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Abstract: Enhanced class E inverters (EFn or E/Fn) reduce the high peak switch voltage that is
prevalent in class E inverters. Additionally, their stability and load regulation capabilities are
improved as compared to class E inverters. This paper proposes an enhanced class E inverter (E/F3)
with a piezoelectric transformer (PT) replacing the auxiliary resonant networks. This class E/F3

inverter is designed by adding a tuned auxiliary LC network at the third harmonic of the switching
frequency to the class E inverter. Both the primary and auxiliary resonant networks are realized
using a piezoelectric transformer (PT). The converter is simulated in LTspice and an experimental
prototype is built and tested. It is found that the experimental results concur with the simulation
results, with a measured efficiency of 90%. Thus, the theoretical design is verified and the concept of
energy extraction is achieved.

Keywords: class E; class E/F3; ZVS

1. Introduction

The compact architecture of class E inverters, which has a low component count and a
simultaneous high power transmission capability, is largely responsible for their popularity.
Additionally, if combined with zero voltage switching (ZVS) or zero derivative voltage
switching (ZVDS) approaches, they can function at very high switching frequencies with
excellent efficiency. The ZVS/ZVDS class E inverters’ analyses and modeling have been
thoroughly documented in the literature [1–3]. This architecture does have one significant
drawback, though. This is seriously concerning, because the peak switch voltage is so large
(3.5 to 5 times, depending on the duty ratio) [4–8]. The upgraded class E configurations are
suggested, among other things, to address this problem, and the LC networks are tuned
at the nth harmonic of the switching frequency [9–18]. In this paper, a class E/F3 inverter
is designed. The inverter’s topology is shown in Figure 1a. A piezoelectric transformer
(PT-T1PP0361) is used for energy extraction in the primary and auxiliary resonant networks.
This PT is shown in Figure 1b, along with its mason equivalent circuit being demonstrated
in Figure 1c. In Figure 1a, the inverter has primary and secondary resonant networks
tuned at different resonant frequencies. In this design, either the primary or secondary
resonant network is replaced by the PT, or the PT is used to realize the other network using
conventional magnetic components. The experimental prototype is constructed and put
through testing, while the inverter is simulated in LTSPICE utilizing a PT emulation circuit.
The following sections provide details on the testing’s design and outcomes. In Section 2,
the circuit configuration and modes of operation are described. In Section 3, the circuit
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design is explained. In Section 4, the simulation and experimental verification process is
described. Section 5 concludes the paper.
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Figure 1. (a) The class E/F3 topology with primary and auxiliary resonant networks tuned at fr and
3fr, respectively. (b) The radial mode PT (T1PP0361). (c) The PT mason equivalent circuit.

2. The Circuit Configuration and Modes of Operation

In Figure 1a, the inductance Ls and capacitance Cs make up the primary resonant
tank of the class E/F3 inverter, which resonates at a resonant frequency (fr) in accordance
with a quality factor (Q). The input inductance (Lf) is designed to deliver an extremely low
ripple current while maintaining a steady DC current. The input capacitance Cin absorbs
the drain-to-source (non-linear) capacitance (Cds) of the switch. The auxiliary resonant
branch consists of the auxiliary resonant inductance (L1) and capacitance (C1). The primary
resonant frequency is fr, and the auxiliary resonant frequency is 3fr. The primary resonant
frequency fr and the switching frequency fs are both chosen to be equal, or the fs is slightly
higher than the fr. To accomplish the ZVS operation, the switch S1 is run at its optimal duty
ratio Dopt. The switching pattern is depicted as follows.

