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Abstract: In this paper, we present a novel blockchain-enabled approach to opportunistic federated
learning (OppCL) for intelligent transportation systems (ITS). Our approach integrates blockchain
with OppCL to streamline the learning of autonomous vehicle models while addressing data privacy
and trust challenges. We deploy resilient countermeasures, incentivized mechanisms, and a secure
gradient distribution to combat single-point failure verification attacks. Additionally, we integrate
the Byzantine fault-tolerant algorithm (BFT) into the node verification component of the delegated
proof of stake (DPoS) to minimize verification delays. We validate our approach through experiments
on the MNIST, SVHN, and CIFAR-10 datasets, showing convergence rates and prediction accuracy
comparable to traditional OppCL approaches.

Keywords: blockchain; opportunistic federated learning; BOppCL; intelligent transportation system

1. Introduction

Rapid urbanization in various countries has caused a growing number of challenges
related to traffic congestion and road accidents [1,2]. To address these issues, considerable
attention has been paid to smart cities and ITS [3–5]. In the ITS realm, the integration of
opportunistic federated learning (OppCL) into autonomous vehicles has gained significant
momentum for model learning [6–8]. ITS, particularly through the vehicle-to-everything
(V2X) approach, has enabled intelligent traffic management, dynamic information services,
and autonomous vehicle control [9–11]. In this context, data sharing and mutual learning
among vehicles in vehicular networks have emerged as crucial factors in updating vehi-
cle models and enhancing the driving experience [12,13]. However, in the dynamic ITS
environment, where vehicles often encounter opportunities, the challenge lies in incen-
tivizing vehicle participation and efficiently completing learning tasks within their limited
encounter time, which remains a prominent research focus.

OppCL [14] provided a distributed decentralized security method for the sharing of
data between autonomous vehicles in ITS. By storing local data at vehicle nodes, vehicles
exchange gradients with other vehicles based on opportunistic encounters and train local
models, privacy issues are solved much more, and data transmission costs are reduced.
However, OppCL algorithms lack incentive mechanisms to encourage vehicle nodes in-
volved in learning. Introducing incentive mechanisms into OppCL can quickly improve its
ability to collect information. To provide incentive mechanisms for data sharing, encourage
nodes to join distributed learning, and improve overall performance, blockchain technology
is a good choice. The blockchain [15–17] has been widely used in fields such as cryptocur-
rency and secure storage. Researchers from both inside and outside the country [18–20]
have utilized blockchain technology to replace the central server of federated learning. Its
distributed storage capabilities guarantee the consistency of model parameters between
the various nodes in federated learning [21] with no restrictions.
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However, in the ITS scenario, a combination of blockchain and OppCL in the
Internet of Vehicles (IoV) faces new problems [22–24] due to the mobility of vehicles and
the opportunity to encounter them. The number of vehicles on the road has increased,
and the amount of network bandwidth available in the IoV is limited. This has made
communication efficiency a major obstacle to large-scale data exchange in ITS [25–27].
In this case, this article faces mainly three challenges: firstly, the additional computing
and communication overhead generated by blockchain puts significant communication
pressure on the system; secondly, due to the opportunity encountered by vehicles, they
are unfamiliar and lack the motivation to participate in learning; finally, due to the
slackness of other devices in intelligent vehicles and ITS, the accuracy is reduced and the
overall performance of the system is limited. The purpose of our research is to tackle the
difficulties mentioned above, and we suggest a blockchain-based opportunistic federated
learning (BOppCL) approach for ITS that guarantees data security while allowing for
effective distributed data sharing.

Our contributions. This article presents a new BOppCL approach that focuses on data
privacy and facilitates effective distributed data sharing. The key research contributions
can be summarized as follows.

(1) Blockchain-enhanced Opportunistic Federated Learning (BOppCL): We propose BOp-
pCL, a novel approach to ITS. BOppCL addresses multiple challenges faced by tra-
ditional OppCL approaches. It addresses gradient verification attacks, integrates
incentive mechanisms, and ensures a secure gradient distribution. Compared to
traditional OppCL methods, BOppCL surpasses their capabilities.

(2) Introduction of Byzantine Fault-Tolerant Algorithm (BFT): In our approach, we in-
troduce the BFT algorithm to improve node verification in the delegated proof-of-
stake (DPoS) mechanism. This integration reduces verification delays and introduces
penalty mechanisms to assess the quality of node production blocks. As a result, the
overall performance of the system is improved.

(3) Experimental validation: We designed and conducted experiments using the MNIST
and SVHN datasets. The results demonstrate that our approach achieves a con-
vergence speed and prediction accuracy comparable to those of traditional OppCL
methods. Furthermore, the experiments validate that our algorithmic improvements
lead to improved efficiency, reducing the time and communication costs required to
achieve consensus.

2. Related Work

In ITS, collaborative environmental data detection, calculation, and processing play a
crucial role [28]. To overcome computational and storage limitations in the IoV, data sharing
between parties in distributed scenarios has emerged as an effective solution. Federated
learning [29,30] and OppCL [14] offer robust technical support for IoV data exchange within
ITS. Zhao et al. [31] introduced the federated learning framework to the IoV environment,
combining it with local differential privacy (LDP) to address privacy concerns and reduce
communication costs between vehicles. They proposed the LDP-FedSGD algorithm, which
incorporates four differential privacy mechanisms to disrupt the gradient of local model
output and a three-output mechanism for privacy budgeting, using two-bit encoding to
minimize communication costs. Chen et al. [32] proposed ASTW-FedAVG, a temporally
weighted asynchronous federated learning, to reduce communication between nodes and
the central server. This approach incorporates a time-weighted aggregation strategy on the
central server to enhance the accuracy and convergence of the central model. However, this
requires a centralized management server, increasing the risk of a single point of failure of
the system.

