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Abstract: The generation of a huge volume of structured, semi-structured and unstructured real-time
health monitoring data and its storage in the form of electronic health records (EHRs) need to be
processed and analyzed intelligently to provide timely healthcare. A big data analytic platform is
an alternative to the traditional warehouse paradigms for the processing, analysis and storage of
the tremendous volume of healthcare data. However, the manual analysis of these voluminous,
multi-variate patients data is tedious and error-prone. Therefore, an intelligent solution method is
highly essential to perform multiple correlation analyses for disease diagnosis and prediction. In
this paper, first, a structural framework is proposed to process the huge volume of cardiological
big data generated from the hospital and patients. Then, an intelligent analytical model for the
cardiological big data analysis is proposed by combining the concept of artificial neural network
(ANN) and particle swarm optimization (PSO) to predict the abnormalities in the cardiac health of
a person. In the proposed cardiac disease prediction model, an extensive electrocardiogram (ECG)
data analysis method is developed to identify the probable normal and abnormal cardiac feature
points. Simulation results show the effects of a number of attributes for improving the accuracy of
the cardiac disease prediction and data processing time in the cloud with an increase in the number
of the cardiac patients.

Keywords: big data; cardiac disease; electrocardiogram (ECG); artificial neural network (ANN)

1. Introduction

Cardiovascular diseases are very common now due to the changes in lifestyle and
food habits [1]. Mostly, an electrocardiogram (ECG) is used to measure the cardiac activity
of the heart in the form of a signal that can be beneficial in the care of the chronic heart
patients [2,3]. The ECG signal produces a large number of unstructured data sets, which are
difficult to process in the traditional approaches. In addition, in-hospital patients generate
varieties of clinical data at a tremendous speed, which needs to be processed and stored
for further analysis. Based on a survey, approximately 50 petabytes of digital healthcare
data are estimated to be generated in 2012, and the trend continues exponentially to reach
2500 petabytes in the future [4]. Hence, a big data analytic framework is the best solution
to analyze the gigantic structured, semi-structured and unstructured data in an efficient
manner at a single point of time [5]. However, when huge numbers of patients are involved
with different health parameters with symptoms of abnormal cardiac health, it becomes
a tedious job for the physicians to identify the heart disease. In addition, the complex
correlation analysis considering multi-variable health parameters cannot be performed
manually [6].

To determine the cardiac complications accurately, it is required to process and analyze
large number of co-related parameters together. The statistical analysis of such a huge num-
ber of parameters is a highly challenging, time-consuming and tedious task [7]. Moreover,
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existing statistical analysis tools are very expensive and offer only a handful number of
analysis methods. In the absence of state-of-the-art analysis methods, the in-depth under-
standing of responsible causes behind cardiac complications remains a challenging issue [8].
To gain in-depth knowledge of available data, intelligent algorithms can be employed as an
alternative tool on a case-by-case basis depending on the requirement and scenario on hand.
For instance, answer set programming (ASP) is considered one of the practical tools for
high-utility data extraction from a large-scale dataset to improve the accuracy and efficiency
of big data management [9]. Currently, the artificial intelligence (AI) technique is utilized
for healthcare data analysis especially for the cardiogenic issues [10]. The machine mimics
the way a human observes, interprets, evaluates, and makes decisions based on the trained
data [11]. Powered with multiple supervised and unsupervised learnable algorithms, AI
replaces traditional rule-based strategies with data-driven approaches and is capable of
learning from the positive and negative experiences. Those inferred clinical diagnoses assist
clinicians in faster decision making with a higher reduction in their workload. Considering
the importance of AI, a logical framework for studying the evolution of neurological dis-
orders is developed by integrating the concept of artificial neural networks (ANNs) and
ASP [12]. The authors have extensively researched the brain’s structural connectivity by
representing it as a graph network. The proposed protocol achieved impressive results
with precision, recall and F-score of 0.89, 0.88 and 0.88, respectively.

The e-health care system can be strengthened using both cloud and big data technology,
where the entire healthcare system can be digitized, and any information of a patient can
be accessed by the authorized person from anywhere at any time [13]. Considering the
platform as a service (PasS) and infrastructure as a service (IaaS), cloud services are used
for big data, where the IasS deals with on-demand virtual machines and virtual resources
from a large storage pool present in the data centers. PaaS provides a computing platform
such as an operating system, database, web service and parallel program execution [14].
Virtualization is one of the key technologies that can act as a backbone of various big
data analysis tools such as Hadoop, where chunks of data are processed parallelly in
multiple servers [15].

The maintenance of a healthcare system is expensive and difficult, since a bulk amount
of emergent data are generated over time [16]. Further, these healthcare data need extensive
analysis to make real-time decisions based on the extracted information in the form of
knowledge. Therefore, we intend to propose statistical big data analytic models with a
machine learning approach for the critical cardiological data analysis in the healthcare
environment. Furthermore, an optimization technique is introduced to minimize the
storage, transfer, and processing cost in the cloud. In this paper, a dynamic big data
analytic framework is designed to handle the high volumes of critical patient data and
extend it to analyze the ECG batch data as an application of big data processing. In
addition, an intelligent heart disease prediction model is proposed using the approach
of an artificial neural network (ANN), which has the potential to establish an implicit
relationship between the complex nonlinear patient’s health parameters. In addition, the
particle swarm optimization (PSO) technique is employed to reduce the computational
burden in ANN in terms of accuracy, speed of convergence, and global optimization.
Eventually, the resulted data can be stored in the cloud for future analysis by doctors,
patients, nurses and researchers.

The rest of the paper is organized as follows. The related works with our contributions
are presented in Section 2. A cardiological big data processing and analysis architecture is
proposed in Section 3. The delineation of abnormal ECG feature points with heart diseases
prediction using an artificial neural network is described in Section 4. Simulation results
are given in Section 5, and concluding remarks are made in Section 6.

2. Related Work

Recently, there is a rapid growth of data-intensive applications such as digitized
medical records, scientific data analysis, semantic web analysis, sensor data and bio-
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informatics data analysis. Hence, big data have drawn attention from industry, academia,
scientists and governments. According to [17], the healthcare data analytics are categorized
into three different parts, such as descriptive, predictive and prescriptive analytics. The
descriptive analytic is described as the report summary of the data sets that are under
investigation. It may be used to address the questions like “What is the problem and
what precautions are needed?” However, the descriptive analytic is unable to predict the
future health condition, which is overcome by the predictive analytic. In the predictive
analytic, various statistical models can be utilized to know the future health conditions
on the historical data sets, which can answer questions like “What could be the health
conditions after one day?”. Similarly, the prescriptive analytics can answer the question
such as “What is the best scenario?”, which is usually used in optimization problems.
Hence, our aim is to answer such questions correctly.

