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Abstract: Objects in aerial images often have arbitrary orientations and variable shapes and sizes.
As a result, accurate and robust object detection in aerial images is a challenging problem. In this
paper, an arbitrary-oriented object detection method for aerial images, based on Dynamic Deformable
Convolution (DDC) and Self-normalizing Channel Attention Mechanism (SCAM), is proposed; this
method uses ReResNet-50 as the backbone network to extract rotation-equivariant features. First,
DDC is proposed as a replacement for the conventional convolution operation in the Convolutional
Neural Network (CNN) in order to cope with various shapes, sizes and arbitrary orientations of the
objects. Second, SCAM embedded into the high layer of ReResNet-50, which allows the network to
enhance the important feature channels and suppress the irrelevant ones. Finally, Rotation Regions
of Interest (RRoI) are generated based on a Region Proposal Network (RPN) and a RoI Transformer
(RT), and the RoI-wise classification and bounding box regression are realized by Rotation-invariant
RoI Align (RiRoI Align). The proposed method is comprehensively evaluated on three publicly
available benchmark datasets. The mean Average Precision (mAP) can reach 80.91%, 92.73% and
94.1% on DOTA-v1.0, DOTA-v1.5 and HRSC2016 datasets, respectively. The experimental results
show that, when compared with the state-of-the-arts methods, the proposed method can achieve
superior detection accuracy.

Keywords: aerial images; arbitrary-oriented object detection; dynamic deformable convolution;
self-normalizing channel attention; ReResNet-50

1. Introduction

Object detection in aerial images is used to locate objects of interest on the ground
and identify their categories; this has become an important research topic in the field of
computer vision. Objects in natural images can maintain their orientations due to gravity,
while objects in aerial images often have arbitrary orientations. The shape and scale of
objects in these aerial images change dramatically, making object detection in aerial images
a challenging problem [1–3]. In recent years, the Convolutional Neural Network (CNN) has
made important breakthroughs. The CNN is widely used in various visual tasks, especially
in the field of aerial images [4–8]. Correspondingly, several aerial image datasets have been
released; these promote the continuous advance of related research work.

Existing aerial image object detection methods are generally based on the object
detection framework used for natural images [9–12]. By elaborately designing specific
mechanisms to cope with object rotation changes, including loss functions [13,14], enlarging
the scale of training samples with various rotation changes [4,15], rotation invariant and
rotation variant feature extraction, detection robustness and accuracy have been improved
significantly. These methods usually adopt convolution operations with fixed weights;
these make the network unable to cope with the drastic changes in the scale, orientation
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and shape of objects effectively. In addition, the categories of objects in aerial images are
complex and diverse, and the semantic feature representation capabilities of the existing
detection methods are insufficient, which often affect the detection performance.

With the development of remote sensing technology, the resolution and the file sizes
of aerial images are constantly increasing. Due to the limited budget, limited logistical
resources and the power consumption in some aerospace systems, including satellites and
aircraft, Zhang et al. [16] proposed a hardware architecture for the CNN-based aerial images
object detection model. To see the issue from a different perspective, Li et al. [17] proposed
a lightweight convolutional neural network. Recent advancements in remote sensing
have widened the range of applications for 3D Point Cloud (PC) data. This data format
poses several new issues concerning noise levels, sparsity and required storage space; as a
result, many recent works address PC problems using deep learning solutions due to their
capability to automatically extract features and achieve high performances [18,19].

In light of the above problems, an arbitrary-oriented aerial image object detection
method based on Dynamic Deformable Convolution (DDC) and the Self-normalizing
Channel Attention Mechanism (SCAM) is proposed. This method adopts ReResNet-50 as
the backbone network for rotation-invariant feature extraction [8].

The main contributions of this study are summarized as follows:

• DDC is proposed. This can dynamically adjust the weights of convolution kernels
according to the input image. The conventional convolution operation is replaced
with DDC to cope with arbitrary-oriented objects.

• SCAM is proposed to enhance the important feature channels while suppressing
the irrelevant ones. It is placed at the higher layer of the backbone network in or-
der to enhance the semantic feature representation capability and, thus, improve
detection accuracy.

• Experimental results on three challenging datasets (DOTA, HRSC2016 and UCAS-AOD)
show that the proposed method can achieve state of the art detection performance.

A brief overview of the related work is given in Section 2. Section 3 introduces the
proposed arbitrary-oriented object detection method. Section 4 reports the experimental
results and analysis. Finally, conclusions are drawn in Section 5.

2. Related Work

Most object detection methods use a Horizontal Bounding Box (HBB) to denote the
location of objects in aerial images. However, because of the dense distribution of objects
in aerial images, the large vertical-horizontal ratio and arbitrary orientations, the use of
HBB always contains some background regions; this causes interference in classification
tasks, and the predicted object position is not accurate enough as a result. To cope with
these challenges, aerial image object detection is usually formulated as an oriented object
detection task by using an Oriented Bounding Box (OBB). The comparison of HBB and
OBB is shown in Figure 1.

