—feed speed,
and x3—depth of cut). Additionally, spindle load and spindle vibrations were recorded
during the tests. The following process parameters were defined: cutter Φ 6 mm (4 blades),
turn-over 5300 rpm, feed speed 1270 mm/min, cutting speed approximately 100 m. During
the milling process, data from the installed sensors were recorded and collected in real time.

The aim of second phase of the research was to develop advanced methods and
models for analyzing industrial measurement data in order to refine the raw data into
predictions that support decisions for monitoring and supervising the condition of cut-
ting tools. Logistic regression and a gradient boosting classifier were used to develop
predictive models.
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3. Results and Discussion
3.1. Preliminary Analysis of the Results Obtained

An analysis of signals originating from sensors mounted on a prepared research station
was conducted. The study encompassed 10 material processing samples, with a maximum
of four processing layers applied to each sample. Before each processing step, a new milling
tool was mounted on the machine spindle to ensure consistent measurement conditions.

The recorded signals had a sampling frequency of 10 kHz and were monitored through
various channels:

• Channel A0 included signals from the Z-axis sensor, associated with the machine’s
movement along the Y-axis.

• Channel A1 recorded signals from the Y-axis sensor, associated with the machine’s
movement along the Z-axis.

• Channel A2 was responsible for recording signals from the X-axis sensor, associated
with the machine’s movement along the X-axis.

• Channel A3 encompassed signals from a microphone with a sensitivity of 50 mV/Pa,
used for monitoring the noise generated during processing.

• Channel A4 recorded signals from the spindle current transducer, providing informa-
tion about the current in that area.

• Channel A5 included signals from the milling machine’s current transducer, supplying
information about the current in the milling area.

The first step in the initial analysis was signal processing. For each layer to be analyzed,
the signal readings were divided into sequences containing 10.000 elements (a sequence
contains a 1 s signal reading). The average values of these series were determined for the
accelerometer, as were the absolute average values for microphone signals. For the current
transformer, averages were determined from the absolute values of the readings. The signal
processing results (averages for each second) for the first sample during seconds 50 to 400
are shown in the Figures 3–8.

The results presented suggest observable differences in the signal values for each layer.
When analyzing the graphs, clear differences in the averages for each of the signals tested
are noticeable. Particularly for Layer 1, it can be observed that the average signal values
are significantly smaller compared to the other layers. An increase in the average values
for the subsequent layers suggests a process of wear of the cutting tool.

The next step in the preliminary data analysis was to analyze the values of the signals
obtained. The main objective of the signal analysis was to identify mechanisms that enable
the recognition of the condition of the cutter from the signal readings.
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Let {xt}1≤t≤n denote the sequence of average values from one-second readings, i.e.,
the value of the xt is the average of 10,000 signals obtained from the sensor. The analyzed
l− is the one-second sequences of averages {xt}li+1≤t≤l(i+1) for 1 ≤ i ≤ k =

[ n
k
]
, [.] is the

integer part of the number. For l− second sequences {xt}li+1≤t≤l(i+1), the mean value and
the variance for every layer were determined:

mi = 1
l

l(i+i)
∑

t=li+1
xt,

σi =

√
1
l

l(i+i)
∑

t=li+1
(xt − mi)

2
(1)

Thus, the sequence {(mi, σi)}1≤i≤k is obtained, the elements of which belong to the
two-dimensional space R×R+.

In Figures 9–14, the obtained results for sample No. 1 are presented.
Visual analysis using the ‘mean-standard deviation’ system provides crucial infor-

mation about signal positioning for various layers. The observed distinct differences in
signal position suggest the presence of well-defined groups of signal readings for each
material layer. In the ‘mean-standard deviation’ system, the mean refers to the central value,
and the standard deviation determines the quantity of dispersion around the mean. The
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observed differences in signal position across different signal layers indicate variations in
signal characteristics during various stages of material processing. These signal groupings
suggest the existence of distinct features and parameters for each layer, which could be
linked to fluctuations in cutting tool conditions.
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Figure 14. Representation of 10 s signals for the current transformer of the milling machine load.

Table 1 presents the minimum and maximum signal values {(mi, σi)}1≤i≤k for each
layer and signal type (channel).