A secure medical distributed big data ecosystem is designed using the Hadoop plat-
form in [18], where the personalized healthcare data are stored centrally but analyzed in a
distributed fashion through the developed data synchronization module. This Hadoop-
based health management service enables the hospital staff to manage patient data ef-
ficiently. The authors in [19] have designed a stochastic model to predict future health
conditions by correlating multiple health parameters with their current health conditions.
The proposed model achieved a prediction accuracy of 98% with a 90% reduction in CPU
and bandwidth utilization. A new cloud-based data storage framework is proposed by
the authors in [20] for both structured and unstructured data for the heterogeneous IoT
devices. The framework is extended and integrated with the Hadoop storage system to
handle the diversified collected data types. However, no analysis is made for the healthcare
data sets. In [21], the authors have tried to optimize the cost of data migration by choos-
ing the effective data centers for data aggregation and processing, taking routing paths
into account.

Although ECG is widely adopted for the cardiac health analysis, the signal pattern is
complicated, and manual delineation of the primary feature points—namely P, Q, R, S and
T—is really difficult especially when the abnormality is minute [22]. Therefore, different
mathematical and AI models are proposed for the automatic identification of those feature
points. For instance, the authors in [23] achieved a sensitivity of 99.82% in detecting
arrhythmia using Q, R and S feature points. However, other points like P and T waves have
greater influence in a generic cardiac health analysis scenario. Similarly, the abnormality
in R and Q, R, and S points are identified by others in [24] with sensitivity = 99.8%.
Nonetheless, the contamination of Q and S points due to noise is not considered. The
classification of QRS-wave morphology is explained in [25,26] considering Q, R and S as
the dominant feature points. However, the complexity due to P and T waves are ignored in
both of the works.

The concept of CNN is employed to detect cardiovascular disease considering the
ECG in [27]. Although the work achieved a detection accuracy with true positive = 99.8%,
the precision is very low due to high false negatives. A CNN-based classification model
using ECG is developed by the authors [28] to classify cardiac abnormalities in different
categories such as normal, atrial premature beat, and premature ventricular contraction. To
calculate the risk of atherosclerotic cardiovascular disease (ASCVD), a machine learning
(ML) method is proposed in [29] that considers the electronic medical records (EMRs) in
the analysis. The proposed work outperforms the conventional pooled cohort equations
(PCEs) risk calculator. The authors in [30] have considered 74 independent cardiac-related
features such as blood pressure, heart rate, ST depression, etc., to predict the heart disease
using different ML models such as decision tree (DT), gradient-boosted tree (GBT), logistic
regression (LOG), multilayer perceptron (MPC), naïve Bayes (NB) and random forest
(RF). Out of all, the RF performs better with 98.7% accuracy. The comparison of our
proposed architecture with the existing works [2,16,19,22,31–41] are summarized in Table 1.
In addition, the summary of previous works [40–47] related to intelligent cardiac data
analysis is presented in Table 2.
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Table 1. Comparison of the proposed work with the existing works.

Related Works Big Data Map Reduce Cloud Cardiac Healthcare Data ECG Data

[16] ✓ × ✓ ✓ ×

[19] ✓ ✓ ✓ ✓ ×

[2,22] × × × × ✓

[31] ✓ × ✓ ✓ ×

[32,33] ✓ ✓ × × ×

[34] × ✓ ✓ × ×

[35,36] ✓ × × ✓ ×

[37,38] × × ✓ ✓ ×

[39–41] × × × ✓ ×

Ours ✓ ✓ ✓ ✓ ✓

Table 2. Existing intelligent models used for cardiac data analysis.

Related Works Dataset Algorithm Type Analysis # of Features Accuracy

[40] UCI Learning Classification 10 0.98
repository vector

quantization
(LVQ)

[41] Cleveland MMC, Random, Classification 14 0.57
heart Adaptive, QUIRE,

disease and AUDI

[42] Cleveland Multilayer
perceptron Classification 13 0.84

heart (MLP) + PSO
disease

[43] Cleveland Recurrent neural
network Classification 14 0.95

heart (RNN) + Long
short term

disease memory (LSTM)

[44] Cardiovascular MLP, Classification 12 (CVD), 0.74 (CVD),
disease (CVD) Support vector 11 0.71

and Framingham classifier (SVC) (Fram) (Fram)

[45] Cleveland SVM + AdaBoost Classification 14 0.88
heart

disease

[46] Cleveland, Classification Classification 11 0.87
Hungarian, and regression and
Switzerland, tree Regression

Long Beach VA, (CART)
Statlog

Data Set

[47] Department of Multinomial Classification 26 0.98
Cardiology, logistic

IGMC regression
(MLR)
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2.1. Limitations of Existing Works

Most of the related works on cardiac abnormality detection as discussed above con-
sider only a single modality of data either in the form of physical records, radiological
images, or cardiac signal-specific data. There are limited works that consider the analysis
of multi-modality data such as the integration of physiological and demographic data
with the ECG, which is one of our biggest motivations. In addition, there are a lack of big
data analysis strategies for the effective management of both structured and unstructured
cardiac healthcare data. In the healthcare industry, the handling and storing of the critical
data of the patient is highly essential and is expensive, as the bulk amount of emergency
data is generated over time. However, none of the related works on cardiac data analysis
have studied the necessity of a distributive cloud-based paradigm for the processing and
storage. Although many related works have proposed intelligent models for the cardiac
data analysis, the accuracy is not impressive [41,42,44] and has technical limitations [43].
For instance, the proposed work for cardiac abnormality determination has achieved 95%
accuracy after applying LSTM. However, LSTM possesses high computational complexity,
a longer training time, and a complex procedure of hyperparameter tuning.

2.2. Contributions

Considering the limitations of the previous related works, the main contributions of
our work can be summarized as follows.

• An advanced functional cloud-based big data analytic architecture is proposed to
process the massive volume of manifold medical data.

• A multi-modal analysis is performed considering patient’s demographic, physiological
and ECG data as feature attributes.

• ECG signal analysis is performed considering important feature points to identify the
normal and abnormal heart condition.

• An intelligent prognosis model is developed by integrating the concept of ANN and
PSO to classify the heart disease considering multi-parametric data collected from
symptoms, reports and ECG records.

• The proposed intelligent system has achieved a maximum 99% accuracy in determin-
ing the cardiac abnormality in critical cases.

• Extensive simulation is performed to validate the proposed cloud-based big data
analytic framework and heart disease prediction algorithm.