It can be seen from Figure 1 that, when compared with HBB, OBB can denote the
position of objects with arbitrary orientations more precisely. Therefore, OBB is usually
used for arbitrary-oriented object detection in aerial images.

Current mainstream arbitrary-oriented object detectors can be divided into three
categories: single-stage detectors [20–23], two-stage detectors [24–27] and refine-stage
detectors [28–31]. These are introduced separately below.

2.1. Single-Stage Object Detector

Single-stage object detectors have a high detection speed that is generally based on the
YOLO series [11], SSD [32], and other single-stage frameworks. Yang et al. [13] proposed a
regression loss based on Gaussian Wasserstein distance to solve the problems of boundary
discontinuity and its inconsistency between detection performance evaluation and loss
function in arbitrary-oriented object detection. The authors further simplified the network
model [33] based on the Gaussian model and the Kalman filter, in which a loss function
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was proposed for rotating object detection. The model can achieve trend-level alignment
with SkewIoU loss instead of the strict value level identity.

Aerial images often use OBB for object detection. This leads to a large number of
rotation-related parameters and anchor configurations in the anchor-based detection meth-
ods. Zhao et al. [27] proposed a different polar detector, which located an object by its
center point, directed it by four polar angles and measured it using the polar ratio system.
Yi et al. [26] applied the horizontal keypoint-based object detector to arbitrary-oriented
object detection tasks. The experimental results showed that these two different methods
can achieve the rapid detection of arbitrary-oriented objects, but that the detection accuracy
needs to be improved.
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2.2. Two-Stage Object Detector

Compared with single-stage detectors, two-stage object detectors often have high
detection accuracy but with a lower detection speed. Currently, two-stage object detectors
have become the mainstream in arbitrary-oriented object detectors.

In order to eliminate the loss discontinuity at the boundary of rotating object,
Yang et al. [28,30] proposed an IoU-smooth L1 loss by the combination of IoU and smooth
L1 loss. It is a rotating IoU loss without differentiability. Inspired by this, Yang et al. [34]
further proposed a new rotation detection baseline to address the boundary problem by
transforming angular prediction from a regression problem to a classification task with
little accuracy degradation.

Ding et al. [4] proposed a multi-stage detector based on Cascade RCNN, which con-
tains Rotation Regions of Interest Learner (RRoI Learner) and RRoI warping, to transform
HRoI to RRoI. Han et al. [8] proposed Rotation-invariant RoI Align (RiRoI Align) to extract
rotation-invariant features from rotation-equivariant features according to the orientation
of RoI. These methods lead to confused sequential marking points when using rotating
anchors. Therefore, Xu et al. and Wang et al. [6,7,35] employed quadrilateral masks to
describe arbitrary-oriented objects precisely; they also used sequential label points to solve
the above problems.

Xie et al. [31] proposed a two-stage arbitrary-oriented object detection framework
that includes oriented RPN, an oriented RCNN header and a detection header that can
refine RROI.

In general, the two-stage object detector can effectively deal with objects with various
rotation angles, can improve the detection robustness and accuracy by designing the
network structure and can accommodate loss function, feature fusion strategy, attention
mechanism and so on.
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2.3. Refine-Stage Object Detector

To obtain higher detection accuracy, many refined one-stage or two-stage object de-
tectors are proposed; these can not only improve detection speed, but also obtain higher
detection accuracy.

To address the problem of feature misalignment, Yang et al. [21] designed a Feature
Refining Module (FRM) that uses feature interpolation to obtain the position information
of refining anchor points and reconstructed feature maps to realize feature alignment.
Han et al. [36] proposed a single-shot alignment network for oriented object detection that
aims at alleviating the inconsistency between the classification score and location accuracy
via deep feature alignment. To overcome the boundary discontinuity issue, Yang et al. [37]
proposed a regression-based object detector that uses Angle Distance and Aspect Ratio
Sensitive Weighting (ADARSW) to make the detector sensitive to angular distance and
object aspect ratio. Different from refined one-stage detectors, the second stage of a refined
two-stage detector is used for proposal classification and regression, allowing it to obtain a
higher detection accuracy.

These methods can improve detection robustness and accuracy by elaborately de-
signing network structure, loss function and feature extraction strategy to effectively cope
with the various rotation angles of objects. As large numbers of methods are constantly
proposed, the experimental data begin to randomize, seriously affecting the accuracy of the
experimental results. To address the problem of experimental data, Giordano et al. [38] go
in depth regarding methods, resources, experimental settings and performance results to
observe and study all the aspects that derive from the stages. However, there are still some
problems to be solved. When designing the network structure, more complex modules,
such as feature fusion and attention mechanism, are usually adopted, inevitably increase
model complexity. To solve the above problems, in this paper, a two-stage arbitrary-oriented
object detection method is proposed based on DDC and SCAM. This method can dynami-
cally adjust convolution kernel parameters according to the input image and enhance the
semantic feature representation capability, thus improving detection performance.