From the results presented in Table 1, it is observed that as the cutter time increases,
the range of basic statistics (mean and standard deviation) increases too. In Layer_1, the
mean values are between 7.3230 and 8.0840, and the standard deviations range from 0.0758
to 0.4098. In Layer_2, the mean values remain between 7.3959 and 8.2794, and the standard
deviations range from 0.0811 to 0.5234. In Layer_3, the mean values are between 7.5549
and 8. 8139, and the standard deviations range from 0.0995 to 0.7058. For the Layer_4 layer,
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the averages range from 7.5939 to 9.1788, and the standard deviations range from 0.1018
to 0.8588. It can be seen that there is variation in the values of the averages and standard
deviations between the layers, which may indicate specific characteristics of the signals in
each layer. Layer_4 shows the largest range of mean values and standard deviations, which
may suggest greater variability in the signals of this layer. This indicates that the analyzed
signals show differences specific to each layer.

Table 1. Smallest and largest values of mean and standard deviation depending on layer and
signal type.

min
1 ≤i≤k

mi max
1 ≤i≤k

mi min
1 ≤i≤k

σi max
1 ≤i≤k

σi Layer Channel

7.3000 8.0840 0.0758 0.4098 Layer_1 A0
7.3959 8.2794 0.0811 0.5234 Layer_2 A0
7.5549 8.8139 0.0995 0.7058 Layer_3 A0
7.5939 9.1788 0.1018 0.8588 Layer_4 A0
7.3230 8.0840 0.0758 0.4098 Layer_1 A1
7.3959 8.2794 0.0811 0.5234 Layer_2 A1
7.5549 8.8139 0.0995 0.7058 Layer_3 A1
7.5939 9.1788 0.1018 0.8588 Layer_4 A1
7.3230 8.0840 0.0758 0.4098 Layer_1 A2
7.3959 8.2794 0.0811 0.5234 Layer_2 A2
7.5549 8.8139 0.0995 0.7058 Layer_3 A2
7.5939 9.1788 0.1018 0.8588 Layer_4 A2
7.3230 8.0840 0.0758 0.4098 Layer_1 A3
7.3959 8.2794 0.0811 0.5234 Layer_2 A3
7.5549 8.8139 0.0995 0.7058 Layer_3 A3
7.5939 9.1788 0.1018 0.8588 Layer_4 A3
7.3230 8.0840 0.0758 0.4098 Layer_1 A4
7.3959 8.2794 0.0811 0.5234 Layer_2 A4
7.5549 8.8139 0.0995 0.7058 Layer_3 A4
7.5939 9.1788 0.1018 0.8588 Layer_4 A4
7.3230 8.0840 0.0758 0.4098 Layer_1 A5
7.3959 8.2794 0.0811 0.5234 Layer_2 A5
7.5549 8.8139 0.0995 0.7058 Layer_3 A5
7.5939 9.1788 0.1018 0.8588 Layer_4 A5

The change in mean values and standard deviation is also noticeable between individ-
ual channels. For channel A0, the minimum values range from 7.3230 to 7.5939 across all
layers, and the maximum values gradually increase from 8.0840 to 9.1788 from Layer_1
to Layer_4. The standard deviation shows a slight increase from 0.0758 to 0.1018 as we
move through the layers. This pattern is consistent across all channels (A1 to A5), where
minimum values remain relatively constant, maximum values gradually increase with
layers, and the standard deviation shows minor changes.

Summarizing, the data analysis revealed consistent behavior across all channels, with
the primary changes occurring between layers. This consistent trend suggests that any
deviations or anomalies in the data are more likely to be specific to certain layers rather than
specific channels. The main task in layer identification involves, on one hand, processing
the raw signal, and on the other, constructing a classifier that could recognize the layer in
the analyzed case, which is directly related to cutter wear. Since six signals were analyzed,
basic statistics such as the mean value and standard deviation were determined for each
signal based on 10 s readings. These statistical values were used as predictors for the
classification models. This information has been supplemented in the content of the article.

3.2. Construction of the Classifier
3.2.1. Creating a Database

In the process of signal analysis, each signal was analyzed in detail by dividing
it into sequences of 100,000 elements. For each of these sequences, mean values were
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calculated for the signals coming from both the accelerometer and the microphone. For the
signals from the current transformer, mean absolute values were determined. This process
made it possible to create new sequences representing the averages for the individual
signal channels.

The data set contains 3738 records. Table 2 presents the distribution of the number of
cases for each layer in this data set.

Table 2. Number of cases in the data set for each layer.

Layer Number of Case

1 1305
2 1305
3 955
4 173

The differences in the number of cases between layers reflect the variation in samples
from different stages of the process, which is an important aspect in terms of analyzing the
signals and understanding their characteristics depending on the material layer.