3. Framework for Cardiological Data Processing and Analysis

In and around the hospitals, a massive volume of data are generated from various
body sensors, test records, treatment procedures, and personal information of patients,
which leads to the complex storage and analysis issues. For example, the data may come
with a greater speed and large volume from various sources of the hospital, such as sensors,
instruments, records, pharmacies, research laboratories and reports of the patients in real
time, as shown in Figure 1, which is very difficult to manage using traditional methods. As
shown in the figure, all users such as doctors, patients, nurses and researchers of different
hospitals and laboratories are connected with the cloud to store their respective real-time
data. At a single point of time, a huge amount of data are generated and accessed by the
users, which motivates us to use the cloud-enabled big data platform to reduce the delay
and minimize the average cost of data analysis. In this section, the detailed architecture is
presented for the healthcare domain with the layered architecture as explained below.
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Figure 1. Sources of big data generation in medical environment.

3.1. Structural Architecture

In this section, a cloud-integrated AI-powered big data architecture is introduced
for the hospital and healthcare management. A structural view of the big data analytic
architecture is presented as shown in Figure 2. In the healthcare application scenario, big
data and cloud with machine intelligence are combined together to obtain better results in
terms of storage and performance. User layer 1st is the one in which users could be the
doctors, patients, nurses, management staffs and researchers. In this layer, the patient’s
data are generated and the extracted knowledge is used for the purpose of treatment and
decision making.

Figure 2. Structural view of proposed big data architecture.

The 2nd layer is known as the Cloud Layer, where a large number of users requests
are handled with the help of multiple virtual machines (VMs). Multiple CPU cores are
assigned to each VM for CPU-intensive request processing, and a high network bandwidth
is allocated for agile data transfer. This layer is also responsible for balancing the workload
(CPU and I/O-intensive workload) by dividing the available resources among the jobs.
In the proposed architecture, the Big Data Layer is the 3rd layer, where the Big Data
Classifier, Big Data Analyzer and Big Data Predictor are present as components for the data
classification, processing and prediction, respectively. The AI-based analysis of those high
voluminous, multi-variate cardiogenic data is performed in the Big Data Layer. The Cloud
Layer is extended to the Physical Storage Layer (4th layer) known as data centers to store
the medical data for future access and processing purposes. Finally, the analyzed data can
be visualized by the doctors, patients and researchers for future use. The proposed generic
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framework for the learnable cardiological big data analysis can be applied effectively in
collective healthcare applications.

3.2. Logical Architecture

A logical big data architecture for intelligent analysis is proposed for healthcare
applications with the support of a cloud computing framework, as shown in Figure 3. The
model is broadly classified into three different layers, i.e., the User Layer, Cloud Layer and
Big Data Layer. Each layer not only addresses the data flow but also exhibits an efficient
way to handle, store and analyze the healthcare big data.

Figure 3. Logical architecture of healthcare big data analytic platform.

3.2.1. User Layer

The user layer is the first layer of the proposed model, which is basically used for
the healthcare data input. In this layer, Data Sources (DSs) and Data Types (DTs) are
described to explain the big data generation in the healthcare domain. Doctors, patients,
nurses and different hospitals are major sources of big data generation. More specifically,
cardiac patients’ ECG and clinical data are considered as the input data sets. As the ECG
data are generated in a continuous manner over time, it becomes huge in volume with
clinical records to manage and analyze properly. The collected patients’ data are broadly
categorized as structured, semi-structured and unstructured data types. Structured data
are defined as the data present in any specific format such as text, number or character.
Each patient’s name, age, gender, etc. can be considered as the structured data, which can
be stored in a relational table format. Semi-structured data include the patient’s EHRs,
physicians prescriptions, email, etc. Unstructured data are generated by various sources
such as ECG data collected from the devices, radiology and computerized tomography
scan (CT Scan) data, which are difficult to analyze and process in the traditional analytic
platform. In addition, integrating those data for analysis and management is challenging.
For instance, the analysis and management of clinical data differ from the image analysis.
Furthermore, there is a need for parallel processing in a distributed fashion in some cases.
Accordingly, the successive cloud, big data, and storage layers fulfill the requirements
for efficient processing, management, analysis and storage of the heterogeneous multi-
modal data.

Data Sources (DS)

Patients related structured, semi-structured and unstructured data are accumulated
from various sources such as the body area network (BAN), pathological test reports, and
radiological images, which are input to the big data healthcare system.
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Data Types (DTs)

Data types are defined as different healthcare data in various formats such as ECG
data collected from the ECG sensors, radiological and computerized tomography scan (CT
Scan) data in the form of images, and blood pressure data in the form of text.

3.2.2. Cloud Layer

The Cloud Layer is solely used for handling and storing the data across the data
centers in a distributed fashion. The query requests of the doctors and nurses are also
handled by the request handlers present in this layer. In order to analyze and detect the
abnormality of a cardiac patient, huge amount of cardiogenic data are collected from time
to time in a hospital. For example, the ECG data of the patients are generated and stored in
a fault-tolerant, highly available cloud systems where the data can be accessed anywhere
at anytime. It can be achieved only if the data are stored in a highly virtualized distributed
cloud so that the scalability, elasticity, fault tolerance, self-manageability, and ability to run
on commodity hardware can be achieved. Basically, VMs take care of the requests through
a request handler. A preprocessing unit is employed to refine the raw data into a standard
format by which data inconsistency and duplicity can be eliminated.

Request Handler (RH)

The Request Handler (RH) is used for interaction and handling the data and computation-
intensive requests coming from the user layer. The proposed request handler has four
major components: job filter, scheduler or job dispatcher, VM repository and VM auditor.
The job filter component is placed at the top of this framework, which is responsible for
filtrating the incoming processes. Types of the requests are analyzed efficiently by the
job filter and are redirected to their respective queues. For instance, an analysis of heart
disease training on the last five years of data is an example of data-intensive job queue. In
contrast, medical analysis like radiological images analysis and genome sequencing are
the examples of computation-intensive job queues. A dedicated scheduler is designed to
utilize the resources optimally by redirecting the large number of small jobs to compute the
intensive queue. The VM repository is also known as a reconfigurable VM repository, which
acts as the bridge between the server and the user. The VM repository is reconfigured as per
the requirements of the computation-intensive and data-intensive jobs. The configuration is
varied between the VMs in terms of memory, processing capabilities, network bandwidth
and storage. The VM auditor is mainly used for configuring and allocating the VMs as per
the user requirements. However, if any shortage of VMs occurs, the VM auditor leases and
reconfigures the required VMs. Once the task is performed, all VMs are released and are
recomposed by the VM auditor.