Switch =

{
Turned ON, 0 ≤ θ < 2πD

Turned OFF, 2πD ≤ θ < 2π
(1)

When the switch S1 is ON in mode 1, the voltage across the capacitor Cin is forced to
zero. The Lf is charged as the input current (Iin) passes through S1. The resonant current
flows through the switch in the resonant tank, transferring the stored energy from the Cs to
the Ls and completing one half of the resonant cycle. At the conclusion of this cycle, the
energy transfer is completed and the current starts to decline. When S1 opens at θ = 2πD in
mode 2, the Iin charges the input capacitor Cin, which eventually achieves the peak switch
voltage (VS1,peak), before being discharged through the primary resonant tank. Due to the
inductive nature of the load network in mode 2, the output current (Iout) lags the input
voltage to the resonant tank (VS1) in mode 2. This ensures that the ZVS is operating for
the designed inverter. On that note, the following conditions must be met to achieve ZVS
or ZVDS,

VS1(2π) = 0 and
d
dθ

VS1(2π) = 0 (2)

In Figure 1b, the PT mason equivalent circuit replaces the primary or the secondary
resonant tank in the class E/F3 resonant inverter.
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3. Circuit Design

In this section, the circuit components are designed [7,8] according to the specifications
that are stated in Table 1. As mentioned earlier, the primary and auxiliary resonant tank is
replaced by the PT. The PT characteristic component values are measured using a Bode 100
Network Analyzer. The measured parameters are stated in Table 2.

Table 1. Design specifications.

Parameters Symbols Values

Input voltage Vin 10 V

Primary resonant frequency fr 26.67 kHz

Auxiliary resonant frequency 3fr 80 kHz

Capacitance ratio k (C1/Cin) 10

Quality factor of the
conventional resonant tank Qaux 0.707

Table 2. Characteristic component values of PT.

Parameter Symbol Value

Series resistance RPT 8.69 Ω

Resonant inductor LS 4.86 mH

Resonant capacitor CS 0.814 nF

Input capacitor Cin 2.53 nF

Output capacitor Co 4.58 nF

Turns ratio n:1 1:0.45

Quality factor of the PT QPT 281.30

As can be calculated from Table 2, the PT resonant frequency (fr−PT) is

fr−PT =
1

2π
√

LC
=

1

2π
√

4.86× 10−3 × 0.814× 10−9
≈ 80 kHz (3)

An input inductor Lf = 100 µH is selected for both designs involving the PT, as the
primary or auxiliary resonant network.

A. The PT as Primary Resonant Tank

In this subsection, the inverter is designed while the primary resonant tank is replaced
by a PT. In Figure 2, the circuit diagram with the PT mason equivalent circuit is shown. In
this case, as can be derived from Table 2, Ls = LPT = 4.86 mH, Cs = CPT = 0.814 nF, n ≈ 2.22,
Cin = Cin−PT = 2.53 nF, and Co = Cout−PT = 4.58 nF. The LofCof filter is designed with a cutoff
frequency of fc = 120 kHz. Alternatively, without the LofCof filter, a large output capacitor,
Cof = 330 µH, can be used to reduce the high frequency harmonics, as shown in Figure 2b.
As the PT replaces the primary resonant tank, the primary resonant frequency fr is 80 kHz.
The auxiliary circuit has to resonate at fraux = 3fr. The components L1 and C1 are selected
for Q = 0.707 from Table 1 and for RL = 100 Ω.

L1 =
Q× RL

ω
=

0.707× 100
2π × 240× 103 ≈ 46.90 µH (4)

C1 =
1

4π2L1 f 2raux
=

1

4π2 × 46.90× 10−6 × (3× 80× 103)2 ≈ 9.38 nF (5)
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Figure 2. PT as primary resonant tank, (a) with an output LC filter, and (b) with output filter
capacitor (Cof).

The input capacitance can be calculated from [12] by using the k from Table 1.

ωRL,optCin = 0.6428k+0.3598
k+0.0875

⇒ Cin = 0.6428×10+0.3598
2π×26670×100×(10+0.0875) = 40.15 nF (6)

As Cin−PT = 2.53 nF, an external input capacitance Cex = Cin − Cin−PT = (40.15− 2.53)nF
= 37.62 nF has to be added. Practically, Cex ≈ 47 nF is selected with consideration to its
availability. The circuit parameters are stated in Table 3.