In order to effectively develop a classifier to identify the layer of material being
processed, the data set was divided into a learning set, representing 80% of the cases, and a
test set, comprising 20% of the cases. The test set consists of 748 instances.

Let D =
{
(xi, yi) : xi ∈ R12, yi ∈ {1, 2, 3, 4}, 1 ≤ i ≤ n

}
denotes the data set n = 3738.

Elements of the sequence {xi}1≤i≤n are the values of basic statistics such as the mean value
and standard deviation determined on the basis of 10-s readings from the sensors. The
elements of the vectors xi ∈ R12, 1 ≤ i ≤ n belong to the four classes and are predictors
for classification models. The following methods were used to construct the classifier for
identifying the layer of processed material:

• Logistic regression;
• Gradient boosting classifier.

These advanced classification models are designed to effectively recognize layers of
processed material based on signal analysis. Their effectiveness will be tested on the test
set, which will allow for assessing the effectiveness of the classifier. This approach allows
one to develop an understanding of the machining process and to improve the precision of
identifying material layers, which is a key element of optimizing production processes.

3.2.2. Logistic Regression

Let (Ω,F , P) be the probabilistic space, and Y : Ω → {0, 1} . Logistic regression de-
scribes the distribution of the probability of realizing the random variable Y based on the
realization of the independent variables X ∈ R12 [29,30]. To apply logistic regression for
each of the classes k ∈ {1, 2, 3, 4}, modify the training set Dk =

{(
xi, yk

i

)}
1≤i≤n

, where

yk
i =

{
0, yi ̸= k
1, yi = k

and the value

θ(xi) =
P(Y = 1|xi )

1 − P(Y = 1|xi )
(2)

means (odds).
In logistic regression, we analyze the linear dependence of the logarithm of the odds

based on the realization x(i) = (1, xi):

ln θ
(

x(i)
)
= ln

 p
(

β, x(i)
)

1 − p
(

β, x(i)
)
 = x(i)β + ε, (3)
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where ε is a random variable with a normal distribution N
(
0, σ2) and β = (β0, β1, β2, . . . , β12).

From Formula (3), we have:

p
(

β, x(i)
)
=

ex(i)β

1 + ex(i)β
. (4)

For each class k ∈ {1, 2, 3, 4}, we solve the task

βk = argmaxLk(β), (5)

where the likelihood function Lk(β) is given by:

Lk(β) =
N

∏
i=1

(
p
(

β, x(i)
)yk

i
(

1 − p
(

β, x(i)
))1−yk

i
)

. (6)

To estimate the structural parameters of βk for the k − th class, task (5) is replaced by
an auxiliary task:

βk = argmax ln Lk(β), (7)

where

ln Lk(β) =
n

∑
i=1

(
yk

i x(i)β − ln
(

1 + ex(i)β
))

When the predictors are collinear, then ELASTICNET regularization [31,32] is addi-
tionally used. The parameters of linear regression in model (7) are determined by solving
the problem:

max
β

{
n

∑
i=1

(
yk

i x(i)β − ln
(

1 + ex(i)β
))

− λPα(β)

}
, (8)

where λ > 0, 0 ≤ α ≤ 1, and Pα means the penalty given by the formula:

Pα(β) = α∥β∥L1
+

1 − α

2
∥β∥L2

=
p

∑
j=1

(
α
∣∣β j

∣∣+ 1 − α

2
β2

j

)
. (9)

For each class, the parameters βk, k ∈ {1, 2, 3, 4} were estimated. For the realization
of independent variables x(i), the probability of belonging to the k−th class was assessed
as follows:

p
(

βk, x(i)
)

∑4
j=1 p

(
βj, x(i)

) (10)

The results of the analysis of the use of logistic regression for the test set were presented
using a confusion matrix and the overall accuracy of the classifier (Table 3). The overall
accuracy of the model is 90.78%. The classifier successfully identifies Layer 1, achieving
254 correct predictions and only seven errors. However, as the number of layers increases,
errors increase, especially for Layer 2 and Layer 3, which may require further optimization
of the model. It is worth paying attention to cases where errors occur, which may suggest
difficulties in distinguishing between certain classes.

Table 3. Confusion matrix for logistic regression.