The VMs are provisioned to the physical servers present in the data centers for the
proper utilization of the resources. The configurations of the VMs are different in terms of
memory, processing cores, network bandwidth and storage. After the completion of any
task, the allocated VMs are released for future use. The cloud platform for the big data
analysis can act as an off-premise computing environment to store the data on the Internet
and can be available for analysis irrespective of any locality. Hence, the Cloud Layer is
more essential to include in our proposed healthcare data analytic platform for patient data
storage and processing by incorporating with the Big Data Layer.

3.2.3. Big Data Layer

The Big Data Layer comprises four sublayers, i.e., Data Management (DM), Data
Integration (DI), Data Analyzer (DA) and Data Visualization (DV).

Data Management (DM)

In the Data Management (DM) layer, the incoming patient data are processed into
information and are managed through different data-intensive software frameworks like
Hadoop MapReduce. A MapReduce programming model is used for the processing of
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large data sets in parallel and distributed fashion. Basically, the map function is used
to match, filter and sort the processing tasks, whereas the Reduce function is utilized to
aggregate and summarize the resultant operations.

Data Integration (DI)

In this phase, the processed data that come from the DM phase are integrated with the
existing patient warehouse. In a healthcare environment, the newly generated patient data
are consolidated with the existing data to maintain the continuity of the information.

Data Analyzer (DA)

In this phase, different analysis such as prediction, interactive analysis, descriptive
analysis, data mining and business intelligence are carried out on the stored data. However,
the exact investigation depends on the user’s requirement. In the healthcare domain,
possible future complications and failure are anticipated using a prediction mechanism
for which preventive action can be taken. Therefore, for accurate prediction of the cardiac
abnormality within a shorter span of time, a fusion of intelligent ANN and PSO algorithms
is incorporated in this analyzer.

Data Visualization (DV)

In Data Visualization (DV), the resultant data are represented in various formats with
different granularities. For example, the stored data are presented in graphical formats for
the doctors, patients and researchers to take necessary action. In the healthcare system,
the output of the data can be shown in different formats such as text, image, audio, video,
graphs, charts, and table.

3.2.4. Physical Storage Layer

In the proposed architecture, the Physical Storage layer is exclusively used for stor-
ing the analyzed data across different Data Centers (DCs) in a distributed fashion. The
Hadoop File System (HDFS) is used by the Hadoop platform to store the patients’ data
in a distributed fashion. All DCs are networked and distributed geographically. In this
layer, a zookeeper is used as a coordinator between Hadoop Executors and the HBase
repository for the data storage. HBase distributed databases are used in the cloud which
can support the fault tolerance by clustering multiple database and backup nodes, which
are also synchronized by the zookeeper. By using this kind of state-of-art architecture, a
colossal amount of patient cardiac batch data can efficiently be handled, analyzed and
stored for the healthcare automation.

4. Intelligent Model for Cardiac Disease Prediction

The proposed analytical paradigm for coronary heart disease prediction is explained in
three substeps. First, a generic hospital environment is elucidated considering how a variety
of healthcare big data are generated and how a common relationship can be established
among the patients by correlating multiple health parameters. The second step includes an
extensive analysis related to the identification of the ECG feature point’s abnormalities. In
the final phase, the intelligent heart disease prediction algorithm is derived considering
15 attributes related to the cardiac healthcare, as presented in Table 3.

Table 3. Attributes description and normalized values.

Attributes Descriptions Original Values Normalized Values

Age Age in year Continuous

0: age ≤ 30
1: 30 ≥ age < 50
2: 50 ≥ age < 70

3: age ≥ 70

Sex Male or (0, 1) 0: Female
Female 1: Male
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Table 3. Cont.

Attributes Descriptions Original Values Normalized Values

cp Chest pain

1: Typical angina 1: Typical angina
2: Atypical 2: Atypical

pain pain
3: Non-anginal 3: Non-anginal

pain pain
4: Asymptomatic 4: Asymptomatic

trestbps Resting blood pressure Continuous

Normalization
using

min–max
method

chol
Serum

Continuous
0: chol ≤ 200

cholesterol 1: 200 > chol ≤ 239
in mg/dL 2: chol ≥ 239

fbs Fasting Continuous 0: fbs ≤ 120
blood sugar 1: fbs > 120

restecg
Resting

(0, 1, 2) (0, 1, 2)electro-
cardiographic

thalach Maximum heart rate Continuous

Normalization
using

min–max
method

exang Exercise Yes or No 0:No
-induced angina 1:Yes

oldpeak ST depression (0–4) (0–4)

slope
Slope of 1: Upsloping 1: Upsloping

peak exercise 2: Flat 2: Flat
ST segment 3: Downsloping 3: Downsloping

ECG abnormality Abnormality in Yes or No 0:No
any feature points 1:Yes

ca

Number of

(0–3) (0–3)major vessels
(0–3) colored

by fluoroscopy

thal

Normal, 3: Normal 3: Normal
Fixed defect, 6: Fixed defect 6: Fixed defect

Reversible 7: Reversible 7: Reversible
defect 7: defect 7: defect

4.1. Environmental Scenario of Cardiac Healthcare Big Data

In heart disease prediction, the future health condition of a patient is anticipated
whether the patient is having any heart disease or not. Based on the proposed environ-
ment as shown in Figure 1, patients visit the hospital over time. Let m be the number of
patients that visit the hospital at time t. In a hospital, various departments are present,
and each department can have several doctors associated with different patients, as shown
in Figure 4. The time frame could be represented as hour, day, week or month. However,
the general form of time is represented as t1, t2 = t1 + ∆t, t3 = t2 + ∆t, . . . , tn where ∆t
is a constant time duration. During time t1 through tn, all the incoming patients can be
represented as (P1, t1), (P2, t2), . . . , (Pm, tn). Similarly, different departments can be rep-
resented as (Dpt1, Dpt2, Dpt3, . . . , Dptk), where k is the number of departments present
in a hospital. In each department, doctors can be represented as {(Doc11, Doc12, Doc13,
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. . . , Doc1z), (Doc21, Doc22, Doc23, . . . , Doc2z),. . . ,(Dock1, Dock2, Dock3, . . . , Dockz)}, where
z is the total number of doctors present in each department. Out of a total Pm number
of patients, each department can have a certain number of patients. For example, Dpt1
represents having (P1, P2, . . . , Pa), Dpt2 represents having (Pa+1, Pa+2, . . . , Pb), and Dptk
represents having (Pc+1, Pc+2, . . . , Pm) patients, which is expressed in Equation (1).