B. The PT as Auxiliary Resonant Tank

Table 3. The circuit parameters with PT as primary resonant tank.

Parameter Values

PT input capacitance Cin 2.53 nF

External input capacitance Cex 47 nF

PT output capacitance Co 4.70 nF

PT transformer ratio n ≈2.22

Load resistance RL 100 Ω

Primary resonant inductance Ls 4.77 mH

Primary resonant capacitance Cs 814 pF

Auxiliary resonant inductance L1 46.90 µH

Auxiliary resonant capacitance C1 9.10 nF

Output filter inductor Lof 200 µH

Output filter capacitance Cof 100 nF

In Figure 3, the circuit diagram, with the PT replacing the auxiliary resonant network, is
shown. In this case, as can be derived from Table 2, L1 = LPT = 4.86 mH, C1 = CPT = 0.814 nF,
n ≈ 2.22, and Cin = Cin−PT = 2.53 nF. For the structure of the PT, the Cout−pri comes in
parallel to the C1. This is due to the PT output capacitance (Cout−PT) being reflected to the
primary side and can be computed as:

Cout−pri = Cout−PT × n2 = 4.58× (2.22)2 nF = 22.57 nF (7)
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In (6), the required Cin is calculated. Hence, an external input capacitance, Cex ≈ 47 nF,
is added to the required design. The magnetic transformer (Tr) has a magnetic inductance
of Lm = 18 µH. The circuit parameters are stated in Table 4.

Table 4. The circuit parameters with PT as auxiliary resonant tank.

Parameter Values

PT input capacitance Cin−PT 2.53 nF

External input capacitance Cex 47 nF

PT output capacitance Cout−PT 4.57 nF

Transformer ratio n:1 2:1

Load resistance RL 100 Ω

PT auxiliary resonant
inductance L1 4.86 mH

PT auxiliary resonant
capacitance C1 814 pF

PT output capacitance
Cout−pri

(n2 ∗ Cout−PT)
18.28 nF

Equivalent capacitance in the
auxiliary branch Ceq = C1||Cout−pri 778 pF

Primary resonant inductance Ls 300 µH

Primary resonant capacitance Cs 124 nF

4. Simulation and Experimental Verification

The class E/F3 inverter with the integrated PT is simulated in an LTSPICE simulation
platform and prototypes are built. In Figure 4, the LTSPICE simulation circuit is shown.
In this configuration, the PT emulator (i.e., the mason equivalent) replaces the primary
resonant tank. The component design is presented in the previous section and utilizes a PT
as the primary or auxiliary resonant network. In the rest of this section, the results for the
simulation and experimentation of the designed inverter are presented and described. The
experimental setup is shown in Figure 5.

A. The PT as Primary Resonant Tank

In Figure 5, the LTSPICE simulation circuit is shown. In this configuration, the PT
emulator (i.e., the mason equivalent) replaces the primary resonant tank.

In Figure 6a, the switch voltage from the LTSPICE simulation is demonstrated. As can
be seen, the peak switch voltage is 34 V. From Figure 6b, it is obvious that the output voltage
(Vout) is smooth and contains less harmonics. However, the reverse diode’s conduction
shows that the inverter is not performing at its best. The inverter’s output power is
determined as follows:

Pout,sim =
Vrms

2

RL
≈ (18× 0.707)2

100
= 1.62 W (8)
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The experimental findings are shown in Figure 7. As can be seen, the switch’s reverse
diode (S1) conducts for a brief length of time, achieving the ZVS/ZDS in the sub-optimal
zone. This output power is determined as follows:

Pout,exp =
Vrms

2

RL
≈ (20× 0.707)2

100
= 1.99 W (9)

The high frequency harmonics in the Vout can be decreased using an LC low pass filter
or an output capacitor, as shown in Figure 7b,c. Additionally, it is clear that the simulation
and experimental results closely support the theoretical design. Table 5 compiles the
findings to show how comparable they are.