3. Proposed Method

The following section will describe the overall architecture of the proposed method
and the implementation details of the ReResNet-50, DDC, SCAM and RoI-wise classification
and bounding box regression.

3.1. Overall Framework

The framework of the proposed two-stage arbitrary-oriented object detection method
in aerial images is shown in Figure 2. For the input image, ReResNet-50 is used as the
backbone network to extract rotation-equivariant features. The conventional convolution
operation is replaced with the proposed DDC, which dynamically adjusts the offset weights
of convolution kernels by obtaining the weights of convolution kernels and increases the
offset direction. DDC is used to cope with the drastic orientation, scale and shape variations
of objects, and to enhance the representation capability of features. Under the cyclic group
CN , the rotation-equivariant feature maps with the size (K, N, H, W) have N orientation
channels, and each orientation channel corresponds to an element in CN . SCAM is proposed
and introduced into the high layer of the backbone network to improve the semantic feature
representation capability. Then, RPN is used to generate HRoIs, followed by an RT that
transforms HRoIs to RRoIs. Finally, RiRoI alignment with rotation invariance is used
to realize object orientation classification and bounding box regression, which includes
spatial alignment and orientation alignment to ensure that RRoIs with different orientations
produce completely rotation-invariant features.
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replaced with the proposed DDC. Under the cyclic group CN , the rotation-equivariant feature maps
with the size (K, N, H, W) have N orientation channels, and each orientation channel corresponds to
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The following section will describe the implementation details of the ReResNet-50,
DDC, SCAM and RoI-wise classification and bounding box regression.

3.2. ReResNet-50 Network

Existing object detectors usually adopt CNN as the backbone network to automatically
extract multi-scale features. As shown in Figure 2, ReResNet-50 with rotation-equivariance
is used as the backbone network; this is based on ResNet-50.

All layers of the backbone are re-implemented with rotation-equivariant networks
based on e2CNN [39], including convolution, pooling, normalization and non-linearities.
Considering the computational complexity, ReResNet-50 and ReFPN are only equivariant
to the discrete features. Unlike the conventional feature maps, the rotation-equivariant
feature maps Γ with the size of (K, N, H, W) have N channels:

Γ =
{

Γ(i)|iε{1, 2, . . . , N}
}

(1)

where the feature maps of each orientation channel Γ(i) correspond to an element in CN .
Compared with a conventional CNN backbone network, a rotation equivariant back-

bone network can obtain abundant directional information by extracting features from
different directions and share convolution kernels with different rotation weight coefficients;
this makes the model more robust and smaller in size.

As shown in Figure 2, DDC and SCAM are proposed and introduced into the low and
high layer of the backbone network, respectively, to improve the feature representative
capability of the network.

3.3. Dynamic Deformable Convolution

In the field of object detection, deformation modeling is a fundamental problem.
It aims to produce translation-invariant and rotated-invariant features. A Deformable
Convolutional Network (DCN) [40] is a simple, efficient and end-to-end solution for
modeling dense spatial transformations; it tends to obtain the offset by adding a standard
convolutional layer branch whose convolution kernel has the same spatial resolution as
the current convolutional layer. To further prove the validity of deformable convolution,
DCNv2 [41] further improves the modeling capability and shows better performance in
object detection tasks.
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Inspired by DCN, DDC is proposed in this paper. DDC aims to dynamically integrate
multiple convolution kernels, generate new weight parameters and better learn the offset
when compared to DCN. Its network structure is shown in Figure 3.
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obtaining the weights of convolution kernels and increasing the offset direction.

As illustrated in Figure 3, input feature maps are fed into a set of average pooling,
convolutional layers and Rectified Linear Units (ReLU) to obtain the weight λ. Compared
with DCN, a weighted conventional convolution layer branch is added that dynamically
adjusts the offset weights of convolution kernels by obtaining the weights of convolution
kernels and increasing the offset direction. The specific calculation method of offset weights
is as follows:

o f f set(D, W) = x

(
4

∑
l=1

λi ×ωFl

)
(2)

where x represents the input feature maps, ω represents the parameters of the convolu-
tional layer, λ represents the learned weights and o f f set(D, W) represents the learned
offset directions and weights.