To address the risk of single point failure, Lee et al. [14] proposed the OppCL
method to facilitate autonomous vehicles learning from opportunistic encounters. This
method has strong resilience to overfitting and severe fluctuations in the data distri-
bution encountered, but opportunities encountered by vehicles without motivation to
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participate in learning. Lu et al. [20] extended blockchain technology to the distributed
data sharing architecture of IoV and designed a hybrid blockchain architecture consisting
of licensed blockchains and locally directed acyclic graphs to improve the security and
reliability of model parameters. Furthermore, Lu et al. [20] suggested an asynchronous
federated learning approach that applies deep reinforcement learning for node selection
to improve efficiency. Unfortunately, this scheme did not adopt effective methods to
improve communication efficiency in asynchronous transmission of federated learning
parameters. Similarly, Chai et al. [33] proposed a hierarchical blockchain-enabled
federated learning (HBFL) algorithm for data sharing in the IoV. This algorithm allows
for the sharing of knowledge in the form of learning parameters during the federated
learning process. It also groups vehicles and infrastructure based on their regional char-
acteristics, and maintains exclusive blockchain ledger records in the federated learning
model. Meanwhile, Chai et al. [33] also proposed a lightweight consensus mechanism
called proof of knowledge (PoK), which models the knowledge-sharing process as a
non-cooperative game of multiple leaders and multiple people in the trading market.
Compared to traditional blockchain frameworks, although this algorithm fully considers
the issue of computational cost, it ignores the communication cost caused by parameter
sharing in federated learning. Pokhrel et al. [34] developed a mathematical framework
that incorporated blockchain parameters (e.g., retransmission limit, block size, block
arrival rate, and frame size) with federated learning-based update reward methods to ad-
dress communication efficiency issues. Through a thorough analysis and quantification
of the end-to-end delay, the optimal block arrival rate was determined to reduce the sys-
tem delay. This framework ignores the latency issue caused by synchronous aggregation
in federated learning, which affects the overall operational latency of the system.

Blockchain-based federated learning (BCFL) [35] is seen as a novel data-sharing
model in edge networks of the Internet of Things (IoT), due to its decentralization,
collaborative model training, and privacy protection benefits. When comparing existing
research schemes in the context of ITS, it becomes clear that many of the data-sharing
approaches overlook the critical aspects of user incentives and consensus algorithms
and their impact on system efficiency [36]. Additionally, the aggregation methods used
in these schemes play an important role in determining the effectiveness and efficiency
of the sharing mechanisms. These findings highlight the need for a more comprehensive
and holistic approach. To fill this gap, our paper proposes a novel blockchain-based
OppCL algorithm tailored specifically for ITS. By integrating blockchain technology [37]
and OppCL, our algorithm addresses the limitations mentioned above and provides an
innovative solution to share data efficiently and securely in ITS scenarios. The use of
blockchain ensures data integrity, transparency, and accountability, while the OppCL
framework allows for collaborative learning between distributed vehicles, using their
collective intelligence. Taking into account user incentives, consensus algorithms, and
aggregation methods, our algorithm aims to optimize the efficiency and effectiveness
of the system in data sharing. It offers a robust framework that encourages active
participation of vehicles, facilitates consensus among distributed nodes, and employs
efficient aggregation methods to minimize computational and communication costs. In
summary, our proposed blockchain-based OppCL algorithm fills the existing gaps in
data-sharing schemes for ITS. Taking into account user incentives, consensus algorithms,
and aggregation methods, we are trying to improve the efficiency and effectiveness of
data-sharing systems in ITS scenarios; a comparison is provided in Table 1.
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Table 1. Comparison between Our BOppCL with related works.

Algorithms
Single Point

of Failure
Incentive

Mechanism
Sharing

Efficiency
Communication

Cost
System

Runtime

LDP-FedSGD [31] ✗ ✗ ✗ ✓ ✓
ASTW-FedAVG [32] ✗ ✗ ✓ ✓ ✓

OppCL [14] ✓ ✗ ✗ ✓ ✗

PermiDAG [20] ✓ ✓ ✗ ✗ ✗

ADMM [33] ✓ ✓ ✓ ✗ ✗

BFL [34] ✓ ✓ ✗ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓

Note: ✓ indicates that the method supports solving the problem, while ✗ indicates that the method needs further
exploration in this area.

3. System Model
3.1. Notations

Table 2 illustrates the notation used in this paper.

Table 2. Notations.

Notations Description

vi ith vehicle
ωti

i Model of the ith vehicle
ti Local clock of the ith vehicle

vi,j The ith vehicle within the range of the jth RSU
rj,n The jth RSU within the range of the nth base station

ratevi,j Communication transmission rate of vehicle vi,j
Tcmp

vi,j Local calculation time of vehicle vi,j
Tcom

vi,j
Model parameter transmission time of vehicle vi,j

bn The nth base station in the blockchain

3.2. Overview of System Model

Figure 1 illustrates our BOppCL framework. This system consists of three main parts:
the vehicle encounter group, the RSU and base station, and the blockchain, which are
elaborated below.

• Vehicle encounter group (VEG): A VEG refers to a group of vehicles {v1, . . . , vn} that
opportunistically meet on the road. Each vi in VEG is equipped with an intelligent
onboard system responsible for the real-time processing of vehicle data and data
fusion by multisensors. This system ensures that the vehicle can maintain stable and
safe driving in various complex situations.

• RSU and base station (RSU): An RSU refers to a mobile edge computing server that
possesses specific edge computing and communication capabilities. The RSU serves
as a base station with high computing and communication capabilities, forming an
alliance chain.

• Blockchain: The blockchain serves as the platform for data storage and exchange
in our system. RSU is responsible for recording the collected data in the blockchain
ledger, constructing the block, and subsequently uploading them to the chain. This
decentralized process based on blockchain ensures data integrity and opportunistically
facilitates collaborative learning.
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Figure 1. The system model of our BOppCL in ITS.