B. The PT as Auxiliary Resonant Tank

Table 5. The simulation and experimental prototype results.

Parameter Simulation Experimental

PT as primary resonant tank

Vout 18 V 20.9 V

VS1,peak 34 V 36.1 V

VC1,peak 48 V 53.2 V

PT as auxiliary resonant tank

Vout 2.6 V 3.2 V

VS1,peak 70 V 45.9 V
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Figure 7. Experimental results for class E/F3 topology with piezoelectric transformer as primary reso-
nant tank. (a) The switch voltage, VS1, (b) the output voltage with LC output filter, Vout, (c) the output
voltage with output filter capacitance, Vout, and (d) the auxiliary resonant capacitor voltage, VC1.

In Figure 8, the LTSPICE simulation circuit is shown for the PT that replaces the
conventional auxiliary resonant network. In this configuration, the PT emulator (i.e., the
mason equivalent) is used for simulation purposes.
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Figure 8. Simulation circuit: the class E/F3 topology with PT as auxiliary resonant tank.

The simulation results are shown in Figure 9. The ZVS is attained, as seen by the
switch voltage waveform in Figure 9b. However, the reverse diode’s conduction also
suggests that the converter is not performing at its best.
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The experimental findings for the PT working as an auxiliary resonant tank are shown
in Figure 10. It is clear from Figure 10a that a higher harmonic content dominates the
output voltage (Vout). To get rid of the higher frequency harmonics, a 100 kHz output low
pass filter can be used. Additionally, the ZVS is attained in the sub-optimal region, as seen
in Figures 9b and 10b. It should be noticed that the peak switch voltage (VS1,peak) is still
high, despite employing the auxiliary network (i.e., the PT). By increasing the capacitance
ratio k, this high switch peak voltage can be reduced. However, the latter necessitates the
use of a different PT, which is not executed in this work because of the non-availability
of the required PT. Nevertheless, the idea of utilizing a PT for the energy extraction in a
class E/F3 inverter is confirmed. In Figure 11, the power versus the efficiency (η) curve is
shown. The efficiency is measured under the specified conditions, as described in Table 1.
As observed, the converter operates at approximately 90%, while the output power (Pout)
is 5 W or lower. Overall, the simulation and experimental results are shown in Table 5.
It can be observed that the results are quite consistent with one another and conform to
the theoretical design. The slight differences in the results are due to the deviations of the
parametric values of the PT equivalent circuit at a high frequency.
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5. Conclusions

In this paper, the primary or auxiliary resonant tank is replaced with a PT in a class
E/F3 inverter. According to the circuit analysis, this inverter can be used in ZVS mode
while the PT replaces the traditional resonant tanks. The inverter is simulated in LTspice
and an experimental prototype of the inverter is tested. The simulation and experimental
results are consistent with one another, indicating the validity of the theoretical design.
Additionally, by raising the value of k, the inverter’s peak switch voltage in the class
E/F3 can be further reduced, which remains a future scope for this work. A compact and
low-power inverter can be realized by replacing its traditional magnetic components with
a PT. This concept is also applicable for other enhanced class E inverters. However, there
are opportunities for further investigation into this topic.
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Nomenclature

fs Switching frequency
fr Resonant frequency
Vin Input voltage
Vout Output voltage
VS1 Switch voltage
Iin Input current
Iout Output current
Pin Input power
Pout Output power
Ls Primary inductance
Cs Primary capacitance
L1 Auxiliary inductance
C1 Auxiliary capacitance
Cr Resonant capacitance
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Cout Output capacitance
RL Load resistance
k Capacitance ratio
Cin−PT PT equivalent input capacitance
Cout−PT PT equivalent output capacitance
ZVS Zero Voltage Switching
ZVDS Zero Voltage Derivative Switching
E/F3 Class E/F3 Inverter
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