The DDC modulation process of each point θ on the output feature map y is expressed
by the following equation:

y(θ) =
K

∑
k=1

x(θ + ∆θk + o f f set(D))×ω(m)× o f f set(W) (3)

where x and y represent the input and output feature maps and the values of o f f set(D)
and o f f set(W) are produced by a branch of the o f f set(D, W), which represents the learned
offset directions and weights, respectively. k is the k-th point in the convolution kernel;
the range of its value is [1, K]. ∆θk and ω(m) are the learnable offsets and modulation
parameters of the k-th location; the range of ω(m) value is [0, 1] and ∆θk is a real number
with unconstrained range. Through the above operation, the output feature maps can keep
the direction deviation and the adjustable weights are added to the convolution kernel
parameters; this can effectively cope with various complex objects and enhance the feature
representation capability.

3.4. Self-Normalizing Channel Attention Mechanism

SCAM is proposed to further improve the representative capability of semantic fea-
tures; its network structure is shown in Figure 4. SCAM aims to enhance the feature
channels important in the object detection tasks while suppressing the irrelevant ones.
SCAM uses Scaled exponential Linear Units (SeLU) [42] and Global Average Pooling
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(GAP); these can avoid possible gradient explosion. To avoid high complexity, SCAM only
considers direct interaction between each channel and its S-nearest neighbors. Meanwhile,
one-dimensional convolutional kernel size is adaptively selected.
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generates channel weights of size S, where S is adaptively determined via a mapping of channel
dimension C.

Let γ ε RW×H×CN denote the output of one convolution layer, where H, W and CN
are height, width and number of feature channels, respectively. The specific calculation of
the channel weights in SCAM is expressed as follows:

θ = Sigmoid(FSCAM(W1, W2)× GAP(γ)) (4)

where GAP(γ) is a GAP operation in the channel direction and FSCAM(W1, W2) represents
SCAM operation. W1 and W2 represent model parameters. To make parameters self-
normalized, the specific equation of FSCAM(W1, W2) and GAP(γ) are as follows:

FSCAM(W1, W2)× GAP(γ) = SeLU
(

W1 ×
1

WH
×∑W,H

i=1,j=1 γij

)
×W2 (5)

where SeLU
(

W1 × 1
WH ×∑W,H

i=1,j=1 γij

)
represents SeLU operation in the channel direction.

Next, by analyzing the Efficient Channel Attention (ECA) module [43], including
a squeeze module for aggregating global spatial information and an efficient excitation
module for modeling cross-channel interaction, this paper proposes a module that can
adaptively select one-dimensional convolutional kernel sizes. The simplest mapping is a
linear function ψ1(S) = k× S− b. According to the channel dimension, which is usually
set to power of two, extend the linear function ψ1(S) to a non-linear one, denoted as
ψ2(S) = 2k×S−b,to overcome the deficiency of linear function representation capability.

Then, given channel dimension CN
(n), the specific calculation of the kernel size S is

expressed as follows:

S =

∣∣∣∣∣ log2 CN
(n)

a
+

k
a

∣∣∣∣∣
odd

(6)

where |t|odd represents the nearest odd number of t. In this paper, k and a are set to two
and one, respectively. High-dimensional channels can have longer range interaction when
using this formula, while low-dimensional channels undergo shorter range interaction by
using non-linear mapping. As a result of the interaction between feature channels, the
representation capability of feature channels can be improved.
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3.5. RoI-Wise Category Classification and Bounding Box Regression

As shown in Figure 2, RPN is adopted to generate Horizontal RoI (HRoI) parallel to
the coordinate axis; then, an RoI Transformer (RT) is adopted to convert HRoI into RRoI
with rotation characteristics [4]. Traditional RoI pooling can only deal with candidate
regions parallel to coordinate axes. In this paper, RRoI Pooling is further used to pool the
rotating bounding box. Rotation-invariant features cannot be extracted from rotational
equivariant features by using RRoI warping directly. As can be seen in Figure 2, RiRoI
Align [8] is adopted. According to the RRoI bounding box of the spatial dimension, it
can align the features of the orientation dimension by cyclically switching the orientation
channel and interpolating the features.

The RoI transformer contains two parts: RRoI Learner and RRoI warping. RRoI
learner attempts to learn RRoI from the HRoI. During the model’s training, the input HRoI
is matched with the rotating OBB and the related parameters of RRoI are decoded from it.
RRoI Warping extracts rotation-invariant features through RRoI parameters. RiRoI Align in-
cludes two parts: spatial alignment and directional alignment. For an RRoI (x, y, w, h, ϕ),
spatial alignment warps it from the feature maps f to produce rotation-invariant region
features fR in the spatial dimension, which is consistent with RiRoI Align. To ensure
that RRoI with different orientations can produce rotation-invariant features, it performs
orientation alignment in the orientation dimension. The specific calculation of the output
region features f̂R is expressed as follows [8]:

f̂R = I(CH( fR, [ϕN/2π]), ϕ) (7)

where ϕ is an index set to [θN/2π] and CH and I represent the switching channels
and feature interpolation operations, respectively. For each location in the feature maps,
both the orientation with the strongest response and the features from all orientations are
preserved using this formula.