3.3. System Workflow

The system architecture proposed in this article divides the system workflow into four
steps: the local calculation process of a vehicle encounter group, the RSU and base station
learning process, the alliance chain learning process, and the update sending process. The
system workflow is illustrated in the following.

① Vehicles are dynamically grouped into encounter groups (such as the encounter
group #1, #2, #..., #k, etc.), using the automatic composition of opportunities. The selection
of vehicles (vi) within an encounter group is based on blockchain and communication
resources. The selected vehicle exchanges gradients with other vehicles (vi,j) and sends
them to the RSU (rj,n). The model parameters (ωti

i ) after each round of training are uploaded
to nearby RSUs (rj,n) through wireless networks.

② The RSU (rj,n) receives model parameters (ωti
i ) from all participating vehicles and

performs global aggregation. The aggregated new model parameters are initiated by
consensus by the main accounting node in a transactional manner. The results of consensus
among multiple RSUs (rj,n) are recorded on the blockchain and sent by the main accounting
node to adjacent base stations (bn).

③ After receiving the model parameters and the calculation results sent by RSUs (rj,n),
the base station stores (bn) them locally and aggregates all received parameters.

④ The base station (bn) that has obtained accounting rights initiates a consensus and
sends the agreed result as a global model parameter to the master nodes of each RSU (rj,n).
The RSU (rj,n) master node updates the global model parameters and sends them to the
vehicle (vi,j) nodes in their respective regions.

3.4. Opportunistic Federated Learning

OppCL distinguishes itself from traditional federated learning by eliminating the
need to collect participants’ data (gradients) on a central server for training the global
model. Instead, each participant trains their local model independently using the gradients
exchanged during opportunistic encounters. This approach ensures better data privacy, as
data remain localized, and minimizes the risks associated with centralized data storage.

OppCL optimizes the local model, denoted as Gi, by combining the local device data
(e.g., autonomous vehicle local data) with the gradient encountered from nearby opportune
encounters (ie, other autonomous vehicles present in the surrounding area). This approach
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updates the local model to better align with the target distribution. The process can be
formally described as follows.

min
Ei
{
|Ei |

∑
ti=0

ℓ(ωti
i ;DGi )}

The set of encounters Ei owned by the device vi (which is equivalent to an autonomous
vehicle in ITS) is denoted by Ei. DGi is a hypothetical dataset whose data label distribution
meets the desired distribution Gi. The model of vi is represented by ω

ti
i , where ti is the local

clock of vi.
Greedy aggregation directly averages the gradient of neighboring learning (autonomous

vehicles that encounter opportunities around them) after adding a round of local learning.

ω
′
=

ω(Li ,Gi)
(▽ℓ(ω

′
;Di)) + ω(Lj ,Gj)

(▽ℓ(ω
′
;Dj))

ω(Li ,Gi)
+ ω(Lj ,Gj)

Both gradients are weighted on the basis of the similarity between the label distribu-
tion and the target distribution, so the weight can be used for processing. With weights
as follows:

ω(L,G) = exp(−λ× (1− sim(G,L)))

The value of λ indicates that the model is likely to be overfitted when the total number
of labels in the dataset is small. The similarity is determined by the following equation:

sim(P1, P2) = ∑
l∈L

min(P1(l), P2(l))

At each time ti, the learning rate of each device is determined independently. The rate,
denoted as vi, is calculated as η

ti
i = ηα

ti
i , where η is the initial learning rate and α

ti
i is the

attenuation factor.

αti =
exp(k× (ϕ− ∥ ω0

i −ω
ti
i ∥2))

exp(k× (ϕ− ∥ ω0
i −ω

ti
i ∥2)) + 1

where
αti < min{α0, . . . , αti−1}, 0 < ϕ, 0 < k

The constants ϕ and k are used to define the attenuation factor α, which is a sig-
moid function that takes the L2 distance from the initial weight as its input. This design
encourages the vi’s model to search for solutions close to the guided model.

The OppCL framework enables distributed learning in ITS, allowing vehicles to
maintain their optimal learning models and make intelligent decisions in various sce-
narios. However, it faces challenges in selecting trustworthy vehicles from within the
encounter group and motivating them to participate in gradient sharing. We suggest a
blockchain-based solution to address these problems, which would allow for the selec-
tion of vehicles and the distribution of communication resources within the encounter
group. This blockchain-based method improves trustworthiness and incentivizes active
participation in gradient sharing, improving the overall effectiveness of the original
OppCL framework.

3.5. Vehicle Selection and Communication Resource Allocation Algorithm

The Figure 1 shows the connection between the components of our blockchain-based
federated learning system. Our system replaces conventional global servers in federated
learning with a blockchain network. The transmission rate of vehicle data vi,j refers to the
transmission rate at which this specific vehicle transmits the data. It represents the speed
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or efficiency with which data are sent from vehicle vi,j to other components of the system.
The vehicle data transmission rate vi,j is:

Ri,j =
c0

∑
j=1

θm,iratevi,j

where j is the jth roadside unit. c0 is the number of channels available and ratevi,j is
the data transmission rate achievable on the vehicle uplink vi,j. θm,i ∈ {0, 1} represents
whether the current subchannel is assigned to vehicle vi,j, θm,i = 1 represents whether the
current subchannel is assigned to the vehicle, and θm,i = 0 represents whether the current
subchannel is not assigned to the vehicle. For vehicle vi,j, the expected average execution
time of the algorithm in the t-th iteration is:

Texec(t) =
1
N

N

∑
i=1

(Tcmp
vi,j (t) + Tcom

vi,j
(t))

The optimization problem can be expressed as follows, taking into account the local
calculation time of the vehicle vi,j (Tcmp

vi,j ) and the transmission time of the vehicle model
parameter vi,j (Tcom

vi,j
):

minµ,θ

N

∑
i=1

λi(Tcom
i (θ, t) + Tcmp

i − Texec)
2

s.t. µi, θm,i ∈ {0, 1}, ∀i ∈ N

∑
i∈N,m∈c0

θm,i ≤ c0

where µi represents whether the vehicle participated in this OppCL, µi = 1 represents
yes, and µi = 0 represents no. The algorithm for vehicle selection and allocation of
communication resources is shown in Algorithm 1.