Predicted

Layer 1 Layer 2 Layer 3 Layer 4

R
ea

l

Layer 1 254 7 0 0
Layer 2 11 243 6 1
Layer 3 1 30 159 1
Layer 4 2 0 10 23
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Additionally, characteristics were estimated for each class (Table 4). The analysis of the
logistic regression classifier’s recognition characteristics demonstrates the effectiveness of
the model in classifying individual layers. High values for sensitivity (Recall) indicate that
the model effectively identifies positive cases in all layers. Specificity is also high, indicating
effective detection of negative cases. The Precision (positive predictive values—Pos Pred
Value) exhibits variability, with the highest being seen in Layer 1 and the lowest in Layer 4.
Furthermore, the negative predictive values (Neg Pred Value) generally remain high,
particularly for Layer 4. Precision and Recall demonstrate satisfactory outcomes, although
there is some variation in F1 score among the classes. Prevalence denotes the distribution
of categories in the training set, with Layer 1 and Layer 2 being predominant. Balanced
Accuracy persists at a high level across all layers.

Table 4. Classifier recognition characteristic values for each class for logistic regression.

Layer 1 Layer 2 Layer 3 Layer 4

Specificity 0.9854 0.9615 0.9442 0.9834
Neg Pred Value 0.9713 0.9240 0.9713 0.9972
Precision 0.9732 0.9310 0.8325 0.6571
Recall 0.9478 0.8679 0.9086 0.9200
F1 0.9603 0.8983 0.8689 0.7667
Prevalence 0.3583 0.3743 0.2340 0.0334
Balanced Accuracy 0.9666 0.9147 0.9264 0.9517

Additionally, a ROC curve was determined for each class, and AUC values were
estimated (Figure 15), with the best results obtained for Layer 1—AUC = 0.9923.
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ROC curves and AUC values confirm the overall quality of the classifier in distinguish-
ing between classes. This analysis is an important tool for assessing the effectiveness of the
model and indicates areas that may require further optimization [33].

3.2.3. Gradient Boosting Classifier

Boosting is one of the learning methods. It was originally implemented for the
classification problem. The idea of the boosting method consists in combination with the
‘weak’ classifiers set to produce the ‘powerful’ classifier [34,35].



Electronics 2024, 13, 185 15 of 20

Thus, the gradient boosting classifier [31] relies on the definition of the sequence of
trees {T(x, Θ1), T(x, Θ2), . . . , T(x, Θm)}, where the classification-boosted model based on
trees is created as follows:

fm(x) = fm−1(x) + T(x, Θm) =
m

∑
j=1

T
(
x, Θj

)
. (11)

To identify the layer of processed material, we determine the boosted model fm(xi)
based on data set D, where xi ∈ R12 but fm(xi) ∈ {1, 2, 3, 4} for 1 ≤ i ≤ n. The boosting
trees (11) are determined by applying a forward stagewise procedure. The classification
tree T(x, Θm) is forced to concentrate on observations that are misclassified by boosted
model fm−1(x). In every step j = 1, 2, . . . , m, the tree is defined as follows:

T
(
x, Θj

)
=

kj

∑
i=1

γij IRij(x), (12)

where R1j, R2j, . . . , Rkj ,j denotes a set of separable regions:

IA(x) =
{

0, x ̸= A
1, x ∈ A

From the above the sequence, Θj =
{(

γ1j, R1j
)
,
(
γ2j, R2j

)
, . . . ,

(
γkj ,j, Rkj ,j

)}
identifies

the parameters of the j−th classification tree. For the j−th step (j > 1), the parameters of
tree (12) were estimated by the solution of the task:

Θj = argmin
Θ

n

∑
l=1

L
(
yl , f j−1(xl) + T(xl , Θ)

)
(13)

where L(.) denotes the loss function, and (xl , yl) ∈ D, 1 ≤ l ≤ n. In this case, the K-class
exponential loss function was used [36].

The results of the analysis of the application of the gradient boosting classifier for the
test set are presented in the confusion matrix (Table 5).

Table 5. Confusion matrix for gradient boosting classifier.

Predicted

Layer 1 Layer 2 Layer 3 Layer 4

R
ea

l

Layer 1 261 0 0 0
Layer 2 3 257 1 0
Layer 3 0 7 183 1
Layer 4 0 0 7 28

The values in each cell represent the number of cases assigned to the class. For example,
the number 261 in the first row and first column means that for true Layer 1 instances, the
classifier also correctly predicted Layer 1 in 261 instances.