4. Experimental Results and Analysis

In order to verify the effectiveness of the proposed method, massive comparative
experiments are conducted on three benchmark datasets (DOTA [1], HRSC2016 [2] and
UCAS-AOD [3]). In this section, the datasets and evaluation criteria are introduced, then
the experimental results are reported, and finally the results are analyzed.

4.1. Datasets and Evaluation Criteria

The following section will describe the details of the datasets and evaluation criteria.

4.1.1. Datasets

DOTA is the largest dataset for arbitrary-oriented object detection in aerial images; it
is comprised of 2806 large aerial images from different sensors and platforms. Objects in
DOTA exhibit a wide variety of scales, orientations and shapes. As can be seen in Table 1,
the fully annotated DOTA benchmark dataset contains 188,282 instances, each of which is
labeled by an arbitrary quadrilateral. These images are then annotated by experts using
15 object categories. The short names for categories are defined as: Plane (PL), Baseball
diamond (BD), Bridge (BR), Ground track field (GTF), Small vehicle (SV), Large vehicle
(LV), Ship (SH), Tennis court (TC), Basketball court (BC), Storage tank (ST), Soccer-ball field
(SBF), Roundabout (RA), Harbor (HA), Swimming pool (SP) and Helicopter (HC). Half of
the original images are randomly selected as the training set, 1/6 as the validation set and
1/3 as the testing set. A series of 1024× 1024 patches are cropped from the original images
with a stride of 824.
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Table 1. Comparison among DOTAv1.0, HRSC2016 and UCAS-AOD datasets in aerial images.

Dataset Category
Image Quantity

Instance Quantity Image Size
Train Val Test

DOTAv1.0 [1] 15 1404 467 935 188,282 800 × 800–4000 × 4000
HRSC2016 [2] 1 436 181 444 2976 300 × 300–1500 × 900

UCAS-AOD [3] 2 1004 106 400 14,596 659 × 1280

HRSC2016 is a challenging ship detection dataset with OBB annotations. The dataset
contains 1061 aerial images, with sizes ranging from 300× 300 to 1500× 900. It includes
436, 181 and 444 images in the training, validation and test set, respectively. All images are
resized to 1024× 1024.

UCAS-AOD is an aerial aircraft and car detection dataset. UCAS-AOD contains 1510
aerial images, with sizes around 659× 1280 pixels, with two categories of 14,596 instances.
In line with [1,44], 1110 images are randomly selected for training and 400 for testing.

4.1.2. Evaluation Criteria

In the object detection evaluation criteria, mean Average Precision (mAP) is generally
used to evaluate detection accuracy. When calculating mAP, some indicators, such as
recall, precision and average precision (AP), are required. Precision and Recall can be
formulated as:

Precision = TP/(TP + FP) (8)

Recall = TP/(TP + FN) (9)

where TP, FP and FN denote the number of true positives, false positives and false
negatives, respectively.

IoU refers to the intersection ratio between the prediction box and Ground Truth (GT),
and is usually used to measure the overlapped degree between the prediction box and GT.
IoU can be formulated as:

IoU =
Bounding Box ∩ Ground Truth
Bounding Box ∪ Ground Truth

(10)

where Bounding Box ∩ Ground Truth denotes the intersection of the predicted detection
results and GT and Bounding Box ∪ Ground Truth denotes their union.

IoU is set as the standard threshold for evaluating position accuracy. APi of a certain
detection category is calculated from the area of the precision–recall curve. The APi can be
formulated as:

APi =
∫ 1

0
Pi(r)dr (11)

The detection performance of the detector is the average of the APi of all categories.
Therefore, mAP can be formulated as:

mAP =
N

∑
i=1

APi/N (12)

where N is the total number of categories and APi is the AP of a certain detection category.
The Matthew’s correlation coefficient (MCC) is calculated from the correlation coeffi-

cient between the true and the predicted value. It can denote the sensitivity of imbalanced
data. MCC can be formulated as:

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(13)
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4.2. Implementation Details

The proposed network model was built, trained and tested on the Pytorch platform.
The hardware configuration was: Ubuntu 16.04 with an Intel Xeon(R) E5-2602 v4 CPU,
16 G memory and an Nvidia RTX 2080Ti GPU. ReResNet-50 was implemented based
on the mmclassification, available at https://github.com/open-mmlab/mmclassification
(accessed on 30 July 2020). ReResNet-50, pre-trained on ImageNet-1K with an initial
learning rate of 0.1, was used as the backbone network in this paper. All models were
trained for 100 epochs and the learning rate was divided by 10 at {30, 60, 90} epochs; the
batch size is set to 256 [8].

To enlarge the scale of the training samples, three-scale data samples are provided.
Random rotation operation was adopted for training and testing to improve the training
performance of the network.

4.3. Comparison with the State-of-the-Arts Methods

In order to verify the effectiveness of the proposed method in this paper, the method was
compared with state-of-the-arts methods on three publicly datasets (DOTAv1.0, HRSC2016
and UCAS-AOD).