Algorithm 1: The vehicle selection and communication resource allocation
Input : Candidate vehicle set V = {v0,j, v1,j, . . . , vi,j}, subchannel set

Θ = {θ0,j, θ1,j, . . . , θm,j}
Output : Solution set

1 for Vehicle set C do
2 Random selection i vehicles
3 for each vehicles do
4 Allocate subchannels
5 end
6 end
7 Obtain a solution size of Si

I
8 Set the binary digit l to meet 2l ≥ Si

I
9 Set the selection rate Pi, the hybridization rate Pc, the variation rate Ph, and the

number of cycles T
10 Initialize the original solution set P0(V0, Θ0)
11 for each solution set do
12 Calculate the fitness function of the set of solutions according to Equation (1)
13 Generate new subsets based on cross-binary encoding of hybridization rate
14 Generate a new subset based on the variation rate and partial binary encoding
15 Update solution set
16 end
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3.6. Blockchain-Enabled OppCL

For OppCL, autonomous vehicles have opportunities to exchange gradients with
each other and update local models. Vehicles will form groups of vehicles on the road,
which we refer to as encounter groups. The vehicles in the encounter group are updated
with the local model through label recognition and the exchange of gradients based
on OppCL. Gradients and their associated labels are then uploaded to the blockchain
through roadside units (RSU) [38]. Due to the limited access of the alliance chain, a user
must be preapproved before they can join. The PPFL chain utilizes OppCL instead of a
parameterized server to store both local and global data, and the system is managed by all
members. If one member leaves after a transaction, it will not affect the other members,
thus improving the system’s disaster recovery capability. Furthermore, blockchain
transparency, traceability, and non-repudiation are used to record the reputation of each
participant, making the prepayment-based voting mechanism more open, transparent,
and reliable [39].

The use of blockchain and OppCL not only solved the problem of crowd-sourced
spatial learning in ITS, but also increased the protection of data privacy security. OppCL is
used to select reliable task recipients (such as workers) based on opportunistic encounters
and dynamically select consensus algorithms, block sizes, block generation times, and
block generation nodes for blockchain to ensure data privacy and security. It can reduce the
number of nodes in the block directly managed by access control and alleviate the burden
of access control [40,41].

Constructing a reliable network of partners to share data on a blockchain will
necessitate overcoming a few obstacles. One is the need for a governance system to
decide the rules of the system, such as who can be invited to join the network, what
data are shared, how they are encrypted, who has access, how conflicts will be settled,
and what the scope is for the use of IoT and smart contracts. Another challenge is to
figure out how to address the effect that blockchain could have on pricing and inventory
allocation decisions by making information about the quantity or age of products in the
supply chain more transparent. It is difficult to predict where in the supply chain the
costs and benefits of this transparency will be felt. Our solution is simpler consensus
protocols. If a blockchain is permissioned and private, the proof-of-work method is not
necessary to establish consensus. Simpler methods can be employed to determine who
has the right to add the next block to the blockchain. One such method is a round-robin
protocol, where the right to add a block rotates among the participants in a fixed order.
Since all participants are known, a malicious actor would be detected if it used its turn
to modify the chain in a harmful or illegitimate way. And disputes can be easily resolved
by verifying the previous blocks of the participants.

Since its introduction in 2016, federated learning has been widely regarded as a
significant approach to addressing privacy and security issues in machine learning and
intelligent transportation systems [42]. Nevertheless, numerous studies have revealed that
shared gradients can also expose local data, making the PPFL method a highly demanding
research area. To provide a guaranteed collaborative solution for efficient sharing, we
use a new architecture blockchain-based OppCL to protect the privacy and security of
ITS, and greatly improve the efficiency of OppCL by choosing to participate at nodes to
minimize overall costs. OppCL can be used to update vehicle models locally through the
exchange of gradients when the opportunity arises, reducing the risk of data being exposed
or mishandled, and ensuring the security and accuracy of the information. It can also solve
some sensitive problems by dynamically selecting and controlling block nodes. Leakage
of confidential data included in tasks during their assignment and allocation can improve
system performance and efficiency [41]. In the future, the combination of OppCL and
Blockchain in ITS will be a significant research focus in terms of incentive structures, access
protocols, and scalability [40,42].

Exploring the scalability, cost, security, performance, and robustness of the blockchain-
enabled OppCL approach is essential in order to understand its potential limitations and
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challenges. This includes assessing the scalability of the consensus algorithm, the cost of
transactions, and the security of the system. Additionally, the performance of the system
can be evaluated by measuring the latency of transactions and the throughput of the system.
Finally, the robustness of the system can be tested by simulating different types of attacks
and evaluating the system’s ability to recover from them. The blockchain-enabled OppCL
approach is advantageous in terms of operational efficiency and confirmation delays, as
it allows for faster and more secure transactions. The blockchain technology provides a
distributed ledger system that is immutable and secure, meaning that transactions are
recorded and stored in a secure and transparent manner. Furthermore, the confirmation
delays are reduced due to the distributed nature of the blockchain, as transactions are
verified and confirmed by multiple nodes in the network, rather than relying on a single
centralized authority.

3.7. Incentive Mechanism

The transaction process of the mechanism proposed in this article is shown in Figure 2.

Figure 2. The transaction process of the mechanism proposed in this article.