P =
m

∑
i=1

Pi =
a

∑
i=1

Pi +
b

∑
i=a+1

Pi + ... +
m

∑
i=c+1

Pi (1)

A patient’s heart condition is connected with various health-related parameters such as
age, body mass index, sex, type of chest pain, blood pressure, serum cholesterol, fasting blood
sugar, electrocardiographic (ECG) data, maximum heart rate, etc. Let (V1, V2, V3, . . . , Vl) be
the maximum health-related parameters correlated with each patient. It is possible that
one patient may be associated with all or some of those parameters. Hence, Equation (1)
can be rewritten as,

P =
m

∑
i=1

Pi ·
l

∑
i=1

Vi (2)

⇒ P =
a
∑

i=1
Pi ·

l
∑

i=1
Vi +

b
∑

i=a+1
Pi ·

l
∑

i=1
Vi + ... +

m
∑

i=c+1
Pi ·

l
∑

i=1
Vi

Again, the healthcare parameters are categorized into two different groups named as
basic and critical parameters.

Figure 4. Patient information across various departments of a hospital.

Definition 1. (Basic parameters) Bi: Basic parameters are defined as the general health variables
such as age, sex, body weight, body mass index, etc., which represent having a less importance level
of a disease.

Definition 2. (Critical parameters) Ci: Critical parameters are expressed as the most substantial
health variables like chest pain, blood pressure, cholesterol, ECG data, maximum heart rate, etc.
which are having a higher importance level of a disease.

The basic and critical parameters are expressed in Equation (3) as follows:

Vi =
x

∑
i=1

Bi +
y

∑
i=x+1

Ci (3)

Equation (2) can be revised as

P =
m

∑
i=1

Pi · (
x

∑
i=1

Bi +
y

∑
i=x+1

Ci) (4)
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where
x
∑

i=1
Bi are the basic parameters and

y
∑

i=x+1
Ci are the critical parameters.

⇒ P = (
m

∑
i=1

Pi ·
x

∑
i=1

Bi) + (
m

∑
i=1

Pi ·
y

∑
i=x+1

Ci) (5)

In a healthcare process, let the ith doctor (Doci) treat the ith heart patient (Pi), who has
different basic and critical parameters. Similarly, the jth patient (Pj) is treated by the jth

doctor (Docj). However, there must be some common parameters between the patients Pi
and Pj. The intersection between the basic parameters set according to Doci and Docj is
Sb

Doci ∩ Docj. For example, if patient1 has a basic parameter set {age, sex, body weight} and

patient2 has a basic parameter set {age, body weight, body mass index} Sb
Doc1 ∩ Doc2 = {age,

body weight}. The intersection between critical parameters is set according to Doci and
Docj is Sc

Doci ∩ Docj. For example, if patient1 has the critical parameter set {chest pain type,
blood pressure, serum cholesterol, maximum heart rate, smoke} and patient2 has the critical
parameter set {blood pressure, serum cholesterol, fasting blood sugar, ECG data, maximum heart
rate, smoke}, Sc

Doc1 ∩ Doc2 = {serum cholesterol, maximum heart rate, smoke}. Similarly, all
possible intersections are calculated for all the patients prescribed by the doctors. The
future heart condition is predicted by combining both basic and critical parameters in
common as expressed in Equation (6).

Sbc = Sb
Doci ∩ Docj ∪ Sc

Doci ∩ Docj (6)

4.2. Delineation of ECG Feature Points

In this analysis, ECG data are considered one of the primary inputs for cardiac health-
care prediction. ECG is a time-series record of heart activity to observe the abnormality.
In general, normal heart functioning is determined by tracking the orderly progression of
the five important feature points P, Q, R, S and T, as shown in Figure 5. The ECG signal
consists of many sequential waveforms, which is repeated periodically and described as
a P wave (atrial depolarization), QRS complex (ventricular depolarization) and T wave
(ventricular repolarization), as shown in Figure 5. Commonly, each wave has a predefined
duration. For instance, in case of a person with a healthy heart, the duration of the P
wave should be between 0.08 and 0.10 s. Any deviation from that default value could be
considered as a sign of a heart problem. The accurate cardiac abnormality from ECG is
diagnosed by observing the successive changes in the duration of those feature points for
the respective cardiac cycle. However, the correct identification of those primary points
is challenging as there is a high chance of signal distortion due to artifacts and variable
position of the points in the ECG plot. In this proposed analytic architecture, Hadoop is
used as the analysis platform, which is most suitable for the patient batch data. According
to the Hadoop platform, the clinical data can be analyzed in parallel by using various Map
(wMap, sMap and dMap) and Reduce (rReduce and cReduce) functions in different stages,
as shown in Figure 6.

Figure 5. ECG signal with R-R interval and QRS complex.
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Figure 6. Conceptual big data analytic architecture for cardiac healthcare.

The step-by-step procedure of analysis is described in Algorithm 1. Lines 1–7 present
the preprocessing of an unstructured ECG signal. In the data preprocessing phase, the noisy
ECG signal is cleaned to extract the imperative features. Nevertheless, various methods are
carried out for preprocessing including the noise removal. ECG data deal with the electric
waves, and therefore wavelet drift correction and frequency filtering will be performed as
preprocessing. Afterward, smoothing and signal enhancement is accomplished for a clear
representation of the signals. In the preprocessing stage, the ECG data waves are divided
into separate segments by considering the end of the R-wave in each PQRST cycle and stored
locally in data_ecg. Essential feature information is the key factor for the identification of
abnormalities. Thus, the feature points of ECG data are selected based on the duration
and amplitudes of P, R, and T waves (Line 12–25) after the preprocessing phase, which are
explained in wMap function of Hadoop.

In order to obtain better feature points, various segments such as RR, ST and TP are
considered as the sMap function. The QRS duration is included in the ECG assessment
in the dMap phase of the feature points selection. Here, our first objective is to find R,
P and T waves, which are very crucial factors for feature point selection. Sometimes, the
P wave is destroyed due to noise in case of low amplitude. In that situation, we simply
ignored the noisy signal in the analysis. By including both P and T waves, the analysis is
more realistic and provides better feature points. After finding different waveforms, we
are highly interested in finding the QRS complex, as it is the most distinctive one in the
PQRST cycle. The QRS duration is included in the ECG assessment (Lines 26–29). Upon
the completion of all Map functions, the intermediate results are transferred to the Reduce
phases for final execution. In the Reduce phase, two logical reduction functions are defined,
where Reduce is used to decrease the number of feature points by ignoring the unwanted
data sets. Likewise, the cReduce function is used to check the abnormality in the processed
ECG data sets. Consequently, the cardiac patients are diagnosed with respect to their ECG
data values. According to Line 30, if any of the feature points is deviated from the normal
range of cardiac functioning, then the corresponding ECG cycle is identified as abnormal.
The classified ECG signal from Algorithm 1 is used as one of the primary attributes for
heart disease prediction.
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Algorithm 1 ECG feature point analysis in Hadoop cluster

Input: data_ecg: ECG data sets.
Output: R, P, T, QRS interval.