4.3.1. Evaluation on DOTA Benchmark Dataset

We compared the proposed arbitrary-oriented object detection method with 23 state of
the art methods on the DOTA-v1.0 dataset, as categorized by single-, two-, and refine-stage
methods. The single-stage methods included O2-Dnet [24], DRN [25], BBAVectors [26],
PolarDet [27], GWD [13] and KFIOU [33]. The two-stage methods included RoI-Trans [4],
SCRDet [28], GlidingVertex [7], Mask-OBB [29], CenterMap [6], CSL [34], RSDet-II [35],
SCRDet++ [30], ReDet [8] and Oriented RCNN [31]. The refine-stage methods included
CFCNet [20], R3Det [21], CFA [22], DCL [37], RIDet [23], S2Anet [36] and KLD [14]. The
comparison results using different methods are shown in Table 2, in which R-101 denotes
ResNet-101 (likewise for R-50, R-152). RX-101, ReR-50 and H-104 denote ResNeXt101,
ReReNet-50 and Hourglass-104, respectively. The top two detection accuracies are marked
in red and blue. The experimental data of the other methods are cited in the references.

Table 2. Comparison results using state of the art methods on the DOTA-v1.0 dataset. The top two
detection accuracies are marked in red and blue.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Si
ng

le
-s

ta
ge

O2-Dnet [24] H-104 89.30 83.30 50.10 72.10 71.10 75.60 78.70 90.90 79.90 82.90 60.20 60.00 64.60 68.90 65.70 72.80
DRN [25] H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23

BBAVectors [26] R-101 88.63 84.06 52.13 69.56 78.26 80.40 88.06 90.87 87.23 86.39 56.11 65.62 67.10 72.08 63.96 75.36
PolarDet [27] R-101 89.65 87.07 48.14 70.97 78.53 80.34 87.45 90.76 85.63 86.87 61.64 70.32 71.92 73.09 67.15 76.04

GWD [13] R-152 86.96 83.88 54.36 77.53 74.41 68.48 80.34 86.62 83.41 85.55 73.47 67.77 72.57 75.76 73.40 76.30
KFIOU [33] R-152 89.46 85.72 54.94 80.37 77.16 69.23 80.90 90.79 87.79 86.13 73.32 68.11 75.23 71.61 69.49 77.35

R
efi

ne
-s

ta
ge

CFCNet [20] R-101 89.08 80.41 52.41 70.02 76.28 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09 73.50
R3Det [21] R-152 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47
CFA [22] R-152 89.08 83.20 54.37 66.87 81.23 80.96 87.17 90.21 84.32 86.09 52.34 69.94 75.52 80.76 67.96 76.67
DCL [37] R-152 89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37
RIDet [23] R-50 89.31 80.77 54.07 76.38 79.81 81.99 89.13 90.72 83.58 87.22 64.42 67.56 78.08 79.17 62.07 77.62

S2Anet [36] R-50 88.89 83.60 54.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42
KLD [14] R-152 89.92 85.13 59.19 81.33 78.82 84.38 87.50 89.80 87.33 87.00 72.57 71.35 77.12 79.34 78.68 80.63

Tw
o-

st
ag

e

RoI-Trans [4] R-101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
SCRDet [28] R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

GlidingVertex [7] R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
Mask-OBB [29] RX-101 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33
CenterMap [6] R-101 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

CSL [34] R-152 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
RSDet-II [35] R-152 89.93 84.45 53.77 74.35 71.52 78.31 78.12 91.14 87.35 86.93 65.64 65.17 75.35 78.74 63.31 76.34

SCRDet++ [30] R-152 88.68 85.22 54.70 73.71 71.92 84.14 79.39 90.82 87.04 86.02 67.90 60.86 74.52 70.76 72.66 76.56
ReDet [8] ReR-50 88.81 82.48 60.83 80.82 78.34 86.06 88.31 90.87 88.77 87.03 68.65 66.90 79.26 79.71 74.67 80.10

OrientedRCNN [31] R-50 89.84 85.43 61.09 79.82 79.71 85.35 88.82 90.88 86.68 87.73 72.21 70.80 82.42 78.18 74.11 80.87
Ours ReR-50 88.92 86.21 61.93 80.73 75.71 86.25 88.93 91.13 88.99 87.09 71.79 67.69 82.78 80.12 75.12 80.91

As shown in Table 2, the proposed method achieves a mAP of 80.91%, outperforming
the other methods. It exceeds the second Oriented RCNN method by 0.04%, exceeds ReDet

https://github.com/open-mmlab/mmclassification
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by 0.81% and obtains the optimal or sub-optimal results in 12/15 categories. Compared with
the sub-optimal results, the AP values of eight object categories are increased, including
baseball diamond (85.95 to 86.21), bridge (61.09 to 61.93), large vehicle (86.06 to 86.25), ship
(88.82 to 88.93), basketball court (88.77 to 88.99), harbor (82.42 to 82.78), swimming pool
(79.71 to 80.12) and helicopter (74.67 to 75.12).