The overall accuracy of the classifier on the test set is 97.46%, which means that
almost 98% of the instances were classified correctly. The classifier seems to be effective
in discriminating between different layers, especially for Layer 1 and Layer 2, where it
achieves very high accuracy. It is worth noting that the lack of errors in Layer 1 may suggest
that this class is relatively easy for the classifier to recognize.

However, it is also important to note individual error cases, such as the seven cases in
which Layer 3 was misclassified as Layer 4. Analysis of these cases may be important to un-
derstand the specifics of the classifier’s errors and potential areas for further optimization.
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The obtained results suggest that the gradient boosting classifier performs well in
classifying the different layers, offering high overall accuracy, but it is worth analyzing the
error cases in detail for possible model improvement.

Additionally, characteristics were estimated for each class, and their values are pre-
sented in Table 6.

Table 6. Values of the classifier’s recognition characteristics for each class.

Layer 1 Layer 2 Layer 3 Layer 4

Specificity 1.0000 0.9917 0.9856 0.9903
Neg Pred Value 0.9938 0.9856 0.9856 0.9986

Precision 1.0000 0.9847 0.9581 0.8000
Recall 0.9886 0.9735 0.9581 0.9655

F1 0.9943 0.9790 0.9581 0.8750
Prevalence 0.3529 0.3529 0.2553 0.0388

Balanced Accuracy 0.9943 0.9826 0.9719 0.9779

Analysis of the results for the gradient boosting classifier reveals the classifier’s excel-
lent ability to effectively identify individual classes. The sensitivity (Recall) for each of the
layers (Layer 1–4) remains at an impressive level of over 95%, demonstrating the classifier’s
ability to effectively identify instances of a particular class from among all actual instances
of that class.

Specificity for most layers also remains at a very high level, demonstrating the ability
of the classifier to correctly detect cases that do not belong to a given class among all cases
that do not belong to that class.

The Precision (Positive Pred Value) for most of the strata approach 1, indicating the
effective detection of true positive cases. Neg Pred Value values also remain high, indicating
effective elimination of false positive cases.

Comparing the layers, it can be seen that Recall, Specificity, and Precision are highest
for Layer 1, suggesting that for this class, the classifier achieves the highest performance.
Layer 3 achieves the lowest Precision, but it still maintains a satisfactory level.

Balanced Accuracy for each layer remains very high, confirming the overall effective-
ness of the classifier in the context of the balanced classification problem.

Additionally, as for the previous model, a ROC curve was determined for each class,
and the AUC value was estimated (Figure 16).

Comparing the recognition of layers, it can be seen that the gradient boosting classifier
(97.46%) has a better overall accuracy on the validation (test) set than the logistic regression
(90.78%). Precision (Positive Pred Value—the proportion of correctly recognized positive
cases among positively classified cases) and Recall (sensitivity—the proportion of posi-
tively recognized positive cases among positive cases) are responsible for the accuracy of
recognizing individual layers (as positive cases).

Moreover, comparing the Precision values, it can be seen that regardless of the layer,
better results were obtained for gradient boosting classifier. A new cutter was used for
Layer 1, and the cases for Layer 1 were accurately recognized by the gradient boosting
classifier (i.e., Precision = 1). For logistic regression, Precision is 0.9732. For the remaining
layers, the Precision in the gradient boosting classifier is at least 0.8, whereas for logistic
regression, it is less than 0.66 for Layer 4.

The recall for the gradient boosting classifier is at least 0.95 regardless of the strata,
whereas for logistic regression, it is below 0.95. When analyzing the area under the curve,
it can be observed that for the gradient boosting classifier, it is above 0.99 regardless of the
layer, whereas for logistic regression, it is above 0.99 only for Layer 1.

Therefore, by analyzing the above layer detection characteristics (which are equivalent to
cutter wear), the gradient boosting classifier identifies the cutter condition quite accurately.
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4. Conclusions

The proper identification and management of tool wear in milling processes is ex-
tremely important to ensure the integrity and quality of machined objects while minimizing
economic losses. This commitment to quality control and efficiency aligns perfectly with the
overall concept of sustainable development—a paradigm that seeks to harmonize economic
progress with environmental responsibility and social equality.

In the context of sustainable development, recognizing and addressing tool wear not
only contributes to the economic sustainability of production processes but also aligns
with environmental conservation goals. By optimizing the use of tools and extending
their lifespan through the precise identification of wear, it possible to reduce the demand
for new tools, resulting in lower consumption of raw materials and energy needed for
their production.