1: Preprocessing(){
2: String[] tokens = value.toString().split(“\t”);
3: for i = 10 to tokens.length do
4: time[i/2] = tokens[i];
5: data_ecg[i/2] = Float.parseFloat(tokens[i + 1]);
6: end for
7: }
8: Select the R-waves;
9: for i = 1 to range − 1 do

10: data_dif[i] = data_ecg [i + 1] − data_ecg [i];
11: end for
12: Select the range for R-Wave;
13: for j = 1 to range − 1 do
14: if data_dif[j] < −0.5 && data_dif[j] > 0.5 then
15: Return R value;
16: end if
17: end for
18: Select the P-waves;
19: if 0.08 < data_ecg < 0.10 then
20: Return P value;
21: end if
22: Select the T-waves;
23: if 0.10 < data_ecg < 0.25 then
24: Return T value;
25: end if
26: Select the QRS-waves;
27: if 0.06 < data_ecg < 0.10 then
28: Return QRS value;
29: end if
30: Otherwise, the patient has abnormal value;
31: }

4.3. Cardiac Disease Prediction Using ANN and PSO

In this section, the formation of artificial neural networks (ANNs) [48] is narrated with
back-propagation supervised learning using historical patient data. However, the decision
to include or exclude health parameters is analyzed for each individual patient. Particle
swarm optimization (PSO) [49] is used to optimize the synaptic weights used in ANNs for
better results, which is also computationally inexpensive with respect to the processing and
speed of healthcare big data.

4.3.1. Artificial Neural Network

An artificial neural network is incorporated with a distributed network, connection
strengths and processing units. Knowledge is acquired from the environment by the
network through a learning process, which is associated with synaptic weights of inter-
neurons’ connection strengths [48]. A neural network is trained through the training
medical data sets, i.e., information are stored by associating it with other information in the
memory (neurons). The required information is invoked by the neural network based on
partially incorrect inputs, which is more suitable for the unstructured medical data.

An artificial neural network is a computational model, which is combined with three
working layers as shown in Figure 7. The first layer is called the input layer through which
l number of patient data can be pushed into the network denoted as (V1, V2, V3, . . . , Vl).
The next layer is known as the hidden layer, where the inputs are taken from the input



Electronics 2024, 13, 163 15 of 24

layer and are passed to the next output layer via a Sigmoid activation function (Φ), which
is given in Equation (7).

Φ =
l

∑
i=1

Vl · Wl + ∆th (7)

where Wl represents the synaptic weights associated with distinct neurons present in
different layers, which can be adjusted dynamically based on the behavior of the patient’s
input data with respect to the required output. In between the neurons, the weights are
associated and represented as (W1, W2, W3, . . . , Wl), respectively. The threshold in artificial
neurons is usually represented by ∆th.

Figure 7. ANN working layers.

The output layer is the third layer, where the output results come out from the network.
In our case, the heath condition of a patient results as an output, and the value of the output
neuron is a function of its activation as represented in the following equation.

Ö = f (Φ) (8)

4.3.2. Particle Swarm Optimization

Particle swarm optimization (PSO) provides a global optimized solution based on the
population on a d-dimensional space without any prior knowledge of the issues. By taking
the advantages of PSO [49], the synaptic weights are optimized in ANN, which result in a
time-efficient prediction in the healthcare domain. In PSO, each particle is evaluated by the
objective function at its current location. A swarm particle i is associated with the velocity
vector (αd

i ) and position vector (βd
i ). In the network, the velocity vector set is represented as

αi = {α1
i , α2

i , . . . αd
i } and the position vector set is symbolized as βi = {β1

i , β2
i , . . . βd

i }, where
d is the dimension of the solution space. Initially, random solutions are kept by the network
and are eventually used to update the generations to find the best solution. The movement
of each swarm particle is decided by combining the random perturbations, current and
best (best fitness) locations. During the evolution process, the velocity and position of the
particle i on dimension d are updated as follows,

αd
i = ωαd

i + ζ1 Rd
1(PBest − βd

i ) + ζ2 Rd
2(GBest − βd

i ) (9)

βd
i = βd

i + αd
i (10)

where ω is the inertia weight, and ζ1 and ζ2 are the acceleration coefficient constants. R1
and R2 are two random numbers and are uniformly distributed within [0, 1]. PBest is the
best fitness position found so far known as LocalOptima for the ith particle, and GBest is the
best position in the network, which is called GlobalOptima. Once the network is satisfied
with the termination condition, the process stops and returns the GlobalOptima, which
is used by the ANN. The detailed APSO (ANN-PSO) algorithm mechanism is described
in Algorithm 2.
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Algorithm 2 APSO algorithm

1: Initialization: Initialize swarm particles (# of neurons (input and hidden), population
size, maximum iterations, momentum weight and random variables)

2: The positions and velocities of all particles are randomized in the search space
3: for i = 1 to i ≤ n do
4: PBesti = βi
5: end for
6: Set GBest = Min{ f (βi)}, where f (i) evaluates the fitness value
7: Check for termination
8: if count == maxIter then
9: Output = GBest

10: else
11: Go to Step 3
12: end if
13: Velocity and position update
14: for i = 1 to i ≤ n do
15: Update the velocity vector (αi) = ωαi+ ζ1 R1(PBest − βi) + ζ2 R2(GBest − βi)
16: Update the position vector (βi) = βi + αi
17: Evaluate the fitness function( f (βi)) of ith particle
18: if f (βi) is better than f (PBesti) then
19: PBesti = βi
20: end if
21: end for
22: Update GBest = Min{ f (βi)}
23: Go to Step 2

The patients’ data are collected from the Cleveland database [50], where 13 attributes
are considered as described in Table 3. Another attribute corresponding to the outcome of
the ECG data analysis named “ECG abnormality” is added in the analysis. The duplicate
data are extracted and the missing values are filled by preprocessing the modules. Further-
more, the preprocessed data are normalized according to our heart disease scenario. Now,
the MapReduce technique is applied to enhance the performance by executing the tasks in
parallel within the same or different stages. A two-stage MapReduce function is applied on
those historical data sets for training and testing purposes, as shown in Figure 8.

Figure 8. Use of ANN model in MapReduce.