All vehicles participating in the learning process vi,j obtain the model parameter ωi,j
and the loss function decrease ratio of the training results εi,j by calculating the local dataset
Di,j; each vehicle packages the above parameters into a transaction format and sends them
to adjacent RSU:

txupvi,j = {Addrvi,j | 0 | ωi,j | εi,j | Addrrj,n | SIGvi,j}

The second item in the transaction is 0, which means that the transaction is a trained
model parameter uploaded by the vehicle. After receiving the transaction, the roadside
unit rj,n first checks the authenticity of the transaction, then extracts the parameters from
the transaction to prepare for the subsequent aggregation process, and returns a reward
to the vehicle. This article proposes a corresponding incentive mechanism to address the
problem of slack in vehicles. For example: all uploaded vehicle results are sorted in reverse
order according to the proportion of reduced loss function values. Vehicles are expected to
contribute more computing resources to the learning process to achieve the fastest system
convergence. For a sorted queue, assuming that the transactions uploaded by vi,j rank nth,
the reward they receive is:

pi,j = µ
pj,n

2In
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where I represents the number of all vehicles participating in the learning process; pj,n
is the local reward for RSU, with an initial value set at 1. The transactions in which RSU
return rewards to the corresponding vehicles are as follows:

txpayvi,j = {Addrrj,n | pi,j | 0 | 0 | Addrvi,j | SIGrj,n}

In the next consensus process, the roadside unit is responsible for forging new blocks.
This article aims to improve communication efficiency, so hashing is used to replace the
parameter content in the original transaction during the consensus process.

Because the gradient of OppCL is huge compared to the median of general block
transactions, commonly used datasets such as the MNIST dataset update around 1 MB of
parameters each time. Therefore, in this article, the method to record model parameters
in block transactions is to record its hash value. When the smart contract verifies the
transaction, it needs to query the Inter-Planetary File System (IPFS) to obtain the off-chain
value. At this point, the transaction format included in the block initiated by the roadside
unit during the consensus stage is the following.

TXcon
rj,n

= {Addrrj,n | TXID | H(ωj,n) | δj,n | pj,n | SIGrj,n}

where Addrrj,n is the confirmation of the identity of the block initiator, pj,n is the reward for
this transaction after reaching consensus, H(ωj,n) is the hash value of the model, and δj,n is
the accuracy of the model. After consensus is passed, the main accounting node uploads
the new transaction to the neighboring base station:

txuprj,n = {Addrrj,n | 0 | ωj,n | Addrbn | SIGrj,n}

In the setting of this article, both the RSU and base stations will not slack off, so the
reward returned by the base station is the following:

pj,n(t) = pj,n(t− s) +
pn

| J |

where pj,n(t− s) is the value of pj,n in the previous iteration process, pn is the local reward
for bn, and | J | is the total number of RSUs participating in learning in the region bn.
Similarly to the previous process, the base station will return rewards to the RSU:

txpayrj,n = {Addrbn | pj,n | 0 | 0 | Addrrj,n | SIGbn}

After aggregating all parameters, the base station starts forging blocks and initiating
consensus. At this time, the transaction is:

TXcon
bn

= {Addrbn | TXID | H(ωn) | δn | pn | SIGbn}

After reaching a consensus, all base stations obtain a new global model ωglo and dis-
tribute the global model. The framework proposed in this article combines blockchain and
OppCL techniques to address privacy issues. The OppCL method replaces traditional data
upload methods with gradient upload mechanisms, effectively protecting the privacy of
participants. Additionally, blockchain technology uses asymmetric encryption technology
and digital signature technology to replace gradients with hash values, further protecting
user privacy.

3.8. BFT-DPoS Consensus Mechanism

In the blockchain framework proposed in this article, the distribution of gradients and
labels is achieved through consensus. This article uses multiple RSU to aggregate gradients
within encounter groups and uses blockchain to synchronize these gradients, achieving
consensus between different RSU and base stations. Due to the need for global models to
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be confirmed as blockchain transactions, the operational efficiency of blockchain is crucial
for the entire learning process.

The traditional consensus mechanism, proof of work (PoW) [43], uses hash puzzles to
determine the publisher of candidate blocks. However, this method has a lower throughput
and a longer confirmation delay. To address this, the DPoS mechanism [44] was developed.
This algorithm selects certain special nodes to proxy the remaining nodes in the network,
reducing the number of nodes participating in block production and verification. This can
meet the throughput requirements of the public chain and reduce the confirmation delay. To
further improve the system performance, this article introduces the BFT algorithm [45,46]
into the node verification part of DPoS. This can reduce verification delay and introduce a
penalty mechanism to evaluate the quality of node production blocks. By introducing an
additional layer of BFT, the DPoS consensus mechanism can ensure a robust and efficient
blockchain with low consensus latency [47].

The potential limitations and challenges of integrating the BFT into the node
verification component of the DPoS include: The BFT algorithm requires a large number
of nodes to be present in order to be effective, which can be difficult to achieve in
a DPoS system. The BFT algorithm is computationally expensive, which can lead to
increased transaction costs. The BFT algorithm is vulnerable to Sybil attacks, which
can lead to a decrease in the security of the system. The BFT algorithm is vulnerable to
network latency, which can lead to a decrease in the performance of the system. The
BFT algorithm is vulnerable to malicious actors, which can lead to a decrease in the
trustworthiness of the system. The BFT algorithm is vulnerable to forks, which can lead
to a decrease in the stability of the system.

3.8.1. Node Type

This article discusses a model of witness election that includes four distinct roles for
the nodes: ordinary, candidate, witness, and candidate witness.

The majority of nodes in the system are ordinary nodes, which are granted voting
rights and the ability to be elected. From these ordinary nodes, candidate nodes are chosen.
These candidate nodes are divided into two categories: witness nodes and candidate
witness nodes. Witness nodes are responsible for generating blocks, whereas alternative
witness nodes are responsible for verifying the blocks created by the witness nodes and
replacing any inefficient witness nodes.