Literature reviews have pointed out the need for developing innovative approaches
and techniques that can effectively handle the asymmetry in data distribution. Further-
more, the application of alternative machine-learning methods to develop highly accurate
predictive models is recommended. In this context, the main goal of the article was to de-
velop predictive models enabling the identification of changes in the tool condition during
milling. The research was conducted on various material samples subjected to different
machining layers, providing a significant perspective in the analysis. The research results:

• Confirm the effectiveness of the applied predictive models, especially the gradient
boosting classifier, which achieved high accuracy at 97.46%. The analysis of ROC
curves and AUC values further confirmed the high quality of the classifiers, emphasiz-
ing their ability to precisely identify different material layers. It is worth noting that the
analysis of sensor signals was comprehensive, covering various machine monitoring
channels, which additionally enhances the credibility of the obtained results;

• Not only confirm the importance of monitoring tools in the milling process but also
introduce innovative approaches that can significantly improve the effectiveness of
this process in production conditions;

• Confirm that the implementation of the proposed models could play a crucial role in di-
minishing the occurrence of nonconforming products attributed to the condition of the
cutting tool. These considerations are poised to curtail the consumption of raw materi-
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als, minimize production waste, and consequently alleviate the environmental impact
of the company. This aligns seamlessly with the principles of sustainable production.

The results obtained in this study are better than those previously conducted in the
analyzed area. For example, in [17], the use of singular spectrum analysis and a neural
network resulted in a lower accuracy of 67.4%. However, in publication [19], an accuracy of
98.9% was achieved using an approach integrating force, acoustic emission, and vibration
signals, which is similar to the comprehensive analysis of the sensor signal in the present
study. Moreover, the work in [22] achieved a remarkable accuracy of 99.67% using a
convolutional neural network focusing on cutting force signals. What is more, slightly
worse results are presented compared to the results obtained in this study in the works
in [26,28], with an accuracy of 92.4% and 97.3%, respectively. In addition, slightly worse
results in the accuracy of the model were presented in the works in [37–39] using, e.g., GBC.
The obtained models achieved an accuracy of 80%, 97%, and 92.98%, respectively.

The research on tool wear management in milling processes, though offering sig-
nificant insights for quality control, economic efficiency, and alignment with sustainable
development principles, presents several inherent limitations:

• The heavy reliance on machine-learning models, particularly methods like gradient
boosting classifiers, poses its own set of challenges. Though these models have
shown high accuracy, their performance is contingent on the availability of substantial
and quality data. In situations with limited or noisy data, their applicability and
effectiveness could be compromised.

• The research’s focus on specific materials and machining layers also raises questions
about the generalizability of the findings. The models developed might require
additional adjustments to be applicable to different materials or layers, limiting their
immediate transferability to other manufacturing contexts.

• Despite being comprehensive and covering various machine monitoring channels, it
is possible that not all aspects of tool wear are fully captured through these channels.
There might be facets of tool wear or conditions that remain undetected, which could
affect the overall accuracy and reliability of the predictive models.

• The practical implementation of these models in real-world production settings is
another area of concern. Integrating these advanced systems with existing manu-
facturing processes, training personnel, and ensuring consistent performance under
varying operational conditions could pose significant challenges, especially in less
technologically advanced facilities.

5. Directions of Future Research

Future research in this area should focus on several key areas to understand and
optimize machining processes and tool wear. The first step is to experiment with different
machining tools. Conducting tests using tools of various types, sizes, and materials will
help us to understand how changing the tool affects the results. Equally important is the
optimization of process parameters, such as rotational speed, feed rate, or cutting depth, to
see how these changes affect the quality of machining and tool wear.

Next, research should focus on testing the different materials being machined. Con-
ducting a series of experiments on various materials will allow for a comparison of how
tool wear and machining quality change depending on the material properties.

A key element of the research is the analysis of tool wear. Regular measurements of
the surface roughness of the machined surface can provide information about the degree of
tool wear.

Moreover, considering that data analysis indicates consistent behavior across different
channels, with major changes occurring between layers, future research should focus on a
detailed examination of those layers where the greatest changes were observed. Analysis of
individual channels can also help identify specific channels that exhibit different behavior.

Additionally, the use of data analysis and modeling of the machining process can bring
new perspectives. Creating additional models by applying different machine-learning
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methods to analyze large data sets from experiments can help identify patterns and rela-
tionships that are not obvious with traditional analysis methods.
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