In the first MapReduce stage, our previously defined ANN model is taken as the map
function to determine the optimum weight. In this first Map stage, the common parameters
Sbc such as Blood Pressure (BP), Maximum Heart Rate (MHR), etc. along with some other

critical parameters (
y
∑

i=x+1
Ci) are considered as the input to the model. Initially, the random
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weights are selected for the input to the hidden layer and the hidden to the output layer in
an ANN model. Error (Er) is calculated by comparing the calculated output denoted as
CCal

i and the average of the input parameters termed as CAvg
i for each parameter, as shown

in Equation (11). By adjusting the weights itself, the error is minimized in each iteration.
A threshold error (ETh) is set to ±1% as stopping criteria for the ANN model. This map
process is carried out until the error is less than or equal to ETh. After this map process,
CCal

i and final weights involved during stopping iterations are sent to the first reduction
phase. In the first reduction phase, we reduce the number of weights between the hidden
and the output layer in an ANN instead of all weights. The stored optimum weights are
used as the initial weights for the second stage map function in place of random weights.

Eri = CCal
i − CAvg

i

s.t. Eri ≤ ETh

}
(11)

In the second stage of MapReduce, the ANN model is used as the map function in

which all parameters (
l

∑
i=1

Vi) of a patient (Pi) are taken as input. The reduced synaptic

weights are assigned to the links between the input and the hidden layer in the second stage.
During this supervised learning, the patient’s value is provided as 0: NoHeartDisease or
≥1: YesHeartDisease. By using these historical data, our model is trained to minimize the
difference between the computed value and historic value. Similar to the first stage, the
ETh value is set to be ±1% as stopping criteria for the ANN model. The output value of
the second map function is passed to the second reduction phase for normalization. The
normalized output (CNrm

i ) ranges between 0 and 1. If CNrm
i is greater than 0.5, the patient

has the heart disease; else, there is no heart disease. After these two stages of MapReduce,
our trained model is ready to predict the heart disease in an efficient way for the newly
visiting patients with the given health parameters. The complete disease prediction process
is presented in Figure 9.

Figure 9. Complete steps of heart disease prediction.

5. Results and Discussions

In this section, simulation results of heart disease prediction are illustrated. In our
simulation, heart disease-related medical data are collected from the publicly available
Cleveland Clinic Foundation database [50]. The dataset contains the demographic and
physiological features of 300 patients (135 normal and 165 heart diseases). The entire Cleve-
land dataset provides 14 feature attributes where 13 attributes are used as features for heart
disease prediction, whereas the attribute named “diagnosis of heart disease” is employed
for validating the outcome of heart disease prediction for a patient. The respective dataset
contains both categorical and numerical feature values, as shown in Table 3. The numerical
data values such as the age of a patient ranging from 29 to 77 years, resting blood pressure
varies within 94–200 mmHG, and serum cholesterol (chol) are included with a range of
values 126–564 mg/dL. Furthermore, the primary feature predictors such as heart rate
(thalach) of values within 71–202 BPM and ST depression (old peak) are studied. Similarly,
there are seven attributes such as Sex, Chest pain (cp), Fasting blood sugar (fbs), Resting
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electrocardiographic (restecg), Exercise-included angina (exang), Slope of peak exercise ST
segment (slope), Presence of thalassemia (thal) and Diagnosis of heart disease (outcome)
represent the categorial features. These categorical features are described in terms of two,
three, or four categories of values. According to [50], some attributes are normalized and
are kept in a range of 0 through 4, as shown in Table 3. Here, 0 is represented as no heart
disease, and greater than 0 is symbolized as the presence of heart disease. For instance,
the value of age is normalized by assigning 0 if the age is less than 30 years. Likewise, 1 is
assigned to the patients who have an age greater than 30 years and less than 50 years.

To validate the proposed ECG abnormality detection model, the popular open MIT-
BIH Arrhythmia Database is used [51]. The respective database consists of 48 half-hour
excerpts of two-channel ambulatory ECG recordings generated from 47 patients recruited
by the BIH Arrhythmia Laboratory between 1975 and 1979. The collected ECG data
points are given as input to the derived mathematical model for the determination of the
abnormality in the corresponding ECG signal. The prediction from the ECG data analysis
named “ECG abnormality” is included as one of the feature sets for the heart disease
prediction (Table 3). Hence, the prediction model is trained with 14 features in total by
considering “diagnosis of heart disease” as the outcome feature.

For the model derivation, two-thirds of the entire data set is used (200 patients) for
training, and one-third of the data set (100 patients) is used for testing purposes. In addition,
to establish an efficient predictive model with diversified data values, all 300 patients’ data
are evaluated through the cross-validation strategy. The efficiency of the proposed solutions
are simulated by using the MapReduce framework in Cloudsim simulator and Matlab.

5.1. Simulation Setup

The impact of the proposed cardiac big data analysis framework is evaluated using
performance metrics such as accuracy, processing time, total incurred cost and CPU utiliza-
tion based on data size, and the number of patients. The primary reasons for considering
those performance metrics are as follows. Accuracy is one of the influential metrics used to
evaluate the prediction model’s performance in diagnosing normal and cardiac patients. In
case of heterogeneous multi-modal data analysis, the processing time is considered as a
crucial factor to measure the efficiency of the classification algorithm. It can justify whether
multiple parallel servers are required or whether the processing can be finished using a
single server. Furthermore, the CPU utilization rate in a big data center varies based on
the data size and the number of patients. The size of one patient’s data might be more
voluminous than that of multiple patients. In such cases, the CPU utilization varies. Also,
this performance can show how effectively data should be managed before processing.
Furthermore, the cost analysis should be performed to balance the inflow and outflow of
the money. Generally, the incurred cost will be increased with more patients. However,
such analysis can assist the regulatory committee in prioritizing their resource investment.

5.2. Simulation Result

In Figure 10, both original and predicted values are plotted by calculating their
respective-average normalized values. Instead of all the patients, 100 patients are consid-
ered to visualize the data with more clarity in the testing phase. It is observed from the
graph that the average predicted values are almost close to the average original values.
Hence, our proposed architecture is an efficient predictive model to predict the heart disease
for the patient correctly.

The role of important attributes in predicting the heart disease is shown in Figure 11. It
is clearly noticed that the accuracy of the prediction is increased as the number of attributes
are increased. When we have only one attribute, the accuracy changes to 33% with the help
of the training data sets, whereas it boosts up to 38% when two attributes are considered.
The accuracy is crossed to 50% with seven attributes, and eventually, a maximum accuracy
of 99% is achieved when the number of attributes is increased to 14.
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Figure 10. Average predicted values verses average original values.

Figure 11. Prediction accuracy verses number of attributes.