3.8.2. Election Mechanism

In this article’s solution, all participating RSU act as blockchain users. Blockchain
users vote to choose the preferred roadside unit as the validator based on its computing
and communication capabilities. During the voting and election stage, the shareholding
nodes will use their shares as the number of votes to vote for the supporting nodes
through affirmative voting, and each node is allowed to cast one vote for other nodes.
After the vote is completed, the system calculates the number of valid votes for all nodes
and selects the top two TN nodes with valid votes as candidate witness nodes (TN is
the number of witness nodes that the system considers sufficient for decentralization
through at least 50% voting shareholding nodes), and divides them into two groups,
with the top TN nodes with the highest number of votes as the set of witness nodes
A1 = {x0, x1, . . . , xTN−1} for this round, and the other group as the set of alternative
witness nodes A2 = {xTN , xTN+1, . . . , x2TN−1}.

3.8.3. Witness Node Block Out

After each witness node is sorted, the blocks are produced in sequence within the
specified time interval. If production is not successful, the witness is skipped, and the
next witness continues to forge the blocks. This can effectively avoid system latency issues
caused by witness block errors.
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3.8.4. Block Validation

In response to the issue of long verification delays after block generation by nodes in
DPoS algorithms, the BFT algorithm [48] has been introduced to quickly verify the blocks
generated by witness nodes. This new mechanism can finish block verification in a much
shorter time, significantly decreasing the confirmation time of transactions. In the original
DPoS protocol, witness nodes are randomly selected and arranged in a sequence. The
blocks are then generated in this order within a given time frame. The newly created blocks
are passed on to the subsequent witness nodes for verification, along with the sequence
of witness nodes. For a block to be added to the blockchain, it must receive confirmation
from two-thirds of the total number of witness nodes, which can significantly extend
the verification time. As it improves the latency of block verification and optimizes the
utilization of the chosen set of candidate witness nodes A2, this article verifies the blocks
generated by A1 through the nodes in the set A2 immediately.

The DPoS-based witness election model generates two sets of nodes: the witness
node set A1 and candidate witness node set A2. The main function of node A1 is to
package the transactions generated in the network and produce blocks, and node A2
acts as a candidate node to run the BFT algorithm. The blocks produced by node A1 are
immediately transmitted to the nodes in the set A2 for verification, thus completing the
block verification work faster and reducing the latency of intrablock transactions. Addi-
tionally, during the block verification process, each base station sends its aggregated
model to other verification nodes for verification. In addition to regular validation,
the validator also verifies the received model based on whether the model has made
a positive contribution to updating the last global model. The main validation node
collects the validation results from all validation nodes and confirms transactions.
The approved block is added to the blockchain and transmitted to other base stations
for storage.

The witness node broadcasts the generated blocks to a group of potential candidates.
After receiving the block data, the primary node in the set of alternative witnesses will
package the information and affix its signature. The selection of the primary node is based
on the following criteria:

P = c mod |A2|

The BFT view number is denoted by c, and the number of potential witness nodes is
represented by A2. The main node sends the signed and encapsulated message to the other
nodes in A2. When other alternative witnesses receive the block message, verification is
required, and the verification rules are as follows.

(1) Is the signature correct?
(2) Is the view number in the message consistent with the view number of the node?
(3) Has the block message been received?
(4) Is the block height in the message consistent with the block height of the node?
(5) Has the model made a positive contribution to the last global model?

Only block messages that meet the above conditions will be recognized by the candi-
date witness node. When the number of confirmed messages reaches 2TN

3 + 1, the message
is verified, the block is completed, and the verification result is returned to the witness
node of the production block, indicating that the block can be added to the blockchain.
Formal methods can be used to verify the correctness of smart contracts and blockchain
codes [49], which can help prevent costly errors and security breaches [50]. The optimized
block validation algorithm is shown in Algorithm 2.
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Algorithm 2: Block validation algorithm
Input : Witness node collection A1 = {x0, x1, . . . , xTN−1}, main node of

witnesses in this round NRi ,i, alternative witness node Set
A2 = {xTN , xTN+1, . . . , x2TN−1}

Output : Block confirmation message blockconfirm or block error message blockerror
1 Encapsulate block messages
2 NRi ,i broadcast (block, blockMessage)
3 Select the validation master node: NR2,P ← c mod |NR2 |
4 Update the block preparation message to < c, blockHeight, tx, Hash (tx),

blockMessage >
5 if Node validation preparation message is true then
6 Node NR2,P broadcast preparation message
7 if Node validation preparation message is true and validation accumulates to TN

3 + 1
then

8 Node NR2,i broadcast confirmation message
9 if Node validation confirmation message is true and validation accumulates to

2TN
3 + 1 then

10 Node NR2,P broadcasts a message (blocktrue) and adds the block to the
blockchain

11 else
12 Node NR2,P broadcasts a message (blockerror) and logs the error

message (error, NRi ,i)
13 end
14 else
15 Node NR2,P broadcasts a message (blockerror) and logs the error message

(error, NRi ,i)
16 end
17 end

4. Simulation and Performance Analysis
4.1. Simulation Settings

We tested our proposed method by running experiments on three different datasets:
MNIST, SVHN, and CIFAR-10. MNIST is a popular dataset for image recognition tasks,
containing 60,000 training samples and 10,000 handwritten character test samples. The
second dataset is SVHN, which is specifically designed for autonomous vehicles to
recognize house numbers in Google Street View photos. It consists of 73,257 training
sets, 26,032 test sets, and 531,131 additional photos for training. The third dataset is
CIFAR-10, which contains 10 different types of images, each with 6000 images, for a total
of 60,000 training images.

We divided our experimental results into 100 small samples and allocated 100 distinct
nodes to evaluate our proposed algorithm. To carry this out, we employed a convolutional
neural network (CNN) architecture that included a 5 × 5 convolutional layer, a fully
connected layer, and a softmax output layer. With these datasets and the CNN architecture
specified, we sought to evaluate the performance and efficacy of our algorithm.