In order to show the effectiveness of the proposed method more intuitively, the
visualized detection results on the DOTA-v1.0 dataset are depicted in Figure 5. It can be
clearly observed that the proposed method achieves accurate bounding box regression in
detecting densely packed and arbitrary oriented objects, and that it can capture the edge
information of the rotated objects better and obtain a higher detection accuracy.
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4.3.2. Evaluation on HRSC2016 Benchmark Dataset

We compared the proposed method with 13 state of the art methods on the HRSC2016
dataset, including RC1&RC2 [45], RRPN [15], R2PN [46], RRD [47], RoI-Trans [4], Gliding
Vertex [7], R3Det [21], CSL [34], DAL [48], GWD [13], S2anet [36], ReDet [8] and Oriented
RCNN [31]. The comparison results using different methods are shown in Table 3. The
results are all evaluated with the VOC2007 metric for fair comparison. The experimental
data of the other methods are cited in the references.

Table 3. Comparison results using state of the art methods on the HRSC2016 dataset. The top two
detection accuracies are marked in red and blue.

Method Backbone mAP (07)

RC1 & RC2 [45] VGG16 75.70%
RRPN [15] ResNet101 79.08%
R2PN [46] VGG16 79.60%
RRD [47] VGG16 84.30%

RoI-Trans [4] ResNet101 86.20%
Gliding Vertex [7] ResNet101 88.20%

R3Det [21] ResNet50 89.26%
CSL [34] ResNet152 89.60%
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Table 3. Cont.

Method Backbone mAP (07)

DAL [48] ResNet101 89.80%
GWD [13] ResNet101 89.85%
S2anet [36] ResNet50 90.17%
ReDet [8] ReResNet-50 90.46%

Oriented RCNN [31] ResNet101 90.50%
Ours ReResNet-50 92.73%

As shown in Table 3, the proposed method achieves an mAP of 92.93% under VOC2007
metrics, outperforming the other methods. It exceeds the second Oriented RCNN method
by 2.23%. The proposed method can improve detection accuracy significantly, especially
for the type of ship.

4.3.3. Evaluation on UCAS-AOD Benchmark Dataset

We compared the proposed method with eight state of the art methods on the UCAS-
AOD dataset, including Yolov3 [11], RetinaNet-O [11], DAL [48], S2anet [36], RoI-Trans [4],
R3Det [21], ReDet [8] and Faster-RCNN [10]. The comparison results using different
methods are shown in Table 4. To ensure fair comparison, we reimplemented them with the
same parameters. The experimental data of the other methods are cited in the references.

Table 4. Comparison results using state of the art methods on the UCAS-AOD dataset. The top two
detection accuracies are marked in red and blue.

Method Backbone Plane Car mAP

Si
ng

le
-s

ta
ge Yolov3 [11] DarkNet53 89.5% 74.6% 82.1%

RetinaNet-O [11] ResNet101 90.5% 84.6% 87.6%
DAL [48] ResNet101 90.5% 89.3% 89.9%

S2anet [36] ResNet50 96.5% 83.5% 90.0%
R3det [21] ResNet50 95.4% 85.9% 90.7%

Tw
o-

st
ag

e Faster-RCNN-O [10] ResNet50 89.9% 86.9% 88.4%
RoI-Trans [4] ResNet101 89.9% 88.0% 89.0%

R-Faster-RCNN [10] ResNet50 95.2% 87.6% 91.4%
ReDet [8] ReResNet-50 95.6% 88.9% 92.3%

Ours ReResNet-50 96.4% 91.8% 94.1%

As shown in Table 4, the proposed method achieves an mAP of 94.1%, outperforming
the other methods. It exceeds the second ReDet method by 1.8%. The proposed method
obtains the best results for the type of car; this exceeds the second DAL method by 2.5%.
The proposed method also obtains the sub-optimal results for the type of plane, which
indicates that the proposed method is also robust for small objects. This also demonstrates
the good generalization capability of the proposed method.

4.4. Ablation Studies

In order to further verify the influence of each part of the proposed method on the
final detection performance, we conducted ablation experiments on the HRSC2016 dataset.
Table 5 shows the comparison results of the detection performance obtained by using
different modules and network structures. The baseline method adopts ResNet-50 as
the backbone network, then uses RPN and RT to generate RRoI, followed by RroI Align
to produce features for RoI-wise classification and bounding box regression. The same
parameter setting was used during the training process.
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Table 5. The effect of different components of the proposed method on detection performance.