To show the correctness, another graph is outlined as shown in Figure 12 by calculating
the root mean square (RMS) error. The RMS value is fluctuating due to the varying nature
of the predicted and original values. In this sketch, both the average original and predicted
value are represented along with a minimum RMS error value for our method.

Figure 12. Root mean square error taking different number of patients.

In the CloudSim simulator, the task processing, utilization of the servers, optimum
data storage and total cost are analyzed. It is assumed that the data centers are networked
and geographically distributed with many servers. The number of users, the current time
and the flag are required for tracing all the events. Following the initialization process, all
other components like the broker must be initialized, where the broker acts as a bridge in
between the user and the cloud provider. An optimum resource utilization with parallel
execution is the main focus in data centers; as a result, cost incurred by those data centers
are minimized.
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Processing time is another crucial factor to measure the efficiency of the prediction
algorithm. From Figure 13, it is observed that the parallel servers are beneficial only when
a large volume of patient’s data are processed and predicted for the heart disease. Initially,
more time is taken by the parallel servers to predict the heart condition of fewer patients
as compared to the single server as the data are distributed over different data centers.
However, when the number of patients increases significantly, a single server is unable to
accommodate all the prediction tasks. Hence, more waiting time is required to process in a
single server as compared to the parallel servers. Therefore, the processing time is defined
as the summation of both execution time as well as the data transfer time coming from
the servers located at different places. For example, initially, the time taken by the parallel
server (>7 ms) is more than that of the single one up to 60 patients. However, the time
consumption is reduced more in parallel servers than in the single one afterwards (<7 ms)
and the trend continues to decrease for the rest of the patients. Simultaneously, the average
processing time of the single server for the # of patients > 70 is increased to 8 ms.

Figure 13. Processing time with number of patients.

In Figure 14, the CPU utilization of the data centers is shown due to processing the
huge number of patient records. In our simulation, the input data size is set in gigabytes
ranging from 5 to 50 GB by keeping numbers of patients constant at 5000. Heterogeneous
servers for each data center are kept with an unequal number of servers ranging from
50 through 70. From the plotted graph, it is concluded that with the increase in the size
of data coming to the data center, the utilization of servers increases. For instance, the
CPU utilization of the data center DC 1 is increased to 90% for the data size 50 GB. From
Figure 14, the harmonic growth of the utilization can be visualized, where for each 5 GB
data, the % of CPU utilization is increased by 10%. However, when the amount of data
exceeds the capacity of a single data center (that increases the processing time), a new data
center needs to be deployed to balance the utilization. Our goal is to maximize the resource
utilization without compromising the processing deadline.

Figure 14. Percentage of CPU utilization with increase in data size.
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In Figure 15, the behaviors of different data centers are examined with varying num-
bers of patients, where each data center is equipped with an unequal number of servers.
It is observed that the average percentage of CPU utilization depends on both number of
patients and different data centers with a fixed data size. For instance, initially, the CPU
utilization of DC3 is 69%, though the CPU utilization eventually boosts up afterward to
92% with the same 50 GB data size. Furthermore, when the number of patients increased
from 1000 to 5000 and the number of data centers rose from 1 to 5, the CPU utilization
also increased from 75% to 85% and the trend is continued for the other data centers. But
the utilization is decreased from the data centers due to the same amount of workload
distribution among the data centers.

Figure 15. Percentage of CPU utilization in different data centers with varying numbers of patients.

From the revenue point of view, cost is another major factor that cannot be ignored.
The incurred cost associated with the increasing number of patients is depicted in Figure 16.
In the simulation, bandwidth, storage, computation and data migration costs are taken into
consideration. For the cost calculation, the Amazon Web Service (AWS) pricing model is
considered, and it is observed that the cost per patient comes out to be approximately 55$.
The growth rate of the cost per patient does not follow the same trend irrespective of the
location of the data centers. For instance, the total cost is increased linearly for processing
the data up to 500 patients though it becomes steady between the patients 600 to 1000.

Figure 16. Incurred cost with increase in number of patients.

6. Conclusions

In the current work, a statistical big data analytic framework with the machine learning
concept for critical cardiological data analysis in a healthcare environment is proposed.
An optimization technique is introduced to minimize the storage, transfer, and processing
cost in the cloud. A dynamic big data analytic framework is designed to handle the
high volumes of critical patient data and extend it to analyze the ECG batch data as an
application for big data processing. In addition, an intelligent heart disease prediction
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model is proposed using the approach of ANN, which has the potential to establish an
implicit relationship between the complex nonlinear patient’s health parameters. The
impact of computational and processing complexity on the number of patients and data
sizes is experimentally presented. The developed ANN-based big data analytical model
enables faster and accurate cardiac disease prediction compared to the manual diagnosis
method. The proposed algorithm can efficiently conclude the presence or absence of cardiac
abnormality by considering numerous physiological features with the ECG outcome. The
proposed framework has various technical and computational implications as it is necessary
to normalize the attributes before analysis; otherwise, the accuracy becomes low due to
dispersed values, resulting in under-fitting of the model. Furthermore, the number and
importance of feature attributes significantly improve the accuracy as some features are
essential for the prediction. The chances of over-fitting can be reduced using a large
population with a maximum variation of patient data. The ANN is the best solution
for faster categorical and numerical data analysis when the number of attributes is few,
exhibiting lower correlation among each other. However, LSTM is the optimal choice for
the temporal or sequencing medical data analysis, although it possess higher computational
complexity during training.

The ECG and physiological health data analysis can be simultaneously performed by
integrating the concept of machine learning with deep learning by adopting the feature-
fusion methodology. The proposed architecture for processing and analysis could be
applied to neonatal health prediction, neurological speculation, especially EHR plus elec-
troencephalogram (EEG) data, and disease classification concerning the patients, diseases,
and associated risks. However, the hyperparameter tuning and the analysis time vary
based on the feature complexity. Furthermore, the computational and time complexity of
batch data processing is lower than that of the real-streaming data. The necessity of a cloud
environment can only be realized in case of higher data volume and smaller data sizes. The
current study has several limitations in terms of small study population, the varieties of
attributes being limited to numerical and categorical data, consideration of batch data and
limited number of attributes. Finally, the interdependencies among the attributes for the
disease diagnosis are not considered. In our future work, we plan to perform extensive
research for cardiac disease prediction considering other data types and modalities such as
daily living data, sensor data from wearable devices, social behavior data, and ultrasound
image data. Designing an integrated model considering both ML and DL methodologies
for analyzing physiological, temporal, cardiac signaling, and image data would be our
primary future work. The applicability of the prediction algorithm will be validated in an
actual hospital scenario considering the real-time data.
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