4.2. Comparison Scheme

We used three main comparison techniques during the simulation testing stage to
assess the effectiveness of our proposed approach.

(1) Evaluation of the incentive mechanism: We compared the BOppCL framework pro-
posed in this article with FedAVG and ASTW-FedAVG. This comparison was designed
to demonstrate the effectiveness of our method in enhancing system communication
efficiency through the incentive mechanism.
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(2) We assessed the performance of the BFT-DPoS consensus mechanism by comparing it
with the BFT and DPoS consistency approaches. Our evaluation focused on how well
BFT-DPoS could improve the efficiency of system communication.

(3) We evaluated the scalability of the BOppCL method by comparing it to the ASTW-
FedAVG and local CNN approaches. This comparison looked at how the method
behaves when the number of learning nodes in the network is changed.

By conducting these evaluations, our objective was to provide a comprehensive as-
sessment of the proposed approach, highlighting its strengths and advantages compared to
existing methods in terms of incentive mechanisms, consensus mechanisms, and overall
system performance.

4.3. Analysis of Simulation Results
4.3.1. Incentive Mechanism Evaluation

We employed two methods to compare the efficiency of the algorithm:

(1) The results showed that the model achieved optimal prediction accuracy. We evalu-
ated the accuracy of the central model’s predictions after 200 rounds of training and
found that it had reached its peak performance. This criterion allowed us to assess
the algorithm’s ability to achieve high accuracy within a specified number of rounds.

(2) Prediction accuracy of 98% (95% for the SVHN dataset and 90% for the CIFAR-10
dataset) in the central model: We aimed to achieve a prediction precision of 98%
(95% for the SVHN dataset and 90% for the CIFAR-10 dataset) in the central model.
This criterion served as a benchmark for evaluating the algorithm’s performance in
achieving high accuracy levels.

We split the MNIST, SVHN, and CIFAR-10 datasets into 100 subsets and assigned them
to 100 nodes to ensure a fair comparison. We conducted three different random divisions
of the datasets, labeled 1 @ MNIST, and each division yielded different results. The results
of the experiments are shown in Table 3.

Table 3. Performance testing results of incentive mechanisms.

Dataset
BOppCL ASTW-FedAVG FedAVG

Communication
Rounds

Accuracy
Communication

Rounds
Accuracy

Communication
Rounds

Accuracy

1@MNIST 29 98.85% 61 96.69% 75 98.19%
2@MNIST 30 99.50% 70 99.07% 75 98.18%
3@MNIST 29 99.81% 70 98.79% 73 98.29%
1@SVHN 71 95.11% 97 95.57% 127 93.33%
2@SVHN 83 95.98% 106 95.15% 159 91.12%
3@SVHN 69 98.87% 93 98.59% 97 98.19%

1@CIFAR-10 87 91.3% 117 91.5% 147 89.3%
2@CIFAR-10 103 93.1% 126 91.1% 176 87.3%
3@CIFAR-10 95 90.3% 113 90.7% 158 89.5%

Based on the observations in Table 3, it is evident that both ASTW-FedAVG and
BOppCL exhibit superior communication rounds and precision compared to FedAVG
in all datasets. This can be attributed to the absence of any incentive mechanism or
optimization algorithms in FedAVG to improve communication efficiency in Federated
Learning. For example, considering the 1@MNIST dataset, BOppCL achieves 98% precision
in just 29 communication rounds, outperforming ASTW-FedAVG, which requires 61 rounds,
and FedAVG, which requires 75 rounds to achieve the same level of precision. These results
highlight that BOppCL demonstrates optimal performance in terms of communication
rounds and accuracy in most datasets. The experimental results underscore that the
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incentive mechanism proposed in BOppCL significantly accelerates the convergence speed
of learning and improves learning performance. This, in turn, leads to a substantial
reduction in the communication cost of OppCL.

4.3.2. Evaluation of the Consensus Mechanism

Block confirmation delay is a significant measure to assess the effectiveness of consen-
sus algorithms. In this article, the phrase “block confirmation delay” is used to refer to the
time period between the production of a block by a witness node and its eventual inclusion
in the blockchain by a candidate witness node. To make a comparison, we studied and
analyzed the confirmation latency of BFT-DPoS, DPoS, and PBFT in the same environment,
as illustrated in Figure 3.

By assessing the confirmation latencies of these consensus algorithms, we gain insight
into their respective performance and efficiency in terms of block confirmation time. The
comparison depicted in Figure 3 allows for a comprehensive evaluation and analysis of the
delay characteristics exhibited by the BFT-DPoS, DPoS, and PBFT consensus strategies in
similar settings.

Figure 3. Block confirmation delay comparison.

Based on the information presented in Figure 3, it is evident that the BFT-DPoS
algorithm achieves prompt block validation confirmation, which requires only around
800 ms. In contrast, the original DPoS algorithm requires at least 6 seconds for verification
confirmation from a minimum of 2/3 of the total witness nodes. Furthermore, due to
the incorporation of the core principles of the PBFT algorithm, the verification latency
of BFT-DPoS and PBFT is relatively similar. One notable advantage of the BFT-DPoS
algorithm proposed in this article is that it generates blocks by electing specific witness
nodes, with the number of witnesses remaining fixed over an extended period. As a result,
the throughput and verification delay of blocks do not change significantly with increasing
number of nodes within the network. This characteristic effectively ensures the stability of
the blockchain network. In summary, the BFT-DPoS algorithm introduced in this article
exhibits efficient and timely block validation confirmation, surpassing the original DPoS
algorithm in terms of verification time. Furthermore, its stability is guaranteed by the
consistent number of witness nodes, leading to consistent throughput and verification
delay, despite network size variations.