Baseline ReResNet-50 RiRoI SCAM DDC MCC mAP (07)
√

65.05% 88.03%√ √
68.57% 90.47%√ √ √
72.10% 91.53%√ √ √ √
72.23% 92.31%√ √ √ √
69.43% 92.27%√ √ √ √ √
73.40% 92.73%

Compared with ResNet-50, ReResNet-50 obtained enriched orientation information by
generating features from multiple directions using ReResNet-50 as the backbone network.
It can be seen from Table 5 that mAP values can be improved by 2.44% and MCC values can
be improved by 3.52%. RiRoI Align shows significant improvements due to its orientation
alignment mechanism; when compared with RroI Align, mAP values can be improved by
1.06% and MCC values can be improved by 3.53%. RroI warping can only align features in
the spatial dimension; though the orientation dimension remains misaligned, RiRoI Align
can extract completely rotation-invariant features.

It can be seen in Table 5 that; SCAM contributes more to the detection performance
improvement than DDC. With SCAM, mAP values can be improved by 0.78% and MCC
values can be improved by 0.13%. This is because SCAM can enhance the important
feature channels while suppressing the irrelevant ones, effectively enhancing the high-level
semantic features of aerial images by using SeLU and GAP to avoid the possible gradient
explosion. SCAM also can adaptively select one-dimensional convolutional kernel sizes.
Compared with the conventional convolution operation, when the DDC layer obtains
the offset by adding a standard convolutional layer branch, mAP can be improved by
0.64%; this proves that DDC can dynamically adjust the weights of convolution kernels
according to the input image, effectively dealing with the arbitrary-oriented objects. When
all modules are added simultaneously, the mAP value can be improved to 92.73% and the
MCC value can be improved to 73.40%. The experimental results comprehensively prove
the effectiveness of these proposed modules.

Additionally, in order to compare the effect of the different components more intu-
itively, the visualized detection results and feature maps on HRSC2016 dataset are depicted
in Figure 6. It can be clearly observed that, when compared with the baseline, SCAM allows
the network to enhance the feature channels important to the detection tasks, and that
DDC can capture the edge information of the rotated objects better. The proposed method
achieves accurate bounding box regression in detecting arbitrary oriented objects, allowing
it to achieve better detection performance.

4.5. Discussion

DOTA is a very challenging dataset. It includes the complexity of the aerial image
and the large number of cluttered, rotated and small objects. We compared the proposed
method with other state of the art methods on DOTA, as shown in Table 2. Since different
methods use different image resolutions, network structures, training strategies and various
tricks, we cannot make absolutely fair comparisons. In terms of overall performance, our
method has achieved the best performance so far, at around 80.91%.

The HRSC2016 and UCAS-AOD datasets contain lots of large aspect ratio ship, plane
and car instances with arbitrary orientation; this poses a huge challenge to the positioning
accuracy of the detector. Experimental results in Tables 3 and 4 show that our model
achieves state of the art performances, at around 92.73% and 94.1%, respectively.
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Figure 6. Qualitative comparisons using different components of the proposed method on HRSC2016.
The purple boxes in the figure represent the predicted results. (a) the baseline method using ReResNet-
50 as the backbone network, and using RiRoI Align to extract completely rotation-invariant features;
(b) using the baseline method with the addition of the SCAM module; (c) using the baseline method
with the addition of the DDC module; (d) using the baseline method with the addition of the SCAM
module and DDC module.

5. Conclusions

The objects in aerial images often have arbitrary orientations and variable shapes and
sizes. Despite the performance of CNN in aerial images, object detection has made impor-
tant breakthroughs; however, accurate and robust object detection in aerial images remains
a challenging problem. In this paper, an arbitrary-oriented object detection method in aerial
images based on DDC and SCAM is proposed. The experimental results demonstrate that:

(1) Compared with the ResNet-50, ReResNet-50 can obtain enriched orientation infor-
mation by generating features from multiple directions, while using RiRoI Align extracts
rotation-invariant features from features.

(2) Compared with the conventional convolution operation, DDC can dynamically
adjust the weights of convolution kernels according to the input image in order to enhance
the feature representation capability.

(3) SCAM can effectively improve the semantic representation capability of high-
level features; this can improve detection performance of arbitrary-oriented objects in
aerial images.

Extensive experiments demonstrate that our method can achieve state of the art
performances on the DOTA-v1.0, HRSC2016, and UCAS-AOD datasets.

Starting from these premises, the analysis highlights that there is still plenty of room
for improvements. In future work, we will extend the method to identify roof types and
geomorphological types, improve the test images’ georeferences and further improve the



Electronics 2023, 12, 2132 15 of 17

generalization capability of the proposed method by making our method more sensitive to
arbitrary-oriented objects’ angular distance and aspect ratio. We will also seek to enhance
the practical application value of the method, reduce the model size, test images obtained
directly by flying the UAV to supplement the research and improve the ability of the
algorithm to extract the real objects.
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