4.3.3. Comprehensive Performance Evaluation

The results of the precision of the proposed mechanism in the MNIST, SVHN, and
CIFAR-10 datasets, considering different numbers of training nodes, are shown in
Figures 4–6. To replicate real scenarios in ITS, three nodes were randomly selected as
low-quality participants during the experiment. These nodes possessed limited communi-
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cation and computing capabilities and introduced poor model parameter quality through
random noise interference with the original parameters during the model aggregation
process. The experimental findings demonstrate that the proposed mechanism achieves
commendable accuracy. Although the inherent complexity of the SVHN and CIFAR-10
dataset leads to slightly lower global accuracy compared to MNIST, the proposed algorithm
still achieves high accuracy in SVHN and CIFAR-10, showcasing its versatility in different
datasets. When the number of participating nodes in the training process increases from
20 and 40 to 60, a slight decrease in global accuracy is observed as the number of iterations
increases. However, the overall difference is not substantial. This minor fluctuation in
the experimental results highlights the robust scalability of the proposed mechanism. The
proposed mechanism is effective and scalable, as evidenced by the experimental results.
It can reduce the negative effect of low-quality nodes on overall learning outcomes, even
when the number of participating nodes increases, can maintain a high level of accuracy de-
spite the presence of low-quality nodes, and can adapt to varying numbers of participating
nodes, minimizing their influence on overall learning outcomes.

Figure 4. The precision of various amounts of nodes on the MNIST dataset was examined. Results
showed that the more nodes used, the higher the accuracy.

Figure 5. The precision of various amounts of nodes on the SVHN dataset was examined. The results
showed that the accuracy increased as the number of nodes increased.
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Figure 6. The precision of various amounts of nodes on the CIFAR-10 dataset was examined.

In our comprehensive performance evaluation and algorithm comparison experiment,
we compared the mechanism proposed in this article with local CNN and ASTW-FedAVG.
The dataset was randomly divided into 100 subsets and assigned to 100 training nodes. In
the local CNN approach, each node trained its model using the assigned subset. ASTW-
FedAVG, on the other hand, trained local models on individual nodes’ subsets and updated
the global model using a weighted average aggregation algorithm on a central server.
Figures 7–9 present the accuracy results, indicating that the mechanism proposed in this
document exhibits slightly better accuracy compared to ASTW-FedAVG. However, the
accuracy of the local CNN is significantly lower than that of the other two mechanisms.
This discrepancy can be attributed to the local CNN training algorithm, where the primary
objective is to minimize the loss in the local dataset. As a result, it may lead to the attainment
of a local optimal solution that deviates from the global optimal solution, resulting in
lower accuracy. The experiments demonstrate that the mechanism proposed in this article
achieves high accuracy while ensuring data security and privacy protection.

Figure 7. Accuracy of 3 algorithms on the MNIST dataset.
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Figure 8. Accuracy of 3 algorithms on the SVHN dataset.

Figure 9. Accuracy of 3 algorithms on the CIFAR-10 dataset.

The evaluation of the overall system run time is shown in Figure 10. It demonstrates
that for a fixed number of users, the system’s running time increases with the growth of the
dataset size and eventually stabilizes. This behavior can be attributed to optimization of
computational efficiency in federated learning and consensus efficiency in the proposed
mechanism, as discussed in this article. These optimizations effectively improve the overall
operational efficiency of the system. Furthermore, when considering different numbers of
users, the system running time increases as the number of users increases. This correlation
arises because of the collaborative nature of the system. As the number of users increases,
more time is required to achieve effective collaboration and synchronization among a larger
user base. In summary, the mechanism proposed in this article improves the operating
efficiency of the system by optimizing computational efficiency and consensus. The system
running time is influenced by factors such as the size of the dataset and the number of
participating users. Understanding these dynamics helps in managing and optimizing the
system run time for efficient execution.
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Figure 10. Overall system running time.

On the basis of the experiments carried out, it is observed that the accuracy of the
mechanism proposed in this article is minimally affected by an increase in the number of
users. However, the running time experiences a significant increase. The stable accuracy is
mainly attributed to the blockchain mode implemented in the proposed scheme, which
ensures consistent learning accuracy. However, as the number of users increases, the
mechanism encounters additional computational and consensus tasks. More local models
must be updated and calculated, and a greater number of RSUs are involved in executing
the consensus process. Consequently, the time required to train, update, and transmit
the data increases. Although this leads to a slight increase in the overall run time, the
participation of multiple users expands the dataset size used for calculations. As a result,
shared data become more accurate, enhancing the quality and reliability of the collaborative
learning process. In summary, while the accuracy of the proposed mechanism remains
stable with an increasing number of users, the run time experiences a notable increase due
to the additional computational and consensus tasks involved. However, the participation
of multiple users contributes to a larger and more accurate dataset, thus improving the
precision of data sharing and the overall effectiveness of the mechanism.

In ITS, motivating autonomous vehicles to participate in distributed learning to im-
prove scene adaptability requires addressing accuracy and operational efficiency issues.
The BOppCL algorithm updates the local model of vehicles mainly through the gradients
encountered through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) commu-
nication, which could potentially affect the utilization of ITS communication resources.

5. Conclusions

In this paper, we propose a novel blockchain-enabled OppCL (BOppCL) approach
for ITS; it offers benefits such as updating autonomous vehicle models, improving driving
decisions, and achieving intelligent efficient driving. Meanwhile, the authors address
challenges such as vehicle reliability, limited learning time, and participant motivation.
We integrate blockchain into OppCL, propose vehicle selection and resource allocation
algorithms, and study the BFT-DPoS consensus mechanism. Simulation experiments show
that our approach outperforms existing methods in accuracy and run time, enabling safe,
reliable, and efficient distributed learning.

Future work involves optimizing node selection based on factors such as energy
consumption and improving consensus algorithms for scalability. These enhancements will
advance OppCL’s applicability and performance in ITS. In future work, we can focus on
optimizing node selection considering factors such as energy consumption, communication
cost, and computational cost. Improving consensus algorithms will enhance scalability and
robustness, advancing the applicability and performance of OppCL in ITS.
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